Contract-Based Program Repair
without the Contracts

Liushan Chen* · Yu Pei* · Carlo A. Furia†
*Department of Computing, The Hong Kong Polytechnic University [cslschen csypei]@comp.polyu.edu.hk
†Department of Computer Science and Engineering, Chalmers University of Technology, Sweden bugcounting.net

Abstract—Automated program repair (APR) is a promising approach to automatically fixing software bugs. Most APR techniques use tests to drive the repair process; this makes them readily applicable to realistic code bases, but also brings the risk of generating spurious repairs that overfit the available tests. Some techniques addressed the overfitting problem by targeting code using contracts (such as pre- and postconditions), which provide additional information helpful to characterize the states of correct and faulty computations; unfortunately, mainstream programming languages do not normally include contract annotations, which severely limits the applicability of such contract-based techniques.

This paper presents JIAID, a novel APR technique for Java programs, which is capable of constructing detailed state abstractions—similar to those employed by contract-based techniques—that are derived from regular Java code without any special annotations. Grounding the repair generation and validation processes on rich state abstractions mitigates the overfitting problem, and helps extend APR’s applicability: in experiments with the DEFECTS4J benchmark, a prototype implementation of JIAID produced genuinely correct repairs, equivalent to those written by programmers, for 25 bugs—improving over the state of the art of comparable Java APR techniques in the number and kinds of correct fixes.

I. INTRODUCTION

Every general software analysis technique based on a finite collection of tests is prone to overfitting them. Automated program repair (APR) is no exception; in particular, overfitting is likely to cripple the performance of APR tools following the generate-then-validate paradigm that was pioneered by GenProg [33], where each heuristically generated candidate repair—a source code patch—undergoes testing, and only the candidates that pass all available tests for the method being repaired are classified as valid and returned as fix suggestions. Since validation is against a finite—often small—number of tests, there is no guarantee that a valid repair is genuinely correct against a complete, and implicit, specification of the method. Indeed, experiments have repeatedly confirmed [19], [28], [29] that automated program repair techniques are prone to producing a significant fraction of valid but incorrect repairs, which merely happen to pass all available tests but are clearly inadequate from a programmer’s perspective.

The AutoFix technique for APR [31] mitigated the overfitting problem by using contracts, made of assertions such as pre- and postconditions, as additional information to improve the precision of repair generation and validation. Even if the contracts used by AutoFix are far from being detailed, let alone complete, method specifications, they significantly help increase the fraction of correct fixes that can be generated [25]. Unfortunately, even such simple contracts are hardly ever available in the most widely used programming languages [†]. Can we still generalize some of the techniques used for contract-based program repair to work effectively without user-written contracts?

In this paper we describe JIAID: a technique and tool for automated program repair of Java programs that is based on detailed, state-based dynamic program analyses—akin those employed by contract-based techniques such as AutoFix, but working on regular Java code (without any contracts). State abstractions drive both the generation and the validation stages of JIAID, and help construct high-quality fixes: in experiments targeting bugs from the DEFECTS4J curated collection, JIAID produced repairs passing all available tests for 31 of the bugs, and correct repairs—equivalent to those written by programmers—for 25 of the bugs. These results are close to, or outperform, other comparable tools for the automated program repair of Java programs in terms of total number of correct repairs and precision, and include the first automatically produced correct repairs for 14 bugs of DEFECTS4J that were previously outside the capabilities of APR. JIAID is also the first APR technique that achieves high levels of precision without relying on additional input other than tests and faulty code; in contrast, other recent high-precision APR techniques [13], [35] analyze a large number of project repositories to collect additional information that guides fixing.

This paper’s key contributions, which bolster JIAID’s performance, include techniques to build a rich abstraction of object state. In turn, the state abstraction relies on a purity analysis of functions—only functions that are pure, that is without side effects, can be safely used to characterize state. Whereas techniques, such as AutoFix, that use programmer-written contracts can easily rely on the functions used as predicates in the contracts, JIAID has to extract similar information from regular code without annotations. To curb the number of candidate fixes that are generated and validated, JIAID relies on fault localization and ranking heuristics, which help identify program states that are likely to be implicated with faulty behavior; both fault localization and ranking are crucially informed by JIAID’s detailed state-based abstractions.

‡AutoFix targets the Eiffel programming language, where contracts are embedded in the program code and routinely written by programmers.
to these techniques, JAIoD can generate correct fixes that are based on a more “semantic” analysis of how to modify the object state to avoid a failure—beyond just working around the existing implementation by syntactically modifying it, as most other APR tools do.

Terminology. In this paper we use the nouns “defect”, “bug”, “fault”, and “error” as synonyms to indicate errors in a program’s source code; and the nouns “fix”, “patch”, and “repair” as synonyms to indicate source-code modifications that ought to correct errors. For simplicity, JAIoD denotes both the APR technique and the tool implementing it.

Availability. JAIoD and all the material of the experiments described in this paper is available as open source at: https://bitbucket.org/maxpei/jaid

II. An Example of JAIoD in Action

Apache Commons is a widely used Java library that extends Java’s standard API with a rich collection of utilities. Class `WordUtil` of package `org.apache.commons.lang` includes a method `abbreviate` to simplify strings with spaces: given a string `str` lower and upper indexes `lower` and `upper`, and another string `appendToEnd`, the method returns a string obtained by truncating `str` at the first index between `lower` and `upper` where a space occurs, and replacing (or abbreviating) the truncated suffix with `appendToEnd`. For example, `abbreviate("Apache Commons Library", 9, 18, "+")` returns the string "Apache_Commons+".

Listing 1. Faulty method `abbreviate` from class `StringUtils` in package `org.apache.commons.lang`.

```java
public static String abbreviate
    (String str, int lower, int upper, String appendToEnd) {
    if (str == null) {
        return null;
    }
    if (str.length() == 0) {
        return StringUtils.EMPTY;
    }
    if ((upper == -1 || upper > str.length()) {
        return new StringBuffer().
    }
    if (lower >= str.length()) {
        return new StringBuffer(appendDate).
    }
    if (upper != str.length()) {
        return new StringBuffer().
    }
    result.append(StringUtils.defaultString(appendDate));
    return result.toString();
```

Listing 1. Faulty method `abbreviate` from class `StringUtils` in package `org.apache.commons.lang`.

Listing 2. Programmer-written fix to the fault in `abbreviate`.

```java
if (lower > str.length()) {
    result.append(str.substring(0, upper));
}
else if (index > upper) {
    result.append(StringUtil.defaultString(appendDate));
}
else {
    result.append(StringUtil.defaultString(appendDate));
}
result.append(StringUtil.defaultString(appendDate));
return result.toString();
```

Listing 2. Programmer-written fix to the fault in `abbreviate`.

Listing 3. JAIoD’s correct fix to the fault in `abbreviate`.

```java
public static String abbreviate
    (String str, int lower, int upper, String appendToEnd) {
    if (str == null) {
        return null;
    }
    if (str.length() == 0) {
        return StringUtils.EMPTY;
    }
    if ((upper == -1 || upper > str.length()) {
        return new StringBuffer().
    }
    if (lower >= str.length()) {
        return new StringBuffer(appendDate).
    }
    if (upper != str.length()) {
        return new StringBuffer().
    }
    result.append(StringUtils.defaultString(appendDate));
    return result.toString();
```

Listing 3. JAIoD’s correct fix to the fault in `abbreviate`.

To our knowledge, JAIoD is the first APR tool that can correctly repair the fault of abbreviate; no other existing tools even provided so-called test-suite adequate fixes, which spuriously pass all available tests avoiding the failure, but do not correctly fix the behavior in the same way that the developers did. Key to JAIoD’s success is its capability of constructing rich state-based abstractions of a program’s behavior, which improves the accuracy of fault localization and guides the creation of state-modifying fixes in response to failing conditions.

III. How JAIoD Works

JAIoD follows the popular “generate-then-validate” approach, which first generates a number of candidate fixes, and then validates them using the available test cases; Fig. 1 gives an overview of the overall process. Inputs to JAIoD are a Java program, consisting of a collection of classes, and test cases that exercise the program and expose some failures. One key feature of JAIoD is how it abstracts and monitors program state in terms of program expressions; all stages of JAIoD’s workflow rely on the abstraction derived as described in Sec. III-A Fault localization (Sec. III-B) identifies states and locations (snapshots) that are suspect of being implicated

Section References

1. **Listings**: Listings 1, 2, and 3 illustrate the implementation of `abbreviate` in `StringUtils`, the programmer-written fix, and JAIoD’s correct fix, respectively.
2. **Figures**: Fig. 1 provides an overview of the JAIoD workflow.
3. **Sections**: Sections III-A and III-B detail the fault localization process and the identification of states and locations, respectively.
in the failure under repair. Fix generation (Sec. III-C and Sec. III-D) builds code snippets that avoid reaching such suspicious states and locations by modifying the program state, the control flow, or by other simple heuristics. Generated fixes are validated against the available tests (Sec. III-E); the fixes that pass validation are presented to the user, heuristically ranked according to how likely they are correct (Sec. III-F).

The rest of this section describes how JAID repairs a generic method fixMe of class FC, with tests T that exercise fixMe in a way that at least one test in T is failing.

![Diagram](image.png)

Fig. 1. An overview of how JAID works. Given a Java program and a set of test cases, including at least one failing test, JAID identifies a number of suspicious snapshots, each indicating a location and an abstraction of the program state at that location that may be implicated in the failure; based on the snapshot information, JAID generates a number of candidate fixes, which undergo validation against all available tests for the method under repair; fixes that pass all available tests are considered valid; JAID finally heuristically ranks the valid fixes, and presents the valid fixes to the user in ranking order.

A. Program State Abstraction

JAID bases its program analysis and fix generation processes on a detailed state-based abstraction of the behavior of method fixMe. For every location ℓ in fixMe, uniquely identifying a statement in the source code, the JAID records the values of a set M_{ℓ} of expressions during each test execution: 1) the exact value of expressions of numeric and Boolean types; 2) the object identifier (or null) of expressions of reference types, so that it can detect when a reference is aliased, or is null. JAID selects the expressions in M_{ℓ} as follows.

Expressions. A type is *monitorable* if it is a reference type or a primitive type (numeric types such as int, and boolean). E_{ℓ} denotes the set of all basic expressions of monitorable types at ℓ, namely 1) local variables (including fixMe’s arguments) declared inside fixMe that are visible at ℓ; 2) attributes of class FC that are visible at ℓ; 3) expressions anywhere inside fixMe that can be evaluated at ℓ (that is, they only involve items visible at ℓ), and that don’t obviously have side effects (namely, we exclude assignments used as expressions, self increment and decrement expressions, and creation expressions using new). X_{ℓ} denotes the set of all *extended* expressions of monitorable types at ℓ: for each basic expression of reference type $r \in E_{\ell}$, X_{ℓ} includes: 1) $r.f()$ for every argumentless function f of the class corresponding to r’s type that returns a monitorable type and is callable at ℓ; 2) only if r is this, $r.a$, for every attribute a of the class corresponding to r’s type that is readable at ℓ.

For example, the extended expressions X_{str} at line 9 in method abbreviate of Lst. 1 include lower (an argument of abbreviate), str.length() (a call of function length() on abbreviate’s argument str), and upper < lower and str == null (both appearing in abbreviate).

Purity analysis. One lesson that we can draw from the experience of contract-based APR [25] is that constructing a rich set of expressions that abstract the program state can help support more accurate fault localization and fix generation, and ultimately the construction of higher-quality “semantic” fixes that are less prone to overfitting. However, monitoring a rich set of expressions extracted from the program text does not work as well in languages such as Java as it does in languages that support contracts. In the latter, programmers specifically equip classes with public query methods that are pure—they are functions that return a value without changing the state of their target objects—and can be used in the contracts to characterize the program state in response to method calls; these methods are thus easily identifiable and natural candidates to construct state abstractions reliably. In Java, in contrast, programmers need not follow such a discipline of separating pure functions from state-changing procedures, and methods that return a value but have side effects are indeed common. Clearly, a function that is not pure is unsuitable for abstracting and monitoring an object’s state.

To identify which expressions can reliably be used for state monitoring, JAID performs a dynamic purity analysis on all expressions that include method invocations. Given an expression r of reference type, the set W_r of r’s watch expressions consists of: 1) all subexpressions S_r of r that do not include method invocations; 2) for each subexpression $s \in S_r$, $s.a$ for every attribute a of the class corresponding to s’s type. Note that watch expressions are constructed so that they are syntactically free from side effects.

An expression r of reference type is then considered pure if evaluating it does not alter the value of its watch expressions. Precisely, at every location ℓ in the method fixMe under repair, 1) first, JAID records the value $\sigma = (\sigma_1, \ldots, \sigma_m)$ of all watch expressions, where σ_k is the value of $w_k \in W_r$, for $1 \leq k \leq m$, before evaluating r; 2) then, JAID evaluates r; 3) finally, JAID records again the value $\sigma' = (\sigma'_1, \ldots, \sigma'_m)$ of all watch expressions, where σ'_k is the value of $w_k \in W_r$, for $1 \leq k \leq m$, after evaluating r. If $\sigma = \sigma'$ at every ℓ in every test exercising fixMe, we call r pure.

State monitoring. JAID collects in M_{ℓ} all extended expressions in X_{ℓ} that are pure according to this analysis.
B. Fault Localization

The goal of fault localization is to identify suspicious snapshots indicating locations and states that are likely to be implicated with a fault. A snapshot is a triple \((\ell, b, ?)\), where \(\ell\) is a location in method fixMe under repair, \(b\) is a Boolean expression, and ? is the value (true or false) of \(b\) at \(\ell\).

Boo\v{l}ean ab\v{r}a\v{c}tions. The set \(B_\ell\) includes all Boolean expressions that may appear in a snapshot at \(\ell\); it is constructed by combining the monitored expressions \(M_\ell\) to create Boolean expressions as follows: 1) for each pair \(m_1, m_2 \in M_\ell\) of expressions of the same type, \(B_\ell\) includes \(m_1 \equiv m_2\) and \(m_1 \neq m_2\); 2) for each pair \(k_1, k_2 \in M_\ell\) of expressions of integer type, \(B_\ell\) includes \(k_1 \triangleright k_2\), for \(\triangleright \in \{\lt, \lt=, \gt, \gt=\}\); 3) for each expression \(b \in M_\ell\) of Boolean type, \(B_\ell\) includes \(b\) and \(!b\); 4) for each pair \(b_1, b_2 \in M_\ell\) of expressions of Boolean type, \(B_\ell\) includes \(b_1 \& b_2\) and \(b_1 \| b_2\).

Continuing the example of method abbreviate in [Lst. 1], \(B_\ell\) includes expressions such as lower \(\Rightarrow\) str.length() and !(str == null).

Sus\v{p}ic\v{u}ousness. \(J_{AID}\) computes the suspiciousness of every snapshot \(s = (\ell, b, ?)\) based on Wong et al.’s fault localization techniques [34]. The basic idea is that the suspiciousness of \(s\) combines two sources of information: 1) a syntactic analysis of expression dependence, which gives a higher value \(ed_s\) to \(s\) the more subexpressions \(b\) shares with those used in the statements immediately before and immediately after \(\ell\) (this estimates how much \(s\) is relevant to capture the state change at \(\ell\)); 2) a dynamic analysis, which gives a higher value \(dy_s\) to \(s\) the more often \(b\) evaluates to \(?\) at \(\ell\) in a failing test, and a lower value to \(s\) the more often \(b\) evaluates to \(?\) at \(\ell\) in a passing test (this collects the evidence that comes from monitoring the program during passing and failing tests). The overall suspiciousness \(2/(ed_s^{-1} + dy_s^{-1})\) is the harmonic mean of these two sources, but the dynamic analysis has the biggest impact—because \(ed_s\) is set up to be a value between zero and one, whereas \(dy_s\) is at least one and grows with the number of passing tests.

This approach is similar to AutoFix’s [25, Sec. 4.2]—which is also based on [34]—but conspicuously excludes information about the distance between \(\ell\) and the location of failure on the control flow graph of the faulty method. AutoFix identifies failures as contract violations, which tend to be happen closer to where the program state becomes corrupted; by contrast, in \(J_{AID}\)’s setting—using tests without contracts in Java—failures normally happen when evaluating an assert statement inside a test method, and thus the distance to the location of failure within the faulty method is immaterial, and hardly a reliable indication of suspiciousness.

In the running example of method abbreviate in [Lst. 1] the snapshot \([\ell, b, ?]\) lower \(\Rightarrow\) str.length(), true receives a high suspiciousness score because low and str.length() appear prominently in the statements around line 9 and, most important, lower \(\Rightarrow\) str.length() holds in all failing and in no passing tests.

C. Fix Generation: Fix Actions

A snapshot \(s = (\ell, b, ?)\) with high suspiciousness indicates that the program is prone to triggering a failure when the program state in some execution is such that \(b\) evaluates to \(?\) at \(\ell\); correspondingly, \(J_{AID}\) builds a number of candidate fixes that try to steer away from the suspicious state in the hope of avoiding the failure. To this effect, \(J_{AID}\) enumerates four kinds of fix actions: 1) modify the state directly by assignment; 2) affect the state that is used in an expression; 3) mutate a statement; 4) redirect the control flow. Each fix action is a (possibly compound) statement that can replace the statement at \(\ell\). Actions of kinds 1 and 2 are semantic—they directly target the program state; actions of kind 3 are syntactic—they tinker with existing code expressions according to simple heuristics; actions of kind 4 are the simplest—they are independent of the snapshot’s information. We outline how \(J_{AID}\) builds fix actions in the following paragraphs, based on a definition of derived expressions. Sec. IV discusses which fix actions were the most effective in the experimental evaluation.

Derived expression. Given an expression \(e\), \(\Delta_{\ell,e}\) denotes all derived expressions built from \(e\) as follows: 1) if \(e\) has integer type, \(\Delta_{\ell,e}\) includes \(e, e + 1, \text{ and } e - 1\); 2) if \(e\) has Boolean type, \(\Delta_{\ell,e}\) includes \(e\) and \(!e\); 3) \(\Delta_{\ell,e}\) also includes \(t\) and \(t.f(\ldots)\), for every \(t \in M_\ell\) of reference type, where \(f\) is a function of the class \(t\) belongs to—possibly called with actual arguments chosen from the monitored expressions \(M_\ell\) of suitable type. Given an expression \(e\), its top-level subexpressions \(S_e\) are the expressions corresponding to the nodes at depth 1 in \(e\)’s abstract syntax tree—namely, the root’s immediate children. For example, the top-level subexpressions of \((a + b < c.d())\) are \(a + b\) and \(c.d()\). Then, \(\Delta'_{\ell,e} = \bigcup_{s \in S_e} \Delta_{\ell,e}\) denotes all expressions derived from \(e\)’s top-level subexpressions.

Modifying the state. For every top-level subexpression \(e\) of \(b\), if \(e\) is assignable to, \(J_{AID}\) generates the fix action \(e \Leftarrow \delta\) for each \(\delta \in \Delta'_{\ell,b}\) whose type is compatible with \(e\)’s.

In the running example of method abbreviate in [Lst. 1], \(J_{AID}\) includes the assignment lower \(\Rightarrow\) str.length() among the fix actions that modify the state at line 9.

Modifying an expression. For every top-level subexpression \(e\) of \(b\) that is not assignable to, but appears in the statement \(S\) at \(\ell\), \(J_{AID}\) generates the fix action \(\text{tmp.e} \Leftarrow \delta; S[e \Rightarrow \text{tmp.e}]\) for each \(\delta \in \Delta'_{\ell,b}\) whose type is compatible with \(e\)’s; \(\text{tmp.e}\) is a fresh variable with the same type as \(e\), and \(S[e \Rightarrow \text{tmp.e}]\) is the statement at \(\ell\) with every occurrence of \(e\) replaced by \(\text{tmp.e}\)—which has just been assigned a modified value.

Mutating a statement. “Semantic” fix actions—based on the information captured by the state in suspicious snapshots—are usefully complemented by a few “syntactic” fix actions—based on simple mutation operators that capture common sources of programming mistakes such as off-by-one errors. Following an approach adopted by other APR techniques [13], [36], \(J_{AID}\) generates mutations mainly targeting conditional expressions. Precisely, if the statement \(S\) at \(\ell\) is a conditional or a loop, \(J_{AID}\) generates fix actions for every Boolean subex-
expression \(e \) of \(b \) that appears in the conditional’s condition or in the loop’s exit condition: 1) if \(e \) is a comparison \(x_1 \bowtie x_2 \), for \(\bowtie \in \{<,=,\geq,\leq,\neq\} \), \(\text{JAIID} \) generates the fix action \(S[e \mapsto (x_1 \bowtie x_2)] \), for every comparison operator \(\bowtie' \neq \bowtie \); 2) \(\text{JAIID} \) also generates the fix actions \(S[e \mapsto \text{true}] \) and \(S[e \mapsto \text{false}] \), where \(e \) is replaced by a Boolean constant.

In addition to targeting Boolean expressions, if the statement \(S \) at \(\ell \) includes a method call \(\text{t.m(a_1, \ldots, a_n)} \), \(\text{JAIID} \) generates the fix action \(S[m \mapsto x] \), which calls any applicable method \(x \) on the same target and with the same actual arguments as \(m \) in \(s \).

Modifying the control flow. Even though fix actions may indirectly change the control flow by modifying the state or a branching condition, a number of bugs require abruptly redirecting the control flow. To achieve this, \(\text{JAIID} \) also generates the following fix actions independent of the snapshot information: 1) if method \(\text{fixMe} \) is a procedure (its return type is \(\text{void} \)), \(\text{JAIID} \) generates the fix action \(\text{return} \); 2) if method \(\text{fixMe} \) is a function, \(\text{JAIID} \) generates the fix action \(\text{return} \ e \), for every basic expression of suitable type available at \(\ell \); 3) if \(\ell \) is a location inside a loop’s body, \(\text{JAIID} \) generates the fix action \(\text{continue} \).

D. Fix Generation: Candidate Fixes

Each fix action—built by \(\text{JAIID} \) as described in the previous section—is a statement that modifies the program behavior at location \(\ell \) in a way that avoids the state implicated by some suspicious snapshot \(s = (\ell, b, ?) \). In most cases, a fix action should not be injected into the program under repair unconditionally, but only when state \(b \) is actually reached during a computation. A conditional execution would leave program behavior unchanged in most cases, and only address the failing behavior when it is about to happen.

To implement such conditional change of behavior, \(\text{JAIID} \) uses the schemas in Fig. 2 to insert fix actions into the method \(\text{fixMe} \) under repair at location \(\ell \). First, \(\text{JAIID} \) instantiates every applicable schema with each fix action; in addition to the fix action, schemas include the statement \(\text{oldStatement} \) at location \(\ell \) in the faulty \(\text{fixMe} \), and the condition suspicious, which is \(b == ? \) as determined by the snapshot’s abstract state. Then, \(\text{JAIID} \) builds fix candidates by replacing the statement at \(\ell \) in \(\text{fixMe} \) by each instantiated schema.

Continuing the running example of method abbreviate in Lst. 1, one of the fix candidates consists of the fix action \(\text{lower} = \text{str.length()} \) instantiating schema B: the action is executed only if \(\text{lower} >= \text{str.length()} \) (from the suspicious snapshot), whereas the existing statement at line 9 as well as the rest of method \(\text{fixMe} \), is unchanged by the fix.

Two of the five schemas currently used by \(\text{JAIID} \) to build fix candidates inject the fix action unconditionally. On the other hand, different fix actions may determine semantically equivalent fixes when instantiated. \(\text{JAIID} \) performs a lightweight redundancy elimination, based on simple syntactic rules such as that \(x == y \) is equivalent to \(!(x != y) \). In future work, we plan to introduce a more aggressive redundancy elimination, for example as done in related work [32].

E. Fix Validation

Even if \(\text{JAIID} \) builds candidate fixes based on a semantic analysis of the program state during passing vs. failing tests, the candidate fixes come with no guarantee of satisfying the tests. To ascertain which candidates are suitable, a fix validation process, which follows fix generation, runs all tests \(T \) that exercise the faulty method \(\text{fixMe} \) against each generated candidate fix. Candidate fixes that pass all tests \(T \) are classified as valid (also “test-suite adequate” [19]) and retained; other candidates, which fail some tests, are discarded—as they do not fix the fault, they introduce a regression, or both.

In the example of method abbreviate in Lst. 1, the fix candidates \(\text{if} \ (\text{lower} >= \text{str.length()}) \ \text{lower} = \text{str.length()} \) passes validation, since it fixes the fault and introduces no regression error.

Since \(\text{JAIID} \) commonly generates a large number of candidate fixes for each fault, validation can take up a very large time spent compiling and executing tests, which may ultimately impair the scalability of \(\text{JAIID} \)’s APR. To curtail the time spent compiling, \(\text{JAIID} \) deploys a simple form of dependency injection. All candidate fixes for a method \(\text{fixMe} \) become members of \(\text{fixMe} \)’s enclosing class \(\text{FC} \): candidate fix number \(k \) becomes a method \(\text{fixMe}_k \) with signature the same as \(\text{fixMe} \)’s. Then, as shown in Lst. 9, a method \(\text{fixMe} \)—also with the same signature—dispatches calls to any of the candidate fixes based on the value returned by static method \(\text{getActiveFixId()} \) of

\[
\begin{align*}
\text{Listing 4. Schema A} & \quad \text{if (suspicious)} \{ \\
& \quad \text{action;} \\
& \quad \text{oldStatement;} \}
\end{align*}
\]

\[
\begin{align*}
\text{Listing 5. Schema B} & \quad \text{if (!suspicious)} \{ \\
& \quad \text{action;} \\
& \quad \text{oldStatement;} \}
\end{align*}
\]

\[
\begin{align*}
\text{Listing 6. Schema C} & \quad \text{if (suspicious)} \{ \\
& \quad \text{action;} \\
& \quad \text{oldStatement;} \}
\end{align*}
\]

\[
\begin{align*}
\text{Listing 7. Schema D} & \quad \text{if (!suspicious)} \{ \\
& \quad \text{action;} \\
& \quad \text{oldStatement;} \}
\end{align*}
\]

\[
\begin{align*}
\text{Listing 8. Schema E} & \quad \text{if (suspicious)} \{ \\
& \quad \text{action;} \\
& \quad \text{oldStatement;} \}
\end{align*}
\]

\[
\begin{align*}
\text{Listing 9. How multiple fix candidates are woven into a single class.} & \quad \text{if (lower} \geq \text{str.length()}) \quad \text{lower} = \text{str.length()} \\
& \quad \text{passes validation, since it fixes the fault and introduces no regression error.}
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 2. Schemas used by \text{JAIID} to build candidate fixes} & \quad \text{// class being repaired} \\
& \quad \text{class FC} \{ \\
& \quad \text{U fixMe(T1 a1, T2 a2, \ldots) throws IllegalStateException \{ } \\
& \quad \text{switch (Session.getActiveFixId()) \{ } \\
& \quad \text{case 0: return fixMe(a1, a2, \ldots); \quad // call faulty method} \\
& \quad \text{case 1: return fixMe1(a1, a2, \ldots); \quad // call fix candidate 1} \\
& \quad \text{default: throw new IllegalStateException(); } \\
& \quad \text{}} \\
& \quad \text{\}} \\
& \quad \text{\}} \\
& \quad \text{\}}
\end{align*}
\]

2Since each fix generated by \(\text{JAIID} \) combines one fix action and one schema, it adds at most 5 new lines of codes to a patched method.
class Session, which supplies the dependency. This scheme only requires one compilation per method under repair, thus significantly cutting down validation time.

F. Fix Ranking

Like most APR techniques, JAID’s process is based on heuristics and driven by a finite collection of tests, and thus is ultimately best effort: a valid fix may still be incorrect, passing all available tests only because the tests are incomplete pieces of specification. JAID addresses this problem by ranking valid fixes using the same heuristics that underlies fault localization. Every fix includes one fix action, which was derived from a snapshot s; the higher the suspiciousness of s, the higher the fix is ranked; fixes derived from the same snapshot are ranked in order of generation, which means that “semantic” fixes (modifying state or expressions) appear before “syntactic” fixes (mutating statements or modifying the control flow), and fixes of the same kind are enumerated starting from the syntactically simpler ones.

When the ranking heuristics works, the user only inspects few top-ranked fixes to assess their correctness and whether they can be deployed into the codebase. The experimental evaluation in Sec. IV comments on the effectiveness of JAID’s ranking heuristics.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of JAID on DEFECTS4J [9], a large curated collection of faults and programmer-written fixes from real-world Java projects. This choice also enables us to quantitatively compare the results of JAID’s evaluation to most state-of-the-art tools for APR of Java programs—which have also targeted DEFECTS4J in their experiments.

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>KLOC</th>
<th>TESTS</th>
<th>BUGS</th>
<th>SELECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart</td>
<td>96</td>
<td>2205</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Closure</td>
<td>90</td>
<td>7927</td>
<td>133</td>
<td>56</td>
</tr>
<tr>
<td>Lang</td>
<td>22</td>
<td>2245</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>Math</td>
<td>85</td>
<td>3602</td>
<td>106</td>
<td>42</td>
</tr>
<tr>
<td>Time</td>
<td>27</td>
<td>4130</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>320</td>
<td>20109</td>
<td>357</td>
<td>138</td>
</tr>
</tbody>
</table>

A. Subjects

Our experiments target revision #a910322b of DEFECTS4J, which includes 357 bugs in 5 projects: Chart (26 bugs), Closure (133 bugs), Lang (65 bugs), Math (106 bugs), and Time (27 bugs). Each bug in DEFECTS4J has a unique identifier, corresponds to two versions—buggy and fixed (by a programmer)—of the code (which may span multiple methods or even multiple files), and is accompanied by some programmer-written unit tests that exercise the code—in particular, at least one test triggers a failure on the buggy version. In the following, if k is the identifier of a bug in DEFECTS4J, β_k denotes the buggy version of the code corresponding to bug k, ϕ_k denotes the code of the programmer-fixed version of β_k, and T_k denotes the tests accompanying k.

The bugs included in DEFECTS4J are a representative sample of real-world bugs, and as such they include several that admit simple fixes, as well as several others that require sweeping changes to different parts of a project. In order to focus the experiments on the bugs that have a chance of being in JAID’s purview, we selected a subset of all bugs k that satisfy the following criteria: 1) the programmer-written fix ϕ_k only modifies Java executable code—no other artifacts like configuration files or compilation scripts; 2) the programmer-written fix ϕ_k modifies no more than 5 consecutive lines of code and no more than 4 statements with respect to β_k (as reported by the ChangeDistiller tool [3]); 3) the bug is reproducible: at least one test in T_k fails on β_k, and all tests in T_k pass on ϕ_k. A total of 138 bugs satisfy these criteria; these are the subjects of our experiments with JAID. Tab. I shows the size of and the number of bugs in each DEFECTS4J project among our experimental subjects.

B. Research Questions

Our evaluation addresses research questions in different areas:

Effectiveness: How many bugs can JAID fix?
Performance: How much time does JAID take?
Design: Which components of JAID’s are the most important for effectiveness?
Comparison: How does JAID compare to other APR techniques for Java?

C. Setup

Since JAID ranks all generated snapshots according to their suspiciousness (see Sec. III-B), and depends on the ranking to guide the following stages, setting an arbitrary cutoff time may prevent from generating a complete ranking. Instead, we limit the search space in our experiments by configuring JAID so that it uses at most 1500 snapshots in order of suspiciousness. Then, the following stages (Fig. 1) all run to completion.

Each experiment targets one bug k in DEFECTS4J, and runs JAID on buggy code β_k using the tests T_k; the output is a ranked list of valid fixes for the bug. We manually inspect the top 50 fixes in order of ranking to determine which are correct; if all 50 fixes are incorrect, we continue the manual inspection of the other fixes and stop when we find a correct one, or no more valid fixes are available. We classify a fix as correct only if it is semantically equivalent to the programmer-written fix ϕ_k in DEFECTS4J. This is a high bar for correctness, which provides strong confidence that a fix is high-quality enough to be deployable.

All the experiments ran on a cloud infrastructure, with each run of JAID using exclusively one virtual machine instance, configured to use one core of an Intel Xeon Processor E5-2630 v2, 8 GB of RAM, Ubuntu 14.04, and Oracle’s Java 8.
JDK 1.8. In this section, averages are measured using the median by default, with exceptions explicitly pointed out.

Other tools for Java APR. We quantitatively compare **JAID** to all other available tools for APR of Java programs that have also used DEFECTS4J in their evaluations: 1) jGenProg is the implementation of GenProg [14], [33]—which works on C—for Java programs; we refer to jGenProg’s evaluation in [19]; 2) jKali is the implementation of Kali [28]—which works on C—for Java programs; we refer to jKali’s evaluation in [19]; 3) Nopol focuses on fixing Java conditional expression; we refer to Nopol’s evaluation in [19]; 4) xPAR is a reimplementaion of PAR [12]—which is not publicly available—discussed in [13] and [35]; 5) HDA implements the “history-driven” technique of [13]; 6) ACS implements the “precise condition synthesis” of [35].

Experiments with APR tools often target a different subset of DEFECTS4J that is amenable to the technique being evaluated. Comparing the number and kinds of fixed bugs among tools remains meaningful, because bugs that are excluded a priori from an evaluation can normally be considered beyond a tool’s current capabilities.

D. Results

Effectiveness. **JAID** was able to produce valid fixes for the 31 bugs of DEFECTS4J listed in Table I. More significant, it produced correct fixes—equivalent to those written by programmers—for 25 of these bugs (integer RANK in Table II). This indicates that **JAID** is applicable to realistic code and, when it runs successfully, it often produces fixes of high quality. As we discuss in more detail below, the number of correctly fixed bugs is on par with, or above, the state of the art of Java APR techniques.

Unsurprisingly, **JAID** produces fixes that tend to be small in size: 1.7 lines of code changes per valid fix on average. This is a result of its fix generation process, which is based on state-based information, targets simple fix actions, and then ranks them. The “precise condition synthesis” technique of [13] helps save a significant amount of compilation time; as future work, we plan to further improve the performance of validation by running multiple concurrent instances on the same JVM. **Effectiveness.**

![Fig. 3. Number of bugs correctly fixed by each of the main APR tool.](image)

Comparison: correct fixes. Table III compares **JAID** to other tools.
six other APR tools for Java. In terms of number of bugs fixed with a correct fix, JAID outperforms all other tools. Note that both runners-up, HDA and ACS, crucially rely on mining additional information from other sources: HDA mines frequency information about 3000 bug fixes from 800 popular GitHub projects, whereas ACS searches for predicates in “all open-source projects in GitHub” [35, Sec.III-E]. The implementation of HDA additionally requires fault localization information as part of the input. Thus, both tools use a richer input than just a buggy program and its accompanying unit tests, which indicates that JAID’s performance is highly competitive, and arguably improving the state-of-the-art in its own league. JAID fares very well also in terms of precision (fraction of bugs with a valid fix that have a correct fix) and recall (percentage of all bugs in DEFECTS4J that have a correct fix). Since different approaches, and different experimental evaluations, deal differently with bugs that admit multiple
valid fixes, we measure three variants of precision and recall: 1) relative to the number of bugs that were correctly fixed by any of the valid fixes, regardless of the correct fix’s rank; 2) relative to the number of bugs that were correctly fixed by a fix ranked among the top 10 in a tool’s output; 3) relative to the number of bugs that were correctly fixed by a fix ranked first in a tool’s output. JAID achieve the best precision\(^5\) and recall if we disregard ranking; and the second-best precision and third-best recall in the other two cases. Again, note that the only tools that outperform JAID rely on additional input information to sharpen their precision and recall.

Comparison: kinds of fixes. Fig. 3 zooms in on the bugs that are correctly fixed by JAID, HDA, and ACS, and shows how many bugs each tool can fix that the others cannot. The tools are mainly complementary in the specific bugs they are successful on: JAID fixes 14 bugs that no other tool can fix; HDA fixes 13; and ACS fixes 15.

Among the tools not in Fig. 3, Nopol fixes 2 bugs that no other tool can fix (plus 2 bug also fixed by JAID, and 1 of which also fixed by HDA); jGenProg fixes 1 bug that no other tool can fix (plus 4 bugs also fixed by HDA, 3 of which HDA can also fix); jKali fixes 1 bug that jGenProg, Nopol, HDA and JAID can also fix. These numbers indicate that each technique is successful in its own domain. The complementarity also suggests that combining techniques based on mining (such as HDA and ACS) with JAID’s techniques is likely to yield further improvements in terms of precision and effectiveness.

Comparison: other tools. We refrain from quantitatively comparing APR tools that target other programming languages—and thus were evaluated on different benchmarks \[15\]. Nevertheless, just to give an idea, Angelix \[23\] and Prophet \[17\] achieve a precision of 35.7% and 42.9%, and a recall of 9.5% and 17%, on 105 bugs in the C GenProg benchmark \[14\]. AutoFix \[25\] achieves a precision of 59.3% and a recall of 25% on 204 bugs from various Eiffel projects with contracts.

Construct validity indicates whether the measures used in the experiments are suitable. We classify a fix as correct if it is semantically equivalent to a programmer-written fix. Since we assess semantic equivalence manually, different programmers may provide different assessments; to mitigate this threat, we were conservative in evaluating equivalence—if a fix does not clearly produce the same behavior as the fix in DEFECTS4J for the same bug, we classify it as incorrect. This approach is consistent with what done by other researchers. A more detailed analysis of patch correctness belongs to future work.

We measured, and compared, precision and recall relative to all bugs in DEFECTS4J, even if most APR techniques—including JAID—only run experiments on a subset of the bugs whose features have a chance of being fixable. Using the largest possible denominator ensures that measures are comparable between different tools, and is consistent with the ultimate ambition of developing APR techniques that are as widely applicable as possible.

Tools, and their experimental evaluations, often differ in how they deal with multiple valid fixes for the same bugs. In the tool comparison, we counted all correct fixes generated by each tool that were reported in the experiments, and we reported separate measures of precision according to how many valid fixes are inspected. This gives a nuanced picture of the results, which must however be taken—as usual—with a grain of salt: different tools may focus on achieving a better ranking vs. correctly fixing more bugs, and we do not imply that there is one universal measure of effectiveness. Anyway, our evaluation is widely applicable—including to papers that may not detail this aspect—and is in line with what done in other evaluations \[14\], \[17\], \[25\], \[28\], \[29\].

Internal validity indicates whether the experimental results soundly support the findings. Comparing the performance—running time, in particular—of different APR techniques is a particularly delicate matter because of a number of confounding factors. First of all, the experiments should all run on the same hardware and runtime environment, using comparable configurations (e.g., in terms of timeouts). Techniques using randomization, such as jGenProg, require several repeated runs to get to quantitative results that are representative of a typical run \[11\]. Some techniques, such as ACS and HDA, rely on a time-consuming preprocessing stage that mines code repositories (and is crucial for effectiveness), and hence it is unclear how to appropriately compare them to techniques, such as JAID, that do not depend on this auxiliary information. Fault localization is also an input to HDA’s main algorithm. In all, we used standard, clearly specified settings for the experiments with JAID, and we relied on the overall results—in terms of correct fixes—reported in other tools’ experiments. In contrast, we refrained from qualitatively compare tools in measures of performance, which depend more sensitively on having a controlled experimental setup, and which we therefore leave to future work.

External validity indicates whether the experimental findings generalize. The DEFECTS4J dataset is a varied collection of bugs, carefully designed and maintained to support realistic and sound comparisons of the effectiveness of all sorts of analyses based on testing and test-case generation; it has also become a de facto standard to evaluate APR techniques for Java. These characteristics mitigate the risk that our experiments overfit the subjects. As future work, we plan to run JAID on other open-source Java projects; we see no intrinsic limitations that would prevent JAID from working reliably on different projects as well.

V. Related Work

Automated program repair has become a bustling research area in the course of just a few years. The first APR techniques \[2\], \[33\] used genetic algorithms to search the space of possible fixes for a valid one. GenProg \[33\] pioneered the “generate-and-validate” approach, where many plausible
fixes are generated based on heuristics, and then are validated against the available tests. More recently, others [5], [21], [22], [24], [36] have pursued the "constraint-based" approach, where fixes are constructed to satisfy suitable constraints that correspond to their validity. The two approaches are not sharply distinct, in that fixes generated by constraint-based techniques may still require validation if the constraints they satisfy by construction are not sufficiently precise to ensure that they are correct—as it often happens when dealing with incomplete specifications. Nevertheless, the categorization remains useful; we devote more attention to generate-and-verify techniques, since JAIID belongs to this category, and thus is more directly comparable to them. For a broader list of APR techniques, see Monperrus’s annotated bibliography [23].

Generate-and-validate. GenProg [33] is based on a genetic algorithm that mutates the code of a faulty C function by deleting, adding, or replacing code taken from other portions of the codebase—following the intuition [20] that existing code is also applicable to patch incorrect functionality. GenProg’s algorithm and implementation were substantially extended [14] to scale to code bases of realistic code sizes—producing valid fixes for 52% of 105 bugs.

Encouraged by GenProg’s promising results, various approaches tried to make the mutation of candidate fixes more effective, or the search in the space of possible fixes more directed and thus more efficient. For example, MutRepair [4] only modifies operators appearing in expressions (such as comparison operators and Boolean connectives), since these tend to be a common source of programming mistakes. PAR [12] bases the generation of fixes on ten patterns, selected based on a manual analysis of programmer-written fixes, which helps generate fixes that are more readable, and possibly easier to understand. A complementary approach [30] suggests to use anti-patterns, trying to capture fixes that are likely to be incorrect but still pass validation.

The overfitting problem. A more detailed analysis [28] of the fixes produced by GenProg and similar techniques has shown that only a small fraction of them is genuinely correct; for example, less than 2% of the bugs of [14] are correctly fixed. [23]’s analysis has pushed the research in APR to addressing this manifestation of the overfitting problem [29].

Most techniques for APR are based on tests, which are necessarily incomplete characterization of correct behavior. By also relying on contracts (specifications embedded in the program text) AutoFix [25], [26], [31] was the first general-purpose APR technique to substantially increase the number of correct fixes—for 25% of 204 bugs in [25]. JAIID generalizes AutoFix’s state-based analysis to work on Java code without contracts, so as to improve the quality of the generated fixes without sacrificing applicability.

Code mining. SearchRepair [11] is one of few other approaches based on semantic analysis—as opposed to the more commonly used syntactic analysis. SearchRepair relies on preprocessing a large dataset of programmer-written code snippets, and encoding their behavior as input/output relational constraints; it then generates fixes by searching the dataset for snippets that capture the desired input/output behavior.

HDA [13] also leverages a model of programmer-written code built by mining software repositories, but combines it with a mutation-based syntax-driven analysis similar to GenProg: mutants that are “more similar” to what the learned model prescribes are preferred in the search for a repair. The idea of mining programmer-written code is applicable to other APR approaches, including JAIID, as a way to provide additional information that reduces the chance of overfitting.

Condition synthesis. Constraint-based approaches often target the synthesis of conditions in if statements or loops, since changing those conditions often affects the control flow in decisive ways. SemFix [24] is one of the early examples; it relies on symbolic execution to summarize tests and on location-based fault localization, and it synthesizes expressions in conditionals and in assignments that try to avoid triggering failures. DirectFix [21] expresses the repair problem as a MaxSMT constraint, and supports generating multi-line fixes. Both SemFix and DirectFix, however, have limited scalability. Angelix [22] addresses this problem by introducing an efficient representation of constraints, and by combining it with a symbolic execution analysis similar to SemFix’s.

Nopol [36] only targets conditional expressions, and uses a form of angelic debugging [3], [37] to reconstruct the expected value of a condition in passing vs. failing runs; based on it, it synthesizes a new conditional expression using an SMT solver. SPR [16] also combines condition synthesis with a dynamic analysis of the value each abstract conditional expression should take to make all tests pass, which helps aggressively prune the search space when no plausible repair exists. Prophet [17] improves SPR with a probabilistic model learned by mining programmer-written fixes. MintHint [10] also builds a statistical model to generate repair suggestions consisting of expressions that may be useful in a complete fix. ACS [35] is a recent technique that significantly improves the precision of condition synthesis based on a combination of data- and control-dependency analysis, and mining API documentation and Boolean predicates in existing projects. JAIID also relies on data- and control-dependency analysis, and can guess modifications to conditional expressions, but it does not need any additional source of information other than the project being fixed.

Runtime patching. Runtime patching [6], [7], [18] denotes approaches that operate at runtime as fallback measures in response to triggered failures—in contrast to APR techniques that modify source code. Under the hood, runtime patching often uses program analysis techniques similar to those of APR systems; ClearView [27], for instance, dynamically infer state invariants like JAIID does, but does so at runtime on instrumented binaries with the goal of preventing problems such as buffer overflows.

ACKNOWLEDGMENTS

This work was partially supported by Hong Kong RGC General Research Fund (GRF) PolyU 152703/16E and the Hong Kong Polytechnic University internal fund 1-ZVJ1.
REFERENCES

