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Abstract As research in automatically detecting bugs grows and produces new
techniques, having suitable collections of programs with known bugs becomes cru-
cial to reliably andmeaningfully compare the effectiveness of these techniques.Most
of the existing approaches rely on benchmarks collecting manually curated real-
world bugs, or synthetic bugs seeded into real-world programs. Using real-world
programs entails that extending the existing benchmarks or creating new ones re-
mains a complex time-consuming task.

In this paper, we propose a complementary approach that automatically gen-
erates programs with seeded bugs. Our technique, called HyperPUT, builds C pro-
grams from a “seed” bug by incrementally applying program transformations (intro-
ducing programming constructs such as conditionals, loops, etc.) until a program of
the desired size is generated. In our experimental evaluation, we demonstrate how
HyperPUT can generate buggy programs that can challenge in different ways the
capabilities of modern bug-finding tools, and some of whose characteristics are com-
parable to those of bugs in existing benchmarks. These results suggest that Hyper-
PUT can be a useful tool to support further research in bug-finding techniques—in
particular their empirical evaluation.

Keywords Program Generation · Testing Benchmarks · Synthetic Bug Injection ·
Testing Frameworks · Fuzzing · Symbolic Execution.

1 Introduction

Research in detecting bugs automatically spans several decades, and has produced
a wide array of diverse tools such as static analyzers, symbolic execution engines,
and fuzzers—to mention just a few. In contrast to this long and successful history
of developing bug-finding tools, there still is a somewhat limited agreement about
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how to rigorously evaluate and compare their bug-finding capabilities in realistic
settings.

In the last few years, to address this conspicuous gap, we have seen several pro-
posals of ground-truth benchmarks: curated collection of real programs including
known bugs [39] or seeded with synthetic bugs [32,64], complete with detailed in-
formation about the bugs’ location, triggering inputs, and other fundamental charac-
teristics. Ground-truth benchmarks have been instrumental in improving the rigor
and thoroughness of bug-finding tools—especially those that generate test inputs
using symbolic execution or fuzzing, which are the benchmarks’ usual primary
focus. While the usefulness of ground-truth benchmarks is undeniable, extending
a benchmark with additional bugs and programs—not to mention creating a new
domain-specific benchmark from scratch—remains a complex and time-consuming
endeavor.

In this paper, we explore a complementary approach to building ground-truth
benchmarks, where we automatically generate from scratch programs with seeded
bugs. The idea of constructing programs to be used as test inputs (PUTs: programs
under test) has been successfully used for other purposes, such as to detect semantic
compiler bugs that result in incorrect compilation [70].

Our technique, which we call HyperPUT, builds programs starting from a seed
that consists of a simple block that fails when executed; this represents a seeded
bug. Then, it repeatedly grows the program by adding features (branching, looping,
and so on) that make it larger and more complex to test. HyperPUT is highly config-
urable: the user can choose aspects such as how many programs to generate, which
syntactic features they should include, and the range of variability of their branching
conditions. Clearly, there is no a priori guarantee that the synthetic PUTs generated
by HyperPUT are representative of real-world bugs. However, a fully synthetic ap-
proach also has clear advantages over manually curated collections: since the whole
process is automatic and customizable, producing new benchmarks collecting pro-
grams with specific characteristics is inexpensive. In addition, HyperPUT’s PUTs
come with precise information about the bug location and any bug-triggering in-
puts. Thus, they can supplement the programs in curated ground-truth benchmarks
to better evaluate the capabilities of bug-finding tools according to metrics such as
number of discovered bugs and bug detection time, as well as to investigate which
syntactic features of the faulty programs are more amenable to which bug-finding
tools.

After discussing HyperPUT’s design and implementation in Section 3, in Sec-
tion 4we design some experiments wherewe generated hundreds of PUTswith bugs
using HyperPUT, and we ran three popular, mature bug-finding tools—AFL++, CBMC,
and KLEE—on these PUTs. Our goal is demonstrating that HyperPUT can generate
bugs with diverse characteristics, which can challenge different capabilities of bug-
finding tools and can usefully complement the programs in ground-truth bench-
marks. To this end, we follow Roy et al. [64]’s description of the features of “ecolog-
ically valid” bugs, and analyze whether HyperPUT can generate bugs that are fair,
reproducible, deep, and rare, and that can exercise the different capabilities of com-
mon bug-finding techniques. The high-level summary of the experiments, which we
detail in Section 5, confirms that HyperPUT is capable of generating “interesting”
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buggy programs that share some characteristics with those of benchmarks. Thus,
HyperPUT can support flexible empirical analysis of the capabilities of the various
bug-finding tools in a way that complements and extends what is possible using
manually-curated benchmarks.

Contributions This paper makes the following contributions:

– HyperPUT, a configurable technique to automatically generate PUTs with cer-
tain characteristics and seeded bugs.

– Anopen-source implementation of theHyperPUT technique in a tool—also named
HyperPUT.

– An experimental evaluation of HyperPUT that demonstrates its ability to gener-
ate bugs with characteristics comparable to “ecologically valid” ones [64], which
exercise from different angles the capabilities of bug-finding tools.

The prototype implementation of HyperPUT is available in a public repository [4].

Organization The rest of the paper is organized as follows. Section 2 discusses the
main related work in the development of benchmarks of bugs, as well as bug-finding
techniques and tools. Section 3 describes the HyperPUT technique and its current
implementation as a tool with the same name that generates programs in C. Section 4
introduces the paper’s research questions, and the experiments that we carried out
to answer the questions. Section 5 presents the results of the experiments, and how
they address the research questions. Finally, Section 6 and Section 7 conclude with
a discussion and summary of the paper’s contributions.

2 Related Work

We discuss related work in two areas: benchmarks of bugs to evaluate bug-finding
tools (Section 2.1), and themain techniques and tools to find bugs and vulnerabilities
in programs (Section 2.2). Consistently with the paper’s main focus, we principally
consider techniques and tools that work on programs written in the C programming
language used for systems programming.

2.1 Benchmarks of Bugs

Different applications of program analysis, including different approaches to test-
case generation, use different benchmarks, consistent with the goals of the program
analysis evaluated using the benchmark. Here, we focus on extensible benchmarks to
evaluate the bug-finding capabilities of test-case generation frameworks (for brevity,
testing framework).

Table 1 shows a natural classification in terms of the origin of programs and
their bugs, and displays the category several well-known benchmarks belong to. A
program included in a benchmark can be organic or synthetic. The bugs of a bench-
mark’s PUTs can also be organic or synthetic.
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Organic PUTs Synthetic PUTs

Organic bugs
FuzzBench
MAGMA
CGC, Test-Comp, SV-Comp (datasets)

Synthetic bugs
LAVA CSmith
Apocalypse HyperPUT

Table 1: Classification of evaluation benchmarks according to whether they consist
of organic or synthetic bugs within organic or synthetic programs (PUTs). Under-
lined systems support the automatic generation of new benchmarks by seeding bugs
into existing programs.

Organic programs An organic program is one that was designed and implemented by
human programmers, and hence reflects the characteristics of real-world programs
(or at least a sample of them). For this reason, many existing benchmarks are based
on organic PUTs. For example, the International Competition on Software Testing
(Test-Comp) [16] is a comparative evaluation of automatic tools for software test
generation, which uses benchmarks consisting of C programs equipped with testing
objectives (such as coverage, and bug finding). Similar benchmarks are used by the
Competition on Software Verification (SV-Comp) [15]. Another example is the CGC
dataset, which collects about 300 small manually-written programs produced for
the Darpa Cyber Grand Challenge [3]; for each bug in the programs, the CGC also
includes a triggering input.

Google’s FuzzBench is an open benchmarking platform and service [56] based
on open source programs. FuzzBench has been useful both in the industrial and
the academic fields—both to evaluate the capabilities of fuzzing frameworks and to
identify their limitations and own bugs.

Organic benchmarks exist also for other programming languages, such as the
DaCapo benchmarks [17] and Defects4J [40] for the Java programming language.

Synthetic programs In contrast, a synthetic program is one that is generated auto-
matically from a set of templates, rules, or heuristics.

CSmith [70] is a program generator mainly employed for validating compilers
through differential testing [55]. It has been used to find several security problems in
popular compiler frameworks [53,33], including GCC [67] and LLVM [48]. Timotej
and Cadar [41] applied a similar combination of grammar-based program gener-
ation and differential testing in order to find bugs in symbolic execution engines.
While tools such as CSmith could be used to build benchmarks that challenge test-
ing frameworks, they are most directly useful for differential testing, where the goal
is comparing the behavior of different versions of a compiler. HyperPUT revisits
some of the ideas behind tools like CSmith (in particular, grammar-based program
generation) so that they are directly applicable to generate PUTs with seeded bugs.
Differently from CSmith, HyperPUT can also produce a triggering input for each
buggy program it generates, which serves as the ground truth to assess and com-
pare the capabilities of different bug-finding tools.
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Organic bugs An organic bug is one that occurred “in the wild”, and hence comes
from a program’s actual development history. Just like organic programs, organic
bugs have the clear advantage of being realistic. In fact, the majority of current sys-
tems for the evaluation of testing frameworks consist of organic PUTs and organic
bugs. The MAGMA benchmark [39] can extend the usability of such “fully organic”
benchmarks by performing “forward-porting” of real bugs to recent version of the
target PUT. This way, a historically relevant bug can still be reproduced (and tested
for) in up-to-date setups. Still, applying MAGMA to new bugs and new PUTs re-
quires substantial manual effort.

Synthetic bugs Seeding synthetic bugs into an existing program has become an in-
creasingly popular approach to generate large benchmarks of bugs, thanks to its
scalability compared to manual selection and curation. The Large-scale Automated
Vulnerability Addition (LAVA) dataset [32]—commonly used to compare fuzzing
frameworks—consists of synthetic bugs seeded into existing programs. LAVA’s bug
injection is based on the PANDA dynamic analysis platform [31], built on top of the
QEMU emulator [14]. First, an analysis of the target program identifies dead, un-
used, and available (DUA) bytes of the input, which can be altered (“fuzzed”) without
affecting the program’s behavior. Then, LAVA seeds vulnerabilities, such as buffer
overflows or other kinds of inconsistent memory access, that are triggered when an
execution accesses the DUA bytes.

Apocalypse [64] is a bug injection system similar to LAVA and based on synthetic
bugs and symbolic execution. It generates and seeds into existing programs bugs
with specific requirements (some of which we describe in Section 4 in relation to
our experiments). Apocalypse was experimentally evaluated to show it can generate
seeded bugs with characteristics comparable to organic ones. In Section 5, we will
assess the PUTs generated by HyperPUT using several of the same metrics.

In order to work on real-world programs, LAVA and Apocalypse incur some
limitations. First, one cannot seed bugs at arbitrary locations but only at those that
have been reached in a previous execution. Second, since they rely on symbolic
execution to discover triggering inputs for the seeded bugs, it may be practically
hard to find such triggering inputs for bugs that are nested very deeply into the
program’s control flow structure. Since HyperPUT builds PUTs with seeded bugs
from scratch, it does not incur these limitations and can generate programs with
arbitrarily complex nesting structure (as we demonstrate in Section 5.3).

Ferrer et al.’s work [34] is an example of fully synthetic benchmarks (consist-
ing of synthetic bugs and synthetic PUTs) for the Java programming language.
Their main goal is generating programs where every branch is reachable to serve
as ground truth when evaluating the branch-coverage capabilities of testing frame-
works.

Mutation testing is another approach based on injecting synthetic bugs in or-
ganic programs [44,45]. The original goal of mutation testing was to measure the
bug-detection capabilities of a test suite: the more “mutants” (i.e., variants of pro-
gram with injected bugs) trigger failures in the test suite, the more comprehensive
the test suite is [63]. More recently, mutation testing ideas have been applied to



6 Riccardo Felici et al.

different dynamic analysis techniques, such as fault localization [60,21]. As a bug-
injection technique [36], mutation testing suffers from the problem of equivalent
mutants, which occur when a mutation does not alter a program’s behavior, and
hence the mutant does not actually have a bug; a number of approaches have tried
to address this problem [59,71,65].

It is also interesting to consider which metrics are supported by the benchmarks.
The most common ones are number of detected bugs, detection time, and maximum
code coverage achieved during testing; these are easily applicable to all benchmarks.
In addition, one may want to relate the syntactic features of the buggy programs to
the capabilities of the bug-finding tools; HyperPUT’s approach supports this kind
of experiments, since it can generate batches programs with similar characteristics
(e.g., nesting structure or kinds of statements).

2.2 Bug-finding Tools

A detailed discussion of themain techniques used to find bugs in programs is beyond
the scope of the present paper; we refer the interested readers to surveys [25,24,11]
and textbooks [8,63]. In this section, we briefly describe the bug-finding techniques
and tools that feature in our evaluation of HyperPUT—which are also widely used
outside of research.

Fuzzing Fuzz testing (or fuzzing) encompasses a broad spectrum of dynamic tech-
niques to generate program inputs [52,42]. It is widely used to find bugs in software;
Google, for instance, found thousands of security-related bugs in their software us-
ing fuzzing [10]. The key idea of fuzzing is to randomly mutate a known valid pro-
gram input (the “seed”) to generate new inputs that may cause the program to crash
or expose other kinds of vulnerabilities. Fuzzers differ according to the kind of strate-
gies they use to randomly mutate program inputs. In particular, black-box fuzzers
do not have access to the target program’s control flow, and hence can only generate
new inputs independently of the program’s structure. In contrast, white-box fuzzers
can take the program’s control flow into account in order to generate new inputs
that exercise specific portions of the program.

American Fuzzy Lop (AFL) is one of the most popular fuzzing frameworks for
C programs. It is a gray-box coverage-based fuzzer, which means that some of its
fuzzing strategies are driven by coverage information about the analyzed program.
Originally developed by Zalewsky [73], different extensions of AFL —such as RED-
QUEEN [9], AFLFast [19] and AFL++ [35]— have been introduced more recently and
remain widely used.

Symbolic execution As the name suggests, symbolic execution executes a program
with symbolic inputs, which are placeholders for every possible valid inputs [24,
11]. As it enumerates different execution paths, symbolic execution builds path con-
straints, which are logic formula that encode each path’s feasibility. Then, a con-
straint solver such as Z3 [57] determines which abstract paths are feasible, and gen-
erates matching concrete inputs.
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Most modern implementations of symbolic execution perform dynamic symbolic
execution (also called “concolic” execution), which combines symbolic and concrete
state in order to overcome some limitations of symbolic execution (such as its scal-
ability and applicability to realistic programs) [20]. EXE [23] and DART [37] pi-
oneered the idea of dynamic symbolic execution. More recently, other tools per-
fecting and extending this technique include KLEE [22], SAGE [38], S2e [26], and
Angr [66]. KLEE is one of themost widely used dynamic symbolic execution engines
for C programs. It is implemented on top of LLVM [48], and has been successfully
employed to find several bugs in production software, such as the MINIX [69] and
BUSYBOX [1] tools.

Driller is a vulnerability discovery tool that combines symbolic execution and
fuzzing [68]. When the latter fails to make progress, it uses the former to continue
the exploration of new execution paths. This approach is effective to improve code
coverage, and to test features such as cryptographic hash functions and random
number generators, which are notoriously difficult for approaches that are exclu-
sively based on constraint solving. The T-Fuzz fuzzer [62] applies program transfor-
mations in order to remove the conditions guarding some code blocks that are hard
to reach. If a crash occurs in these code blocks, it then checks a posteriori whether
the locations are actually reachable in the original program.

Model checking In a nutshell, model checking is a verification technique for finite-
state models, which can exhaustively check properties expressed in temporal logic
(including reachability properties, which can be expressed as assertions in the code)
or find counterexamples when the properties do not hold in general [27].

Since real-world programs are not finite state, one needs to introduce some kind
of finite-state abstraction in order to be able to apply model checking to them. A
natural way of doing so is by bounding the program state to be within a finite (but
possibly very large) range. Then, model checking such a bounded abstraction is not
equivalent to verifying the original program, but can still be a very effective way of
thoroughly testing the program and finding bugs. In this paper, we experiment with
the popular CBMC [28] bounded model checker for C programs.

An alternative classification for testing framework benchmarks is based on the
employed evaluation criteria. The most common ones are the detection time for a
particular bug, the number of detected bugs in the benchmark and the code cov-
erage testing frameworks achieve during program execution, measured in terms of
number of lines or branches visited in the PUT control flow graph. Every bench-
mark described in this section support the first two mentioned criteria, while cov-
erage measurements can be easily incorporated at compilation time. HyperPUT, in
addition, can also evaluate testing frameworks depending on the structure of the
produced PUT, as described in Section 3.

3 Methodology and Implementation

HyperPUT builds arbitrarily complex PUTs by recursively applying parametric trans-
formations of different kinds to an initial simple program.
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transformation category code

IC(v1 : long, v2 : long, T, E) C if (v1 == v2) { T } else { E }

SC(s1 : char*, s2 : char*, T, E) C if (strcmp(s1, s2) == 0) { T } else { E }

FL(e : long long, B) L for (long long j = 0; j < e; j++) { do_something(); } B

PC(s : char*, n : int, B) W
if (strlen(s) < n) exit(0);

size_t l = 0, h = strlen(s) - 1;

while (h >= l) { if (s[h] != s[l]) exit(0); h--; l++; } B

CC(s : char*, c : char, n : int, T, E) W
int count = 0;

for (int k = 0; k < strlen(s); k++) { if (s[k] == c) count++; }

if (count == n) { T } else { E }

Table 2: HyperPUT’s transformations and the corresponding generated code. In a
transformation, lowercase letters denote parameters and uppercase letters denote
holes. Each transformation belongs to one of three main categories: comparisons
(C), loops (L), and widgets (W).

3.1 Transformations

A transformation consists of a program template with (typed) parameters and
holes. When we apply a transformation, we choose concrete values for its parame-
ters and holes. A parameter can be replaced with any constant or variable of suitable
type. A hole is replaced by another snippet of code, which can be given explicitly
or as the result of nesting another transformation. Table 2 lists the transformations
HyperPUT currently supports, together with the code they correspond to. There are
five main kinds of transformations:
IC (integer comparison) introduces a conditional that checks whether the two

integer parameters v1, v2 are equal.
SC (string comparison) introduces a conditional that checkswhether the two string

parameters s1, s2 are equal.
FL (for loop) introduces a loop that iterates e times (where e is the transforma-

tion’s integer parameter), and then executes code B.
PC (palindrome check) introduces a loop that checks whether the string param-

eter s is a palindrome of length at least n; if it is, it executes code B.
CC (character counting) introduces a loop that counts the number of occurrences

of character parameter c in string parameter s; if the count equals the integer
parameter n, it executes code T ; if not, it executes code E.
Let’s present a few more details about transformation IC, as an example to illus-

trate how transformations work. Transformation IC consists of two parameters v1
and v2 and two holes T and E. The parameters denote two integer values or vari-
ables. Then, the transformation introduces a conditional if that checks whether v1
and v2 have the same value. If they have, T executes; otherwise, E executes.

3.1.1 Transformation Categories

To present the rationale behind this selection of transformations, it is useful to clas-
sify them into three broad categories: transformations IC and SC are pure condi-
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tionals; transformation FL consists of a loop; and transformations PC and CC are
more complex combinations of conditions and iterations that capture widgets (that
is, simple parameterized algorithms).

We selected these transformations to demonstrate howHyperPUT can generate,
from a small number of basic programming elements, a large number of PUTs that
can effectively challenge different testing frameworks, and some of whose features
are comparable to those of curated bug collections. To this end, we introduced ele-
mentary conditional transformations that are based on string and integer compar-
isons; these are frequently sources of serious bugs and vulnerabilities in real-world C
programs [72], and can result in PUTs that are challenging to analyze for techniques
such as black-box and gray-box fuzzing [68]. To make the PUTs more diverse and
to add layers of complexity, we also introduced loops and widgets (which algorith-
mically combine loops and conditionals): loops complicate the control flow of the
generated PUTs (increasing measures such as cyclomatic complexity, as discussed
in Section 4.6.1), and widgets introduce complex feasibility constraints, which can
challenge even testing frameworks based on constraint solving (such as KLEE).

Despite these considerations, the currently supported transformations are not
meant to capture all—or even a large part of—the variety and complexity of real-
world C programs. This paper’s goals are simply to demonstrate the potential use-
fulness of HyperPUT. In future work, users may add or change HyperPUT’s trans-
formations according to their specific goals and needs.

3.2 Transformation Sequences

More complex PUTs combine several transformations by nesting one inside another.
When we specify a sequence of transformations, we can give a concrete value to any
transformation parameter or use a fresh identifier. In the latter case, HyperPUT will
instantiate the parameter with a suitable random value (usually within a range)—for
every PUT generated from the transformation sequence. For example, the expres-
sion IC(atoll(argv[1]), β, assert 0 == 1, exit(0)), where β is a fresh identifier, denotes a
conditional that checks whether the first command-line argument argv[1], when in-
terpreted a s an integer, is equal to a random integer value; if it is, the program fails
(assert 0 == 1), otherwise, it exits normally (exit(0)).

We can also use fresh identifiers, instead of concrete code snippets, for holes, to
denote that the next transformation in the sequencewill instantiate the hole. In other
words, this is just a notational shorthand that helps readability by avoiding nesting
transformations explicitly. For example, the sequence of two transformations

SC(argv[2], "hello", ;, E) IC(atoll(argv[1]), 67, assert 0 == 1, return(0)) (1)

nests an integer comparison inside the else branch of a string comparison, and thus
it is equivalent to the explicitly nested expression

SC
(
argv[2], "hello", ;,

(
IC(atoll(argv[1]), 67, assert 0 == 1, return(0))

))
and determines the PUT in Figure 1.
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1 int main(int argc, char** argv) {
2 if (strcmp(argv[2], "hello") == 0)
3 ;
4 else {
5 if (atoll(argv[1]) == 67)
6 assert 0 == 1;
7 else
8 return 0;
9 }
10 }

Fig. 1: Specification of a PUT that combines transformations SC and IC as in (1).

Figure 1 also shows that HyperPUT inserts the code generated by applying a se-
quence of transformations into a template main function, so that the PUT is a com-
plete program. HyperPUT also automatically generates boilerplate code—such as
library includes, and checks that the required command-line arguments are indeed
present— that makes PUTs syntactically correct programs. For simplicity, Figure 1
and all other PUTs shown in the paper omit this boilerplate code.

3.2.1 Reaching Inputs

The structure of every transformation suggests which values of the transformation’s
parameters determine an execution of the resulting PUT that reaches code in any of
the transformation’s holes. For example, hole T in transformation IC executes for
any v1 = v2; holeB in transformation FL always executes; hole T in transformation
CC executes if s includes n occurrences of characters c; and so on. In Figure 1’s
example, there are two variables argv[1] and argv[2], and three leaf holes at lines 3, 6,
and 8; hence, the inputs ⟨"", "hello"⟩, ⟨"67", ""⟩, and ⟨"", ""⟩ respectively reach each of
the leaves.

For each transformation in Table 2, HyperPUT is equipped with an input-genera-
tion function that returns concrete values for the transformation’s typed parameters
that reach any of the holes in the transformation’s code. For transformations IC and
SC, the input-generation function simply draws a random integer v (IC) or string s
(SC); for transformation FL, the input-generation function draws a random positive
integer e; for transformation PC, the input-generation function constructs a palin-
drome string s of length n by randomly constructing a string t of length n/2, and
then by concatenating t and its reversal to construct s; for transformation CC, the
input-generation function constructs a random string swith n random occurrences
of character c.

Using input-generation functions, HyperPUT can—under certain conditions—
construct a program input that reaches the bug location. Precisely, consider a trans-
formation sequence such that:

i) In every occurrence of transformation IC, exactly one parameter v1 or v2 is
instantiated with atoll(argv[k]), for some positive integer k; ii) In every occurrence
of transformation SC, exactly one parameter s1 or s2 is instantiated with argv[k],
for some positive integer k; iii) In every occurrence of transformations PC and CC,
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parameter s is instantiated with argv[k], for some positive integer k; iv) In the whole
transformation sequence, any argv[k] occurs at most once.

Under these restrictions, HyperPUT simply collects the values returned by each
transformation’s input-generation function along the path that reaches the seeded
bug, and concatenates them to instantiate the generated PUT’s input arguments argv,
which HyperPUT returns as the bug-triggering input. Consider Figure 1’s example
again; the corresponding transformation sequence (1) satisfies the above constraints.
Hence, HyperPUT uses "67" as the triggering input for argv[1] and "" (a random string
different from "hello") as the triggering input for argv[2]; altogether, ⟨"67", ""⟩ is the
input reaching the assertion failure at line 6.

As we discuss in Section 4.2, all the transformation sequences used in our exper-
iments satisfy these constraints, so that HyperPUT can generate suitable triggering
inputs for every PUT. In some cases, a PUT admits multiple triggering inputs; by
default HyperPUT returns only one of them, randomly, but it can also produce addi-
tional ones. Finally, if we supply a transformation sequence that does not satisfy the
above constraints (which can be determined with a simple syntactic check), Hyper-
PUT may fail to generate any triggering input, although it may still generate valid
PUTs with a “best effort” approach.

3.3 Implementation Details

We implemented the HyperPUT technique in a tool with the same name. The tool
is implemented in a combination of C (for the core program-generation functional-
ities), Python (front end and connection of the various modules), and Bash scripts
(to run batches of experiments).

The user input to HyperPUT consists of a sequence of transformations specified
as described in Section 3.2, and a number of PUTs to be generated. HyperPUT’s
front end processes this input and passes the information to the generator engine,
which takes care of generating PUTs by applying the transformation sequences,
embedding the resulting code into a main function to build a complete program,
and also recording a reaching input for every generated PUT.

Extensibility HyperPUT is extensible with new transformations. However, as we
demonstrate in Section 5, the current selection of transformations is already suffi-
cient to generate a large number of “interesting” PUTs, which can challenge differ-
ent test-case generators and share some characteristics with the programs in widely
used test-case generation benchmarks.

In principle, HyperPUT’s pipeline could also generate PUTs in programming
languages other than C. To this end, one should extend it with transformations that
generate valid snippets of code in other programming languages.

4 Experimental Design

The experimental evaluation of HyperPUT addresses the following research ques-
tions:
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RQ1: Can HyperPUT generate bugs that are fair?
RQ2: Are the bugs generated by HyperPUT reproducible?
RQ3: Can HyperPUT generate bugs that are deep and rare?
RQ4: Can HyperPUT generate diverse programs that exercise different capabilities

of bug-finding techniques?

This section describes the experiments we designed to answer these research
questions. Our experimental design is after Roy et al. [64]’s, modified to suit our
goal of evaluating the characteristics of HyperPUT’s synthetic PUTs.

4.1 Testing Frameworks

To assess the characteristics of the bugs generated by HyperPUT, we ran several
testing frameworks on the generated PUTs and determined which bugs each frame-
work could uncover.

We used testing frameworks implementing different bug-finding techniques for
C programs:

– AFL++ [35] is a popular grey-box fuzzer, which combines random generation of
input and coveragemetrics. It extends the original AFL [73]with several research
improvements.

– CBMC [28] is a bounded model checker for C/C++ programs. Bounded model-
checking exhaustively explores a program’s state-space up to a finite size bound,
checking for the violation of basic correctness properties (such asmemory safety)
and assertions within this explored space.

– KLEE [22] is a state of the art dynamic-symbolic execution engine. Dynamic-
symbolic execution is a white-box testing technique, which uses constraint solv-
ing to generate inputs that lead to exploring new paths in the PUT.

These tools offer numerous configuration options; Table 3 lists the configura-
tions that we used in the experiments. We deploy each tool in two configurations:
we first execute it with its first configuration; if it fails to find a bug before the time-
out expires, we execute it again on the same PUT with its second configuration
(using any remaining time). For brevity, henceforth we use the expression “we run
X on a program P ” to mean “we run the testing framework X using sequentially
the two configurations in Table 3 on P ”.

4.2 Experimental Subjects

We generate PUTs in batches, where each batch runs HyperPUT with a sequence
of n ≥ 1 transformations:

T1(p1,1, p1,2, . . . , H1,1, . . .) T2(p2,1, p2,2, . . . , H2,1, . . .) . . . Tn(pn,1, pn,2, . . . , fail(), . . .) (2)

and a matching sequence of actual parameters p1,1, p1,2, . . . , pn,1, pn,2, . . .. Each
transformation Tk in (2) is one of IC, SC, FL, PC, and CC listed in Table 2. In the
experiments, we always nest into the “then” hole T of conditional transformations
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id framework configurations

A AFL++
afl-clang-fast with options CMPLOG [2], LAF [6], MOpt [50]
afl-clang-fast with default options

C CBMC
automated bounded loop unwinding
loop unwinding with bound 10

K KLEE
symbolic arguments, random state search, LLVM optimization
symbolic arguments, default options

Table 3: Configurations of the testing tools used in the experiments. Each row spec-
ifies two configurations for a testing tool in terms of the used options.

IC and SC; therefore, all “else” holes E are simply filled with a “skip” snippet that
does nothing. Snippet fail() indicates code that triggers a crashing bug when exe-
cuted (i.e., an assertion failure assert(0 == 1)). In our experiments, we always add the
snippet fail() in the innermost transformation Tn.

Each actual parameter pj is either a random constant of the appropriate type
(chosen within a limited range) or i) argv[i] (for i ≥ 1) for parameters of type char*;
ii) atoll(argv[i]) (for i ≥ 1) for parameters of integer type (int, long, long long). More
precisely, parameters v1 in transformation IC, s1 in transformation SC, and s in
transformations PC andCC are always instantiated with a command-line argument;
all other parameters are chosen as random constants within a small range. Table 5
shows the actual ranges for the randomly chosen parameters in each transformation
in the batches that we used in the experiments. For example, every instance of IC
uses an integer between 0 and 255 as its second parameter v2.

Finally, in each PUT that consists of n transformations, each command-line ar-
gument argv[k], for 1 ≤ k ≤ n, is used exactly once.

We introduce these restrictions on the choice of parameters so as to generate
PUTs of homogeneous characteristics, where the number and kinds of transforma-
tions used to generate them are the primary determinant of their complexity. These
constraints also ensure that, in every generated PUT, i) there is exactly one bug;
ii) there is (at least one) program input that triggers the bug.

As we discussed in Section 3.2.1, under these conditions HyperPUT can auto-
matically construct a reaching input for the unique bug’s location, which is thus
also a triggering input that ensures that the bug is executable.

4.2.1 Batches

For the experiments with HyperPUT to answer RQ1, RQ2, and RQ3, we generated
a total of 455 PUTs in 5 batches. Table 4 outlines the characteristics of each batch.

Batch B1 includes 10 PUTs, each consisting of a single transformation.
Batch B2 includes 45 PUTs, each consisting of two different transformations.
Batch B10 includes 200 PUTs, each consisting of between 2 and 10 transforma-

tions (possibly with repetitions), with the transformations and the actual length
chosen randomly. More precisely, this batch includes: i) 1 PUT consisting of
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batch n #puts inputs used as parameters v1, s1, s

B1 1 10 argv[1]

B2 2 45 argv[1], argv[2]
B10 2–10 200 argv[1], . . . , argv[10]
B100 100 100 argv[1], . . . , argv[100]
B1000 1000 100 argv[1], . . . , argv[1000]

Table 4: List of the batches of PUTs used in HyperPUT’s experimental evaluation to
answer RQ1, RQ2, and RQ3. For each batch, the table lists the number n of trans-
formations used to generate each PUT in the batch, the number #puts of different
PUTs in the batch, and the command-line input arguments used as parameters in
the transformations.

transformation parameter min max

IC v2 0 255

SC s2 "0" "255"

FL e 0 255

PC n 1 20

CC n 1 20

Table 5: Range of values, between a minimum and a maximum value, for the param-
eters of the transformations in Table 2 used in the experiments.

Fig. 2: Distribution of size (in number of transformations) of the PUTs used in the
experimental evaluation.

2 transformations; ii) 4 PUTs consisting of 3 transformations; iii) 9 PUTs con-
sisting of 4 transformations; iv) 41 PUTs consisting of 5 transformations; v) 44
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PUTs consisting of 6 transformations; vi) 43 PUTs consisting of 7 transforma-
tions; vii) 29 PUTs consisting of 8 transformations; viii) 20 PUTs consisting of 9
transformations; ix) 9 PUTs consisting of 10 transformations.
The rationale for selecting the PUTs in batch B10 is as follows. The bulk of the
PUTs are of intermediate sizes (5, 6, and 7 transformations), which hit a sweet
spot in effectively exercising the various testing frameworks: they are neither
trivial nor excessively difficult to analyze. Then, a decent number of larger PUTs
(8, 9, and 10 transformations) demonstrate the limits of the various testing frame-
works. The smaller PUTs (2, 3, and 4 transformations) are not particularly dis-
criminating; we include a few for completeness’s sake, but adding more would
not significantly change our experimental results.1

Batch B100 includes 100 PUTs, each consisting of exactly 100 transformations (pos-
sibly with repetitions) chosen randomly.

Batch B1000 includes 100 PUTs, each consisting of exactly 1000 transformations
(possibly with repetitions) chosen randomly.

Henceforth, B denotes the union of all batches B1 ∪ B2 ∪ B10 ∪ B100 ∪ B1000.
Figure 2 overviews the distribution of all PUTs in B.

For the experiments with HyperPUT to answer RQ4, we generated another 60
PUTs in 6 batches BIC, BSC, BFL, BPC, BCC, B⋆. For each transformation T among
IC, SC, FL, PC, and CC, batch BT consists of 10 PUTs P 1

T , . . . , P
10
T . Each PUT Pm

T

corresponds to the sequence of transformations

T (p1,1, p1,2, . . . , H1,1, . . .) T (p2,1, p2,2, . . . , H2,1, . . .) . . . T (pm,1, pm,2, . . . , fail(), . . .) (3)

withm transformations, all equal to T . In other words, BT consists of increasingly
long sequences of the same transformation T repeated multiple times. Similarly,
batch B⋆ consists of 10 PUTs P 1

⋆ , . . . , P
10
⋆ ; each PUT Pm

⋆ corresponds to the se-
quence of transformations (2), with n = m transformations, each transformation
randomly chosen (possibly with repetitions) among IC, SC, FL, PC, and CC.

4.2.2 Seeded Bugs

In principle, HyperPUT’s seeded bugs can be any piece of code, matching any kind of
error; in our experimental evaluation, however, all seeded bugs are simply assertion
failures. This is consistent with how the capabilities of testing frameworks are com-
monly evaluated on (curated) collections of bugs: an experiment challenges a testing
framework to generate a program input that reaches an error location in the PUT.
Since our experimental evaluation aims at demonstrating whether HyperPUT can
generate bugs with some characteristics comparable to those in manually-curated

1 To corroborate the hypothesis that including more PUTs of small size would not significantly affect
the experimental results about fairness, we ran a few additional experiments. First, we added 43 new
PUTs of “small” sizes 2, 3, and 4 to batch B10, so that the size distribution of this extended batch B+

10 is
more balanced. We found that 90.7% of the added bugs were detected by at least one tool among AFL++,
CBMC, and KLEE; this percentage is considerably higher than the 75.5% obtained with the original batch
B10 (see Table 6). Correspondingly, the overall percentage over the extended batch B+

10 only grows
by 2.7% (from 75.5% to 78.2%). This confirms that “small” PUTs are not particularly discriminating, and
validates our selection of batch B10.
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benchmarks, using assertions (which are equivalent to reachability properties) as
seeded bugs is a reasonable choice.

Besides being commonly used as targets of fuzzing techniques [25,51,61], as-
sertions can model a broad range of safety properties [46]. These include memory-
related errors (e.g., violating assert (p != null) corresponds to a null pointer derefer-
encing error), as well as (partial) correctness errors (e.g., violating assert (result == 0)

corresponds to a postcondition error), but exclude liveness properties such as ter-
mination.2

4.3 Experimental Setup

We ran all experiments on an Intel® CoreTM i5 machine with 2 cores and 8 GB of
RAM running Ubuntu 18.04 Bionic, LLVM 6.0.1, AFL++ 2.68c, CBMC 5.10, and KLEE 2.1.

Every PUT generated by HyperPUT accepts command-line arguments as input
for its main function. This is the only input that a testing tool controls when testing
a PUT. For example, when running KLEE, the command line argument array argv is
instrumented with klee_make_symbolic, and the rest of the PUT is unmodified.

Each experiment runs one of the tools in Table 3 on a PUT with a timeout
of 1 hour. The outcome is success if the testing framework successfully generates
command-line inputs that trigger the fail() injected bug in the PUT. To accommo-
date fluctuations due to the operating system’s nondeterministic scheduling, as well
as in possible randomization used by the testing frameworks, we repeat each ex-
periment four to ten times, and report the average wall-clock running time as the
experiment’s duration. The outcome is success if at least one of the repeated runs is
successful (i.e., it triggers the bug).

4.4 RQ1: Fairness

A collection of bugs is fair if state-of-the-art bug detection techniques, especially
those that are widely used in practice, can discover the bugs with reasonable effort;
and if it is not strongly biased in favor or against any one detection technique. For
a PUT-generation system like HyperPUT, fairness means that it should be capable
of generating bugs with a broad spectrum of “detection hardness”—from simple to
very challenging to discover.

To demonstrate fairness, we ran each of the tools AFL++, CBMC, and KLEE on all
PUTs in B. We then analyzed which tools were successful in triggering the bugs in
the PUTs within the timeout.

In particular, the percentage of bugs that is detected by at least one of the tools is
a fundamental measure of fairness. As a rule of thumb [64], this percentage should
be definitely above 50%, meaning that the majority of bugs arediscoverable given
the (combined) capabilities of the testing frameworks. Conversely, this percentage

2 Extending HyperPUT to support different kinds of bugs (for example those targeted by termination
checkers [29]) is an interesting direction for future work.
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should not be too close to 100%; if it were, it would mean that the bugs are not
sufficiently elusive, failing to fully stress the testing frameworks’ capabilities.

4.5 RQ2: Reproducibility

A bug is reproducible if there is a known input that consistently triggers the bug.
For a PUT-generation system like HyperPUT, reproducibility also entails that the
PUTs compile without errors and do not rely on any undefined behavior of the C
language.

As explained in Section 3.2, all PUTs generated byHyperPUT in our experiments
have a unique bug and should come with an input that triggers it.

To assess reproducibility, we ran each PUT generated in the experiments with
the triggering input, and checked whether the bug was triggered as expected.

HyperPUT generates PUTs that should be syntactically and semantically cor-
rect. To confirm this, we compiled each PUT generated in the experiments using
both GCC (with options -O0 -Wall and -O1 -Wall) and LLVM (with options -O0 -Wall and
-O1 -Wall), and checked that: i) both compilations succeededwithout errors; and ii) both
compiled versions behaved in the same way—namely, they fail when executed with
the triggering input. To detect the potential presence of undefined behavior, we also
checked every generated PUT using LLVM’s Undefined Behavior Sanitizer [5], a
compiler instrumentation that can detect several instances of undefined behavior.

4.6 RQ3: Depth and Rarity

Depth and rarity are two different ways of assessing the “hardness” of a bug for
bug-detection techniques.

4.6.1 Depth

A bug is deep if triggering it requires to follow a long sequence of statements and
branches. For a PUT-generation system like HyperPUT, bug depth depends on the
structure and complexity of the PUTs themselves. To determine whether Hyper-
PUT’s bugs are deep, wemeasured the following on every PUT in batchB generated
in the experiments:

– The cyclomatic complexity of the PUT.3 Cyclomatic complexity [54] is a static
measure of complexity of a program’s branching structure, which counts the
number of distinct simple execution paths a program has.
Cyclomatic complexity is used as a fundamental measure of control-flow (and
cognitive) complexity [7], which negatively correlates with software qualities
such as testing coverage [43]. Procedures with cyclomatic complexity higher
than 10 usually correspond to programs that are challenging to analyze [47].

3 Measured using CCCC [49] and PMCCABE [12] open source tools.
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In order to assess the complexity of HyperPUT’s PUTs compared to that of pro-
grams in other benchmarks, we compare the cyclomatic complexity of PUTs in
B to that of programs in CGC [3] and LAVA-1 [32]. Note that the PUTs gen-
erated by HyperPUT consist of a single main function, but programs in other
benchmarks usually consist of several different functions; thus, we measure the
cyclomatic complexity of each function in the programs in isolation, and report
statistics about their distribution in each benchmark. We only measure the cy-
clomatic complexity of functions in the actual PUTs, not in any external library
that is used by the PUTs.

– The length (in number of instructions executed at runtime) of the execution path
that goes from the PUT’s entry to the bug-triggering statement, when the PUT
is executed with a triggering input.4 Path length is a dynamic measure of how
deep a bug is within a path that triggers it. Similarly to cyclomatic complexity,
we compare the path length of bugs in B to that of bugs in benchmark LAVA-1.
Path length complements cyclomatic complexity as a measure of depth:

i) path length is a dynamicmeasure, whereas cyclomatic complexity is static;
ii) path length directly measures the depth of a bug, whereas cyclomatic com-
plexity measures the complexity of the PUT that contains a bug.

4.6.2 Rarity

A bug is rare if it is only triggered by a small fraction of all possible program inputs.
To determine whether HyperPUT is capable of producing PUTs with rare bugs, we
followed the same protocol of Roy et al. [64]: we ran KLEE on each buggy PUT with
a timeout of 1 hour and measured the following.
– The number f of test cases generated by KLEE before first triggering the bug.
– The number t of test cases, among those generated within the timeout, that trig-

ger the bug.
Thesemeasures give an idea of how sparse the bug-triggering inputs are in the space
of all inputs that are generated by a systematic strategy.

In order to be able to compareHyperPUT’smeasures of raritywith those of other
benchmarks’, we only considered PUTs in batchB≥6 for this experiment. BatchB≥6

consists of the 72 PUTs in B10 with 6, 7, 8, 9, or 10 transformations that KLEE can
discover within the 1-hour timeout. We exclude PUTs whose bugs KLEE cannot un-
cover, as the measures f and t are undefined in these cases.We also exclude PUTs
that are much smaller (e.g., B2) and much larger (e.g., B100). PUTs larger than ten
transformations are exceedingly unlikely to be detectable by KLEE, and hence they
are not relevant to assess rarity. As for the smaller PUTs, we deliberately exclude
them as they are not representative of rare bugs. This is consistent with how we
addressed every question in this empirical evaluation: HyperPUT is a highly con-
figurable tool, which can produce PUTs with different characteristics. In answering
RQ3, our aim is demonstrate how one can configure HyperPUT to produce PUTs
with rare bugs. If rarity is not a desired property to the user, HyperPUT may be
configured differently to produce PUTs with other characteristics.

4 This metric has been measured using the profiling tool Cachegrind [58].
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We compare these metrics of rarity for HyperPUT to those reported by Roy et
al. [64] for 41 manually seeded bugs in the TCAS benchmark [30], as well as 82 syn-
thetic bugs seeded using their Apocalypse system in the same TCAS programs.More
precisely, [64, Table 4] reports the number of all bug-triggering tests generated by
KLEEwithin 1 hour, which corresponds to measure t. In addition, [64, Figure 5] plots
the number of tests generated by KLEE before hitting a first bug, which corresponds
to measure f . We directly compare these to the same measures on HyperPUT’s
PUTs, without repeating [64]’s experiments. We only use KLEE to investigate rarity
both because it is a standard choice for this kind of assessment [64], and because its
systematic exploration of program paths provides a more robust measure than oth-
ers (such as testing time) that are strongly affected by the sheer size and complexity
of the PUT as a whole—as opposed to its bugs’ specifically.

4.7 RQ4: Capabilities

To further demonstrate the flexibility of HyperPUT’s generation, we look more
closely at how different bug-finding tools perform on different batches of PUTs gen-
erated by HyperPUT. Which PUTs are easier or harder to analyze suggests which
capabilities of the bug-finding tools are more or less effective to analyze programs
with certain features.

We ran each of the tools AFL++, CBMC, and KLEE on the PUTs in BIC, BSC, BFL,
BPC, BCC, and B⋆. Since these batches include multiple repetitions of the same
transformation, they demonstrate the generation of PUTs with homogeneous char-
acteristics. By observing how each tool’s bug-finding capabilities change in differ-
ent batches, and within each batch as the same transformation is repeated multiple
times, we can outline each tool’s strengths and weaknesses in comparison with the
other tools’ and link them to the characteristics of the transformations.

5 Experimental Results

5.1 RQ1: Fairness

Table 6 reports, for each batch of PUTs in Table 4, which testing tools were able
to generate inputs triggering the PUTs’ unique bugs in our experiments. Row B
corresponds to all PUTs used in these experiments. At least one of the toolsA,C , and
K managed to detect bugs in 80.8% of all PUTs with less than 100 transformations.5
The distribution is not strongly biased in favor of any tool—even though K was
noticeably more effective than A and C , as it was the only tool capable of detecting
the bugs in 10.1% of all PUTs. On the other hand, every tool was somewhat effective,
and all three of them detected 11.6% of the bugs.

Among the individual batches of PUTs, B10 is the “fairest”, in that it includes
PUTs that are challenging for each individual testing tool. In contrast, the PUTs
in batches B1 and B2 are generally simple to analyze for most of the tools; and

5 Corresponding to batch B1 ∪B2 ∪B10.
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batch % # % # % # % # % # % # % # % # % # % # % #

B1 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 100.0% 10 0.0% 0 100.0% 10 100.0% 10 100.0% 10
B2 0.0% 0 2.2% 1 0.0% 0 15.6% 7 17.8% 8 0.0% 0 64.4% 29 0.0% 0 97.8% 44 82.2% 37 82.2% 37
B10 14.0% 28 9.5% 19 23.0% 46 2.5% 5 16.5% 33 3.0% 6 7.0% 14 24.5% 49 40.0% 80 22.0% 44 49.5% 99
B100 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 100.0% 100 0.0% 0 0.0% 0 0.0% 0
B1000 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 100.0% 100 0.0% 0 0.0% 0 0.0% 0

B 6.2% 28 4.4% 20 10.1% 46 2.6% 12 9.0% 41 1.3% 6 11.7% 53 54.7% 249 29.5% 134 20.0% 91 32.1% 146

A ○ ○␣ ○␣ ○ ○ ○␣ ○ ○␣ ○
C ○␣ ○ ○␣ ○ ○␣ ○ ○ ○␣ ○
K ○␣ ○␣ ○ ○␣ ○ ○ ○ ○␣ ○

Table 6: For each combination of tools, for each batch of PUTs used in the exper-
iments, the percentage % and the absolute number # of PUTs in the batch whose
unique bugs were triggered by the tests generated by those tools. The leftmost
columns report bugs triggered exclusively by each tool combination (those marked
by○ in each column); the rightmost columns report bugs triggered non-exclusively
by each tool (those marked by ○ for AFL++, ○ for CBMC, and ○ for KLEE). For ex-
ample, the leftmost column indicates that tool A managed to find bugs in 28 PUTs
in batch B (6.2% of all PUTs in B), which no other tool could find; the rightmost
column indicates that tool K managed to find bugs in a total of 146 PUTs in batch
B (32.1% of all PUTs in B).

the PUTs in batches B100 and B1000 are overly complex, so much that no testing
tool could detect their bugs in the allotted time. These results are a consequence of
the different parameters chosen to create the PUTs in these batches. Overall, these
results suggests that HyperPUT can generate PUTs with bugs that are fair, as they
are a mix of elusive (highly challenging) bugs and simpler bugs that most practical
testing frameworks can discover.

5.2 RQ2: Reproducibility

As expected, all PUTs produced by HyperPUT for our experiments passed the re-
producibility checks discussed in Section 4.5. Namely:

i) Running each PUT on HyperPUT’s generated input triggers the unique bug in
the PUT.

ii) The PUTs compile without errors or warnings.
iii) The PUTs behave in the same way regardless of which compiler is used to com-

pile them.
iv) LLVM’s Undefined Behavior Sanitizer does not report any source of undefined

behavior in the PUTs.

These checks confirm that HyperPUT produces PUTs with reproducible seeded
bugs, since they are well-formed and behave consistently as expected.
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Fig. 3: For each batch of PUTsB1,B2,B10 andB used in the experiments, the Venn
diagram reports the number of PUTs in the batchwhose bugs were triggered by each
tool. The numbers in black in each intersection are the bugs triggered exclusively by
the corresponding tool combination; the numbers in color below each tool name are
the bugs triggered overall by the corresponding tool.

5.3 RQ3: Depth and Rarity

5.3.1 Depth

Figure 4 summarizes the distribution of cyclomatic complexitymeasures for the func-
tions in the PUTs generated by HyperPUT (batch B), and compares it to the func-
tions featuring in the benchmarks CGC and LAVA-1. HyperPUT can generate very
complex PUTs according to this metric: even though some of CGC’s programs are
an order of magnitude more complex, HyperPUT’s PUTs cover a broad range of cy-
clomatic complexities, and are those with the highest average complexity. This is a
consequence of the way we configured HyperPUT to generate also large and com-
plex PUTs in batches B100 and B1000 (as described in Section 4.2). In particular, the
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outliers in HyperPUT’s box plot in Figure 4a correspond to several PUTs in batch
B1000 with very high cyclomatic complexity—hence, among those with the most
complex and deep control flow.

Overall, these results suggest that HyperPUT is capable of generating simple
as well as complex PUTs, and hence can generate a diverse collection of synthetic
buggy programs.

(a) Box plots of the distributions of cyclomatic com-
plexity per function. The vertical axis uses a loga-
rithmic scale.

HyperPUT cgc lava-1

Mean 444 14 12
Median 18 13 4
Stddev 727 144 20
Min 3 1 1
Max 1902 16386 179

Functions 455 22893 18906

(b) Statistics about the distributions of cyclo-
matic complexity per function.

Fig. 4: Distributions of cyclomatic complexity per function in three collections of
buggy programs: the PUTs in batch B generated by HyperPUT, and benchmarks
CGC [3] and LAVA-1 [32].

(a) Box plots of the distributions of path length per
bug. The vertical axis uses a logarithmic scale.

HyperPUT lava-1

Mean 4 858 702 4 108 228
Median 486 500 3 339 297
Stddev 7 710 406 1 644 766
Min 210 260 2 728 637
Max 22 936 332 8 775 398

Bugs 455 69

(b) Statistics about the distributions of path
length per injected bug.

Fig. 5: Distributions of the length of the execution path on a bug-triggering input in
two collections of buggy programs: the PUTs in batch B generated by HyperPUT,
and benchmark LAVA-1 [32].
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[64, Fig. 5]
HyperPUT tcas Apocalypse

Mean 44 345 23 345
Median 23 244 17 165
Stddev 82 429 22 569
Min 29 8 7
Max 486 428 152 4 366

Bugs 72 41 82

(a) Statistics about the number f of all test inputs
generated by KLEE per bug before triggering the
bug in: HyperPUT’s batchB≥6, manually seeded
bugs in TCAS, and synthetic bugs seeded with
Apocalypse; the latter two are after [64, Fig. 5].

[64, Tab. 4]
HyperPUT tcas Apocalypse

Mean 2 127 (86) 363 13
Median 1 (1) 213 1
Stddev 6 683 (304) 431 51
Min 1 (1) 24 1
Max 40 708 (1 402) 1805 341

Bugs 72 41 82

(b) Statistics about the number t of bug-triggering
test inputs per bug generated by KLEE: HyperPUT’s
batch B≥6, manually seeded bugs in TCAS, and
synthetic bugs seeded with Apocalypse; the latter
two are after [64, Tab. 4].

Table 7: Number of KLEE-generated inputs as a measure of bug rarity.

Cyclomatic complexity measures the branching complexity of programs, which
is only a proxy for the complexity of the bugs that appear in the programs. In prin-
ciple, a very complex program may have very shallow bugs if they occur in the first
few lines of executable code. Path length—the number of instructions executed from
program entry until the bug is triggered—better assesses the depth of the synthetic
bugs in HyperPUT’s generated PUTs. Figure 5 summarizes the distribution of path
length for each bug in the PUTs generated by HyperPUT (batch B), and compares
it to the path length of synthetic bugs in the benchmark LAVA-1.

HyperPUT’s synthetic bugs are deeper on average (mean), but LAVA-1’s bugs
are not that far behind, and have a much higher median. In fact, HyperPUT’s have
a higher standard deviation, as the batch B includes both small PUTs with shallow
short-path bugs and large PUTs with bugs that are deeply nested.

As for other measures, this variety is a direct consequence of the way we con-
figured HyperPUT (as described in Section 4.2). Overall, HyperPUT can generate
shallow as well as deep bugs, including several that exhibit metrics similar to those
of organic bugs.

5.3.2 Rarity

Table 7 shows statistics about the rarity of bugs in HyperPUT’s PUTs in B≥6, and
compares them to the analogous measures reported in [64, Table 4 and Figure 5] and
in [64, Table 4] about: i) bugs in the TCAS benchmark, which consist of manually
seeded bugs in several variants of an organic program; ii) bugs seeded using the
Apocalypse system (introduced in [64]) in the same programs of the TCAS bench-
mark.

According to Table 7a, compared to its behavior on the other benchmarks TCAS
and Apocalypse, KLEE needs to generate a much higher number of test inputs be-
fore it can detect a bug in HyperPUT’s batch B≥6. On the other hand, Table 7b
suggests that, once KLEE finds the first bug-triggering input, it can fairly easily find
other bug-triggering inputs in batch B≥6 if they exist; whereas, on average, KLEE
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finds one-two orders of magnitude fewer bug-triggering inputs on the other bench-
marks. To explain this discrepancy, consider the semantics of transformations FL,
PC, and CC, which admit several different reaching inputs (see Section 3.2.1). Once
KLEE finds a set of constraints that characterize a triggering input, it can easily find
other solutions to the same constraints that reach the same error location. For ex-
ample, transformation PC requires that the input is a palindrome string of length n;
given one such string, we can get other palindromes by changing any pair of charac-
ters at opposite positions in the string. Consequently, the values in parenthesis refer
to the number of triggering test cases for PUTs in Batch B≥6 with non-negligible
parameter size (n > 3 for transformation PC and e >= 90 for transformation FL).

As with other research questions, we demonstrated one way of configuring Hy-
perPUT so that it produces artificial bugs with some characteristics comparable to
those of other benchmarks of bugs. Users with different requirements could adapt
the generation of PUTs to match their needs; for example, one could only include
transformations that determine PUTs with a single triggering input (such as a com-
bination of multiple SC with different parameters).

5.4 RQ4: Capabilities

The previous research questions demonstrated that HyperPUT is capable of pro-
ducing PUTs with bugs with a broad range of characteristics, some comparable to
those present in commonly used benchmarks for bug-finding tools. In particular,
Section 5.1 suggests that different PUTs are more or less challenging for different
bug-finding tools. In this section, we demonstrate how the variety of PUTs gener-
ated by HyperPUT can be used to exercise different capabilities of bug-finding tools.

To this end, we generated new batches of PUTsBIC, BSC, BFL, BPC, BCC, B⋆. As
described in Section 4.7, PUTs in each batch BT only use the same transformation
T , and differ only in their size—measured as the number of repetitions of T . This
way, we can understand how the characteristics of each transformation challenge
a tool’s bug-finding capabilities. Figure 6 plots the running time of the considered
testing frameworks when searching for bugs in these PUTs. Unsurprisingly, the per-
formance of a tool clearly depends on the transformations that make up a PUT. Let’s
look into each tool’s performance on the different batches. Table 8 provides another
qualitative summary of Figure 6’s experimental results.

CBMC is very effective on PUTs using transformations IC, SC, and FL, where it
scales effortlessly. PUTs using transformations IC and SC have no loops, and hence
CBMC can easily build an exhaustive finite-state abstraction. For example, CBMC found
the bug in Figure 7a’s PUT in less than a second.

PUTs using transformations FL do have loops, but in this case CBMC manages
to find a suitable loop unrolling bound that makes the analysis exhaustive with-
out blowing up the search space. In contrast, CBMC’s performance quickly degrades
for the largest PUTs using 10 transformations CC and PC (such as the one shown
in Figure 7c); in these case, loops whose exit condition depends on an input string
become hard to summarize with a fixed, small unrolling bound past a certain size.
Similarly, CBMC’s performance on batchB⋆ depends on how many and which trans-
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(a) PUTs in batch BIC. (b) PUTs in batch BSC.

(c) PUTs in batch BFL. (d) PUTs in batch BPC.

(e) PUTs in batch BCC. (f) PUTs in batch B⋆.

Fig. 6: Running time to discover the bug in each PUT in batches
BIC, BSC, BFL, BPC, BCC, B⋆. The horizontal axis enumerates the 10 PUTs in
each batch in order of size (number of transformations). The vertical axis measures
the running time (in seconds) until the tool terminates or times out (as in all
other experiments, we report the average of 4 repeated runs). A colored filled disc
indicates that the tool terminated successfully (it discovered the bug); a grayed out
circle indicates that the tool terminated or timed out without discovering the bug.
Data about AFL++ are in color blue, about CBMC are in color black, about KLEE are in
color yellow.
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1 int main(int argc,
2 char** argv) {
3 if (atoll(argv[10]) == 10) {
4 if (atoll(argv[9]) == 9) {
5 if (atoll(argv[8]) == 8) {
6 if (atoll(argv[7]) == 7) {
7 if (atoll(argv[6]) == 6) {
8 if (atoll(argv[5]) == 5) {
9 if (atoll(argv[4]) == 4) {
10 if (atoll(argv[3]) == 3) {
11 if (atoll(argv[2]) == 2) {
12 if (atoll(argv[1]) == 1) {
13 fail();
14 } else return(0);
15 } else ; } else ; } else ; }
16 else ; } else ; } else ; }
17 else ; } else ; }
18 }

(a) Example of PUT in batchBIC that CBMC
analyzes easily, but is challenging for KLEE
and AFL++. It consists of 10 nested checks
that each input argument argv[k] is the
string encoding integer k.

1 int main(int argc,
2 char** argv) {
3 if (atoll(argv[4]) == 4) {
4 if (atoll(argv[3]) == 3) {
5 if (atoll(argv[2]) == 2) {
6 if (atoll(argv[1]) == 1) {
7 fail();
8 } else return(0);
9 } else ; } else ; } else ; }
10 }

(b) Example of PUT in batchBIC that KLEE
fails to analyze. It consists of 4 nested
checks that each input argument argv[k]
is the string encoding integer k.

1 int main(int argc, char** argv) {
2 // PC(argv[10], 10)
3 if (strlen(argv[10]) < 10) exit(0);
4 size_t l = 0, h = strlen(argv[10]) - 1;
5 while (h >= l) {
6 if (argv[10][h] != argv[10][l]) exit(0);
7 h--; l++;
8 }
9 // PC(argv[9], 9)
10 // PC(argv[8], 8) ...
11 // PC(argv[7], 7) ...
12 // PC(argv[6], 6) ...
13 // PC(argv[5], 5) ...
14 // PC(argv[4], 4) ...
15 // PC(argv[3], 3) ...
16 // PC(argv[2], 2) ...
17 // PC(argv[1], 1) ...
18 if (strlen(argv[1]) < 1) exit(0);
19 size_t l = 0, h = strlen(argv[1]) - 1;
20 while (h >= l) {
21 if (argv[1][h] != argv[1][l]) exit(0);
22 h--; l++;
23 }
24 fail();
25 }

(c) Example of PUT in batch BPC that AFL++ ana-
lyzes fairly easily, but is challenging for CBMC. It con-
sists of 10 consecutive instances of transformation
PC, checking palindrome strings of length from 10
down to 1. (The repetitive code is elided for brevity.)

Fig. 7: Examples of PUTs that are challenging for different testing frameworks.

formations are used; in particular, as soon as the randomly generated PUTs include
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several nested loops with transformations PC or CC, CBMC runs out of resources and
terminates in about 40 minutes without detecting the bugs.

KLEE is as effective as CBMC on PUTs using transformation SC. It outperforms
CBMC on PUTs using transformations PC and CC, where it scales graciously to the
largest PUTs thanks to its symbolic reasoning capabilities. On PUTs using trans-
formation FL, KLEE is always effective, but its running times fluctuate somewhat
unpredictably—albeit remaining reasonably low in absolute value. This is probably
a result of running KLEE with randomized search (see Table 3), a feature that can
speed up the search for bugs but also introduces random fluctuations from run to
run. In contrast, KLEE struggles to scale on PUTs using transformation IC both in
batchBIC and in batchB⋆—such as the one in Figure 7a, but even with smaller PUTs
consisting of just four nested transformations, such as the one in Figure 7b.

The problem here is not the transformation per se, but rather how it is instan-
tiated in the PUTs generated for the experiments. As we explain in Section 4.2, pa-
rameter v1 in transformation IC is instantiated with atoll(argv[i]), which interprets
a string command-line argument as an integer; since KLEE does not have access to
the source code of library function atoll, it treats it as a black box, and hence its
constraint solving capabilities are of little use to find efficiently a suitable string ar-
gument that atoll converts to the integer v2 (the transformation’s second parameter,
instantiatedwith a random integer). This also explains the difference in performance
with transformation SC, where there is no black-box function involved, and hence
KLEE can easily find a suitable input string from the transformation’s condition itself.

AFL++ remains reasonably effective largely independent of which transforma-
tions are used; however, its running time tends to grow with the size of the analyzed
PUT. This behavior—complementary to KLEE’s and CBMC’s—is a result of AFL++ be-
ing a gray box tool. In a nutshell, this means that AFL++ does not have direct access
to the source code of the analyzed functions; thus, it cannot extract path constraints
from it but has to “guess” them indirectly by trial and error. AFL++’s gray-box strat-
egy, combined with its many heuristics and optimizations, achieves a different trade
off than white-box tools like KLEE and CBMC: AFL++ is an overall more flexible tool
(in that it is less dependent on the characteristics of the analyzed software), but usu-
ally requires more time and has more random fluctuations in its behavior. Another
difference is in scalability: AFL++’s analysis time necessarily grows with the size of
the inputs; in contrast, symbolic techniques like KLEE are much more insensitive to
input size, as long as the complexity of the symbolic constraints does not vary.

Figure 7c depicts an example showcasing AFL++’s effectiveness. Thanks to its
speed generating thousands of inputs per second, and to its coverage-driven search
that leads to incrementally constructing one suitable input at a time, AFL++ finds a
bug-triggering input in about one minute; in contrast, CBMC times out trying to find
suitable unrolling factors for the ten loops. In this example, AFL++’s coverage-based
heuristics even outperform KLEE, which manages to discover the bug in Figure 7c
but takes about five times longer than AFL++. Still, AFL++’s heuristics and speed run
out of steam as the size of the program to be analyzed, and the resulting constraints
on failing inputs, increas; therefore, AFL++ times out analyzing the bug in Figure 7a—
which is just a bigger, more complex version of the one in Figure 7c.
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transformation
tool IC SC FL PC CC

AFL++ M M L L L
CBMC L L L M M
KLEE S L L L L

Table 8: A qualitative summary of which transformations are harder/easier for each
testing framework. For each combination of tool/transformation, the table re-
ports the size (among Small, Medium, and Large) of PUTs consisting of repetitions of
that transformation that the tool successfully analyzed in Figure 6’s experiments.

Overall, these results demonstrate howHyperPUT can be used to generate PUTs
with heterogeneous characteristics and sizes, which challenge different capabilities
of diverse bug-finding techniques.

5.5 Limitations and Threats to Validity

We discuss the main limitations of HyperPUT’s technique, its current implementa-
tion, and other threats to the validity of the experiments described in this section,
as well as how we mitigated them.

Construct validity depends on whether the measurements taken in the experiments
reflect the features that are being evaluated. In our experiments, wemainly collected
standard measures, such as running time, whether a bug-finding tool managed to
trigger a bug, and static (cyclomatic complexity) and dynamic (path length) mea-
sures of complexity. For the experiments to answer RQ3, we also counted the num-
ber of triggering test cases and generated test cases for each bug—the samemeasures
used by Roy et al. [64] to assess bug rarity. Using standard measures reduces the risk
of threats to construct validity, and helps ensure that our results are meaningfully
comparable with those in related work.

Our experiments to answer RQ4 were limited by the transformations currently
supported by HyperPUT, and by howwe combined them. These restrictions are still
consistent with RQ4’s aim, which is to explore HyperPUT’s capabilities to exercise
different testing techniques with PUTs of different characteristics.

Internal validity depends on whether the experiments adequately control for pos-
sible confounding factors. One obvious threat follows from possible bugs in our
implementation of HyperPUT. As usual, we mitigated this threat with standard soft-
ware development practices, such as (manual) regression testing, code reviews, and
periodic revisions and refactoring.

To account for fluctuations due to the nondeterministic/randomized behavior of
some testing tools, we followed standard practices by repeating each experiment
multiple times, and reporting the average values (see Section 4.3). We usually ob-
served only a limited variance in the experiments, which indicates that the practical
impact of randomness was usually limited.
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Our experiments ran with a timeout of one hour per analyzed bug; it is pos-
sible that some experiments would have resulted in success if they had been al-
lowed a longer running time. We chose this timeout as it is standard in such experi-
ments [64], and compatible with running a good number of meaningful experiments
in a reasonable time. Our experiments showed a considerable variety of behavior,
which suggests that the testing tools we used can be successful within this timeout.

A related threat is in how we configured the testing tools (see Table 3). AFL++,
CBMC, and KLEE are highly-configurable tools, and their performance can vary greatly
depending on which options are selected. Our goal was not an exhaustive explo-
ration of all capabilities of these tools, but rather a demonstration of their “average”
behavior. Correspondingly, we mitigated this threat by: i) running each tool with
two configurations; ii) including the default configuration (with no overriding of
default options); iii) using common, widely used options.

To answer RQ3 in Section 4.6.2, we compared some measures taken on PUTs
generated by HyperPUT with the same measures reported by Roy et al. [64]. Since
we did not repeat [64]’s experiments in the same environment where we ran Hy-
perPUT, we cannot make strong, quantitative claims about the results of this com-
parison. This limitation does not, however, significantly threaten our overall answer
to RQ3, which is that HyperPUT can generate bugs whose rarity is realistic. [64]’s
experiments are used as a reference for what “realistic” means, whereas our work’s
aims are largely complementary.

External validity depends on whether the experimental results generalize, and to
what extent.

HyperPUT currently generates PUTs with a trivial modular structure, consist-
ing of a single function that only uses a handful of standard C libraries. On the other
hand, each function can be structurally quite intricate, with bugs nested deep in the
function’s control-flow structure. This is partly a limitation of the current imple-
mentation, but also an attempt to focus on generating PUTs that are complementary
to organic bug-seeded programs. Detecting “deep” bugs is a relevant open challenge
in test automation [18], and synthetic buggy programs may be interesting subjects
to demonstrate progress in addressing the challenge.

HyperPUT generates programs in C since this is a widely popular target for
the research on automated testing and fuzzing. The ideas behind HyperPUT can
certainly be applied to other programming languages, possiblywith different results.

Similarly, the choice of transformations currently supported by HyperPUT ob-
viously limits its broader applicability. HyperPUT’s implementation is extensible
with new transformations; deciding which ones to add depends on the goal of the
experiments one would like to make.

6 Discussion

The bulk of this paper described HyperPUT’s experimental evaluation, which aimed
at demonstrating how HyperPUT can be flexibly configured to produce diverse
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rq target batches size

1 fairness B = B1 ∪B2 ∪B10 ∪B100 ∪B1000 1, 2–10, 100, 1000
2 reproducibility B = B1 ∪B2 ∪B10 ∪B100 ∪B1000 1, 2–10, 100, 1000
3 depth B = B1 ∪B2 ∪B10 ∪B100 ∪B1000 1, 2–10, 100, 1000
3 rarity B≥6 ⊂ B10 6–10
4 capabilities BIC ∪BSC ∪BFL ∪BPC ∪BCC ∪B⋆ 1–10

Table 9: For each research question rqwith a certain target property to investigate,
the batches of PUTs generated by HyperPUT used in the experimental evaluation
of that question, and the sizes (in number of transformations) of those PUTs.

PUTswith various characteristics. As summarized by Table 9, we customizedHyper-
PUT’s parameters so as to produce PUTs that are suitable to address each research
question.

For research questions RQ1 and RQ2, we produced a wide collection of PUTs
(batch B), ranging from trivial ones with a single transformation (batch B1) up to
very large and complex ones with up to 1000 transformations (batch B1000). Each
PUT randomly combines any of the five transformations currently supported by
HyperPUT (see Section 3.1). At least one among the testing frameworks AFL++,
CBMC, and KLEE detected 45.3% of all bugs in batch B, 58.0% of all bugs in batches
B1, B2, B10, B100 and 80.8% of all bugs in batches B1, B2, B10. This demonstrates
that HyperPUT can produce PUTs that are fair, that is, neither trivial nor completely
inaccessible for the capabilities of the state-of-the-art testing frameworks. All PUTs
produced in the experiments were configured so that HyperPUT can also produce a
triggering input that reaches the location of the seeded bugs. We confirmed that the
triggering inputs produced by HyperPUT work in all experiments, as well as that
the PUTs compile correctly without warnings (thus answering RQ2).

The complex PUTs in batches B100 and B1000 are also useful to demonstrate
that HyperPUT can easily produce deep bugs (research question RQ3), nested within
complex and long control flow paths. Investigating rarity turned out to be more sub-
tle. On the one hand, we cannot assess rarity using very large, overly complex PUTs:
if no testing framework can generate a triggering input for a bug within a reason-
able time, any measure of rarity would be undefined. On the other hand, including
very small, trivial PUTs in the experiments on rarity would also be pointless, as we
do not expect these PUTs to challenge in any meaningful way the capabilities of
state-of-the-art testing frameworks. In our experiments, we selected a batch B≥6

of “Goldilocks” PUTs that are neither too complex nor too trivial, which we used
to demonstrate how HyperPUT compares to other benchmarks in terms of rarity.
As remarked in Section 5.3.2, one could configure HyperPUT differently to produce
bugs that are more rare (for example, using only transformations that determine
bugs with unique triggering inputs)—in exchange for losing some heterogeneity.

With research question RQ4, we wanted to discriminate between the capabilities
of different testing frameworks, connecting them to different features of the PUTs
we supply to them. To this end, we generated different batches of PUTs that consist
of repetitions of a single transformations among those of Table 2. These experiments
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confirmed how the different testing techniques of fuzzing (AFL++), model checking
(CBMC), and symbolic execution (KLEE) are challenged by different program features:
CBMC could not complete the analysis of PUTs with loops that cannot be summarized
symbolically; KLEE struggled especially with complex path constraints (for example
in deeply nested conditionals); AFL++’s heuristics make it quite flexible, but tend to
fail when analyzing bugs with few triggering inputs.

Based on the above discussion, here are some high-level guidelines that users of
HyperPUT can follow to generate PUTs that meet their requirements. Specifically,
requirements refer to different characteristics of the generated PUTs that one wants
to enforce:

Size The number of transformations is the fundamental determinant of the size of
the generated PUTs. Each transformation corresponds to a parametric snippet
of code; hence, each transformation instance adds as many lines of code as in
the snippet.

Nesting depth HyperPUT generates PUTs given transformation sequences (Sec-
tion 3.2), which chain transformations in different ways. This gives user control
over the nesting depth of the resulting PUTs, as measured by metrics such as
cyclomatic complexity.

Triggering inputs As we discussed in Section 3.2.1, HyperPUT can produce trig-
gering inputs with every bug it generates provided we compose transformations
under certain restrictions. This feature of HyperPUT can also be extended, for
example to produce multiple triggering inputs, or to support the generation of
triggering inputs with new user-defined transformations.

Bug kinds While all our experiments used simple bugs consisting of assertion fail-
ures, HyperPUT can use an arbitrary piece of code as seeded bug. Users could
take advantage of this capability in order to produce PUTs that exercise special-
ized program analysis frameworks that can only detect certain kinds of bugs
(e.g., null-pointer dereferences [13]).

Program features To generate PUTs with specific, homogeneous features (for ex-
ample, that do not include loops, or that only use variables of type string), users
of HyperPUT select some or all of the transformation categories to be used for
generation. The current version of HyperPUT is limited to a core subset of fea-
tures of the C programming language, which was sufficient to demonstrate its
capabilities in our experiments. However, one can still define new transforma-
tions, and combine them with the others in HyperPUT, so as to cater to their
specific needs.

7 Conclusions

In this paper, we presented HyperPUT, a technique and tool to generate PUTs (Pro-
gram Under Tests) with seeded bugs automatically, according to desired character-
istics. The PUTs generated by HyperPUT can be useful as experimental subjects to
assess the capabilities of bug-finding tools, and how they change according to the
characteristics of the analyzed PUT. To demonstrate this, we generated hundreds of
PUTs using HyperPUT, and ran the popular bug-finding tools AFL++, CBMC, and KLEE
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on them. Our experiments suggest that HyperPUT can generate heterogeneous col-
lections of PUTs, with several characteristics that resemble those of “ecologically
valid” bugs [64].

The implementation of HyperPUT is extensible, so that users can easily add
transformations and parameters to configure the generation of bugs according to
the intended usage. As future work, we plan to further extend the flexibility of Hy-
perPUT, so that it can also automate the process of analyzing its experimental re-
sults (without the manual intervention normally needed to study the produced data
or to generate graphical representations from it), or so that it can extend an existing
program with new functions and seeded bugs.
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