
An Empirical Study of Fault Localization in Python Programs

Mohammad Rezaalipour · Carlo A. Furia

Abstract Despite its massive popularity as a programming language, especially in novel domains like data sci-1

ence programs, there is comparatively little research about fault localization that targets Python. Even though it2

is plausible that several findings about programming languages like C/C++ and Java—the most common choices3

for fault localization research—carry over to other languages, whether the dynamic nature of Python and how the4

language is used in practice affect the capabilities of classic fault localization approaches remain open questions to5

investigate.6

This paper is the first multi-family large-scale empirical study of fault localization on real-world Python pro-7

grams and faults. Using Zou et al.’s recent large-scale empirical study of fault localization in Java [78] as the basis of8

our study, we investigated the effectiveness (i.e., localization accuracy), efficiency (i.e., runtime performance), and9

other features (e.g., different entity granularities) of seven well-known fault-localization techniques in four families10

(spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from 13 open-source11

Python projects from the BUGSINPY curated collection [67].12

The results replicate for Python several results known about Java, and shed light on whether Python’s pecu-13

liarities affect the capabilities of fault localization. The replication package that accompanies this paper includes14

detailed data about our experiments, as well as the tool FAUXPY that we implemented to conduct the study.15

Keywords Fault localization · Debugging · Python · Empirical study16

1 Introduction17

It is commonplace that debugging is an activity that takes up a disproportionate amount of time and resources in18

software development [41]. This also explains the popularity of fault localization as a research subject in software19

engineering: identifying locations in a program’s source code that are implicated in some observed failures (such20

as crashes or other kinds of runtime errors) is a key step of debugging. This paper contributes to the empirical21

knowledge about the capabilities of fault localization techniques, targeting the Python programming language.22

Despite the massive amount of work on fault localization (see Section 3) and the popularity of the Python23

programming language,12 most empirical studies of fault localization target languages like Java or C. This leaves24

open the question of whether Python’s characteristics—such as the fact that it is dynamically typed, or that it is25

dominant in certain application domains such as data science—affect the capabilities of classic fault localization26

techniques—developed and tested primarily on different kinds of languages and programs.27

This paper fills this knowledge gap: to our knowledge, it is the first multi-family large-scale empirical study of28

fault localization in real-world Python programs. The starting point is Zou et al.’s recent extensive study [78] of29

fault localization for Java. This paper’s main contribution is a differentiated conceptual replication [30] of Zou et30

al.’s study, sharing several of its features: i) it experiments with several different families (spectrum-based, muta-31

tion-based, predicate switching, and stack-trace-based) of fault localization techniques; ii) it targets a large number32

of faults in real-world projects (135 faults in 13 projects) ; iii) it studies fault localization effectiveness at different33

M. Rezaalipour
Software Institute, Università della Svizzera italiana, Lugano, Switzerland
E-mail: rezaam@usi.ch

C. A. Furia
Software Institute, Università della Svizzera italiana, Lugano, Switzerland
https://bugcounting.net/

1TIOBE language popularity index: https://www.tiobe.com/tiobe-index/
2Popularity of Programming Language Index: https://pypl.github.io/PYPL.html

https://bugcounting.net/
https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html

granularities (statement, function, and module); iv) it considers combinations of complementary fault localiza-34

tion techniques. The fundamental novelty of our replication is that it targets the Python programming language;35

furthermore, i) it analyzes fault localization effectiveness of different kinds of faults and different categories of36

projects; ii) it estimates the contributions of different fault localization features by means of regression statistical37

models; iii) it compares its main findings for Python to Zou et al.’s [78] for Java.38

The main findings of our Python fault localization study are as follows:39

1. Spectrum-based fault localization techniques are the most effective, followed by mutation-based fault localiza-40

tion techniques.41

2. Predicate switching and stack-trace fault localization are considerably less effective, but they can work well on42

small sets of faults that match their characteristics.43

3. Stack-trace is by far the fastest fault localization technique, predicate switching and mutation-based fault local-44

ization techniques are the most time consuming.45

4. Bugs in data-science related projects tend to be harder to localize than those in other categories of projects.46

5. Combining fault localization techniques boosts their effectiveness with only a modest hit on efficiency.47

6. The main findings about relative effectiveness still hold at all granularity levels.48

7. Most of Zou et al. [78]’s findings about fault localization in Java carry over to Python.49

A practical challenge to carry out a large-scale fault localization study of Python projects was that, at the time50

of writing, there were no open-source tools that support a variety of fault localization techniques for this pro-51

gramming language. Thus, to perform this study, we implemented FAUXPY: a fault-localization tool for Python that52

supports seven fault localization techniques in four families, is highly configurable, and works with the most com-53

mon Python unit testing frameworks (such as Pytest and Unittest). The present paper is not a paper about FAUXPY,54

which we plan to present in detail in a separate publication. Nevertheless, we briefly discuss the key features of55

FAUXPY, and make the tool available as part of this paper’s replication package—which also includes all the detailed56

experimental artifacts and data that support further independent analysis and replicability.57

The rest of the paper is organized as follows. Section 2 presents the fault localization techniques that fall within58

the scope of the empirical study, and outlines FAUXPY’s features. Section 3 summarizes the most relevant related59

work in fault localization, demonstrating how Python is underrepresented in this area. Section 4 presents in detail60

the paper’s research questions, and the experimental methodology that we followed to answer them. Section 561

details the experimental results for each investigated research question, and presents any limitations and threats62

to the validity of the findings. Section 6 concludes with a high-level discussion of the main results, and of possible63

avenues for future work.64

Replication package. For reproducibility, all experimental artifacts of this paper’s empirical study, and the imple-65

mentation of the FAUXPY tool, are available:66

https://doi.org/10.6084/m9.figshare.2325468867

2 Fault Localization and FAUXPY68

Fault localization techniques [73, 71] relate program failures (such as crashes or assertion violations) to faulty69

locations in the program’s source code that are responsible for the failures. Concretely, a fault localization technique70

L assigns a suspiciousness score LT(e) to any program entity e—usually, a location, function, or module—given test71

inputs T that trigger a failure in the program. The suspiciousness score LT(e) should be higher the more likely e72

is the location of a fault that is ultimately responsible for the failure. Thus, a list of all program entities e1, e2, . . .73

ordered by decreasing suspiciousness score LT(e1) ≥ LT(e2) ≥ . . . is fault localization technique L’s overall output.74

Let T = P ∪ F be a set of tests partitioned into passing P and failing F, such that F ̸= ∅—there is at least one75

failing test—and all failing tests originate in the same fault. Tests T and a program p are thus the target of a single76

fault localization run. Then, fault localization techniques differ in what kind of information they extract from T and77

p to compute suspiciousness scores. A fault localization family is a group of techniques that combine the same kind78

of information according to different formulas. Sections 2.1–2.4 describe four common FL families that comprise a79

total of seven FL families. As Section 2.5 further explains, a FL technique’s granularity denotes the kind of program80

entities it analyzes for suspiciousness—from individual program locations to functions or files/modules. Some FL81

techniques are only defined for a certain granularity level, whereas others can be applied to different granularities.82

While FL techniques are usually applicable to any programming language, we could not find any comprehen-83

sive implementation of the most common fault localization techniques for Python at the time of writing. There-84

fore, we implemented FAUXPY—an automated fault localization tool for Python implementing several widely used85

techniques—and used it to perform the empirical study described in the rest of the paper. Section 2.6 outlines86

FAUXPY’s main features and some details of its implementation.87

2

https://doi.org/10.6084/m9.figshare.23254688

TarantulaT(e) =
F+(e)/|F|

F+(e)/|F|+ P+(e)/|P| (1)

OchiaiT(e) =
F+(e)√

|F| × (F+(e) + P+(e))
(2)

DStarT(e) =
(F+(e))2

P+(e) + F−(e)
(3)

Figure 1: SBFL formulas to compute the suspiciousness score of an entity e given tests T = P ∪ F partitioned into
passing P and failing F. All formulas compute a score that is higher the more failing tests F+(e) cover e, and lower
the more passing tests P+(e) cover e—capturing the basic heuristics of SBFL.

MetallaxisT(m) =
Fk
∼(m)√

|F| × (Fk
∼(m) + Pk(m))

MetallaxisT(e) = max
m∈M

m mutates e

MetallaxisT(m) (4)

MuseT(m) =
Fk(m)− Pk(m)× ∑n∈M Fk(n)/ ∑n∈M Pk(n)

|F| MuseT(e) = mean
m∈M

m mutates e

MuseT(m) (5)

Figure 2: MBFL formulas to compute the suspiciousness score of a mutant m given tests T = P ∪ F partitioned
into passing P and failing F. All formulas compute a score that is higher the more failing tests Fk(m) kill m, and
lower the more passing tests Pk(m) kill m—capturing the basic heuristics of mutation analysis. On the right, MBFL
formulas to compute the suspiciousness score of a program entity e by aggregating the suspiciousness score of all
mutants m ∈ M that modified e in the original program.

2.1 Spectrum-Based Fault Localization88

Techniques in the spectrum-based fault localization (SBFL) family compute suspiciousness scores based on a pro-89

gram’s spectra [52]—in other words, its concrete execution traces. The key heuristics of SBFL techniques is that a90

program entity’s suspiciousness is higher the more often the entity is covered (reached) by failing tests and the less91

often it is covered by passing tests. The various techniques in the SBFL family differ in what formula they use to92

assign suspiciousness scores based on an entity’s coverage in passing and failing tests.93

Given tests T = P ∪ F as above, and a program entity e: i) P+(e) is the number of passing tests that cover94

e; ii) P−(e) is the number of passing tests that do not cover e; iii) F+(e) is the number of failing tests that cover95

e; iv) and F−(e) is the number of failing tests that do not cover e. Figure 1 shows how Tarantula [26], Ochiai [1],96

and DStar [70]—three widely used SBFL techniques [49]—compute suspiciousness scores given this coverage in-97

formation. DStar’s formula (3), in particular, takes the second power of the numerator, as recommended by other98

empirical studies [78, 70].399

2.2 Mutation-Based Fault Localization100

Techniques in the mutation-based fault localization (MBFL) family compute suspiciousness scores based on mu-101

tation analysis [25], which generates many mutants of a program p by applying random transformations to it (for102

example, change a comparison operator < to ≤ in an expression). A mutant m of p is thus a variant of p whose103

behavior differs from p’s at, or after, the location where m differs from p. The key idea of mutation analysis is to104

collect information about p’s runtime behavior based on how it differs from its mutants’. Accordingly, when a test105

t behaves differently on p than on m (for example, p passes t but m fails it), we say that t kills m.106

To perform fault localization on a program p, MBFL techniques first generate a large number of mutants M =107

{m1, m2, . . .} of p by systematically applying each mutation operator to each statement in p that is executed in any108

failing test F. Then, given tests T = P ∪ F as above, and a mutant m ∈ M: i) Pk(m) is the number of tests that p109

passes but m fails (that is, the tests in P that kill m); ii) Fk(m) is the number of tests that p fails but m passes (that110

is, the tests in F that kill m); iii) and Fk
∼(m) is the number of tests that p fails and behave differently on m, either111

3Suspiciousness score formulas are typically expressed as ratios; when a denominator is zero, this leads to an undefined score. There
are different strategies to account for suspiciousness scores in these degenerate cases [57]. In this paper, we implicitly add a small constant
ϵ = 0.1 to the denominator of every suspiciousness score formula. When the denominator is not zero, adding ϵ is practically irrelevant;
when the denominator is zero and the numerator is also zero, adding ϵ gives a very low suspiciousness of zero (which reflects that the
entity is hardly covered by any tests); when the denominator is zero and the numerator is positive, adding ϵ gives a large suspiciousness
(which reflects that the entity is only covered by failing tests).

3

because they pass on m or because they still fail but lead to a different stack trace (this is a weaker notion of tests112

that kill m [45]). Figure 2 shows how Metallaxis [45] and Muse [42]—two widely used MBFL techniques—compute113

suspiciousness scores of each mutant in M.114

Metallaxis’s formula (4) is formally equivalent to Ochiai’s—except that it is computed for each mutant and115

measures killing tests instead of covering tests. In Muse’s formula (5), ∑n∈M Fk(n) is the total number of failing tests116

in F that kill any mutant in M, and ∑n∈M Pk(n) is the total number of passing tests in P that kill any mutant in M117

(these are called f2p and p2f in Muse’s paper [42]).118

Finally, MBFL computes a suspiciousness score for a program entity e by aggregating the suspiciousness scores119

of all mutants that modified e in the original program p; when this is the case, we say that a mutant m mutates e.120

The right-hand side of Figure 2 shows Metallaxis’s and Muse’s suspiciousness formulas for entities: Metallaxis (4)121

takes the largest (maximum) mutant score, whereas Muse (5) takes the average (mean) of the mutant scores.122

2.3 Predicate Switching123

The predicate switching (PS) [74] fault localization technique identifies critical predicates: branching conditions (such124

as those of if and while statements) that are related to a program’s failure. PS’s key idea is that if forcibly changing125

a predicate’s value turns a failing test into passing one, the predicate’s location is a suspicious program entity.126

For each failing test t ∈ F, PS starts from t’s execution trace (the sequence of all statements executed by t),127

and finds t’s subsequence bt
1 bt

2 . . . of branching statements. Then, by instrumenting the program p under analysis,128

it generates, for each branching statement bt
k, a new execution of t where the predicate (branching condition) ct

k129

evaluated by statement bt
k is forcibly switched (negated) at runtime (that is, the new execution takes the other branch130

at bt
k). If switching predicate ct

k makes the test execution pass, then ct
k is a critical predicate. Finally, PS assigns a131

(positive) suspiciousness score to all critical predicates in all tests F: PSF(ct
k) is higher, the fewer critical predicates132

are evaluated between ct
k and the failure location when executing t ∈ F [78].4 For example, the most suspicious133

program entity e will be the location of the last critical predicate evaluated before any test failure.134

PS has some distinctive features compared to other FL techniques. First, it only uses failing tests for its dynamic135

analysis; any passing tests P are ignored. Second, the only program entities it can report as suspicious are locations136

of predicates; thus, it usually reports a shorter list of suspicious locations than SBFL and MBFL techniques. Third,137

while MBFL mutates program code, PS dynamically mutates individual program executions. For example, suppose138

that a loop while c:B executes its body B twice—and hence, the loop condition c is evaluated three times—in a139

failing test. Then, PS will generate three variants of this test execution: i) one where the loop body never executes140

(c is false the first time it is evaluated); ii) one where the loop body executes once (c is false the second time it is141

evaluated); iii) one where the loop body executes three or more times (c is true the third time it is evaluated).142

2.4 Stack Trace Fault Localization143

When a program execution fails with a crash (for example, an uncaught exception), the language runtime usually144

prints its stack trace (the chain of methods active when the crash occurred) as debugging information to the user. In145

fact, it is known that stack trace information helps developers debug failing programs [5]; and a bug is more likely146

to be fixed if it is close to the top of a stack trace [59]. Based on these empirical findings, Zou et al. [78] proposed147

the stack trace fault localization technique (ST), which uses the simple heuristics of assigning suspiciousness based148

on how close a program entity is to the top of a stack trace.149

Concretely, given a failing test t ∈ F, its stack trace is a sequence f1 f2 . . . of the stack frames of all functions that150

were executing when t terminated with a failure, listed in reverse order of execution; thus, f1 is the most recently151

called function, which was directly called by f2, and so on. ST assigns a (positive) suspiciousness score to any152

program entity e that belongs to any function fk in t’s stack trace: STt(e) = 1/k, so that e’s suspiciousness is higher,153

the closer to the failure e’s function was called.5 In particular, the most suspicious program entities will be all those154

in the function f1 called in the top stack frame. Then, the overall suspiciousness score of e is the maximum in all155

failing tests F: STF(e) = maxt∈F STt(e).156

2.5 Granularities157

Fault localization granularity refers to the kinds of program entity that a FL technique ranks. The most widely158

studied granularity is statement-level, where each statement in a program may receive a different suspiciousness159

4The actual value of the suspiciousness score is immaterial, as long as the resulting ranking is consistent with this criterion. In
FAUXPY’s current implementation, PSF(ct

k) = 1/10d, where d is the number of critical predicates other than ct
k evaluated after ct

k in t.
5As in PS, the actual value of the suspiciousness score is immaterial, as long as the resulting ranking is consistent with this criterion.

4

score [49, 70]. However, coarser granularities have also been considered, such as function-level (also called method-160

level) [3, 72] and module-level (also called file-level) [55, 77].161

In practice, implementations of FL techniques that support different levels of granularity focus on the finest162

granularity (usually, statement-level granularity), whose information they use to perform FL at coarser granular-163

ities. Namely, the suspiciousness of a function is the maximum suspiciousness of any statements in its definition;164

and the suspiciousness of a module is the maximum suspiciousness of any functions belonging to it.6165

2.6 FAUXPY: Features and Implementation166

Despite its popularity as a programming language, we could not find off-the-shelf implementations of fault local-167

ization techniques for Python at the time of writing [57]. The only exception is CharmFL [21]—a plugin for the168

PyCharm IDE—which only implements SBFL techniques. Therefore, to conduct an extensive empirical study of FL169

in Python, we implemented FAUXPY: a fault localization tool for Python programs.170

FAUXPY supports all seven FL techniques described in Sections 2.1–2.4; it can localize faults at the level of state-171

ments, functions, or modules (Section 2.5). To make FAUXPY a flexible and extensible tool, easy to use with a variety172

of other commonly used Python development tools, we implemented it as a stand-alone command-line tool that173

works with tests in the formats supported by Pytest, Unittest, and Hypothesis [40]—three popular Python testing174

frameworks.175

While running, FAUXPY stores intermediate analysis data in an SQLite database; upon completing a FL local-176

ization run, it returns to the user a human-readable summary—including suspiciousness scores and ranking of177

program entities. The database improves performance (for example by caching intermediate results) but also facil-178

itates incremental analyses—for example, where we provide different batches of tests in different runs.179

FAUXPY’s implementation uses Coverage.py [4]—a popular code-coverage measurement library—to collect the180

execution traces needed for SBFL and MBFL. It also uses the state-of-the-art mutation-testing framework Cosmic181

Ray [8] to generate mutants for MBFL; since Cosmic Ray is easily configurable to use some or all of its mutation182

operators—or even to add new user-defined mutation operators—FAUXPY’s MBFL implementation is also fully183

configurable. To implement PS in FAUXPY, we developed an instrumentation library that can selectively change the184

runtime value of predicates in different runs as required by the PS technique. The implementation of FAUXPY is185

available as open-source (see this paper’s replication package).186

3 Related Work187

Fault localization has been an intensely researched topic for over two decades, whose popularity does not seem188

to wane [71]. This section summarizes a selection of studies that are directly relevant for the paper; Wong’s recent189

survey [71] provides a broader summary for interested readers.190

Spectrum-based fault localization. The Tarantula SBFL technique [26] was one of the earliest, most influential FL191

techniques, also thanks to its empirical evaluation showing it is more effective than other competing techniques [51,192

7]. The Ochiai SBFL technique [1] improved over Tarantula, and it often still is considered the “standard” SBFL193

technique.194

These earlier empirical studies [26, 1], as well as other contemporary and later studies of FL [45], used the195

Siemens suite [20]: a set of seven small C programs with seeded bugs. Since then, the scale and realism of FL empir-196

ical studies has significantly improved over the years, targeting real-world bugs affecting projects of realistic size.197

For example, Ochiai’s effectiveness was confirmed [33] on a collection of more realistic C and Java programs [12].198

When Wong et al. [70] proposed DStar, a new SBFL technique, they demonstrated its capabilities in a sweeping199

comparison involving 38 other SBFL techniques (including the “classic” Tarantula and Ochiai). In contrast, numer-200

ous empirical results about fault localization in Java based on experiments with artificial faults were found not to201

hold to experiments with real-world faults [49] using the Defects4J curated collection [28].202

Mutation-based fault localization. With the introduction of novel fault localization families—most notably, MBFL—203

empirical comparison of techniques belonging to different families became more common [42, 45, 49, 78]. The Muse204

MBFL technique was introduced to overcome a specific limitation of SBFL techniques: the so-called “tie set prob-205

lem”. This occurs when SBFL assigns the same suspiciousness score to different program entities, simply because206

they belong to the same simple control-flow block (see Section 2.1 for details on how SBFL works). Metallaxis-207

FL [45] (which we simply call “Metallaxis” in this paper) is another take on MBFL that can improve over SBFL208

techniques.209

6Other approaches aggregate the suspiciousness scores of finer-granularity entities by average or by minimum. We take the maxi-
mum for consistency with Zou et al. [78].

5

The comparison between MBFL and SBFL is especially delicate given how MBFL works. As demonstrated210

by Pearson et al. [49], MBFL’s effectiveness crucially depends on whether it is applied to bugs that are “similar”211

to those introduced by its mutation operators. This explains why the MBFL studies targeting artificially seeded212

faults [42, 45] found MBFL to outperform SBFL; whereas studies targeting real-world faults [49, 78] found the213

opposite to be the case—a result also confirmed by the present paper in Section 5.1.214

Mutation testing. MBFL techniques rely on mutation testing to generate mutants of a faulty program that may215

help locate the fault. Therefore, the selection of mutation operators that are used for mutation testing impacts216

the effectiveness of MBFL techniques. Research in mutation testing has grown considerably in the last decade,217

developing a large variety of mutation operators tailored to specific programming languages, applications, and218

faults [46]. Despite these recent developments, the fundamental set of mutation operators introduced in Offut et219

al.’s seminal work [44] remains the basis of basically every application to mutation testing. These fundamental220

operators generate mutants by modifying or removing arithmetic, logical, and relational operators, as well as con-221

stants and variables in a program, and hence are widely applicable and domain-agnostic. Notably, the Cosmic222

Ray [8] Python mutation testing framework (used in our implementation of FAUXPY), the two other popular Python223

mutation testing frameworks MutPy [11] and mutmut,7 as well as the popular Java mutation testing frameworks224

Pitest8, MuJava [39] and Major [27] (the latter used in Zou et al.’s MBFL experiments [78]) all offer Offut et al.’s225

fundamental operators. This helps make experiments with mutation testing techniques meaningfully comparable.226

Empirical comparisons. This paper’s study design is based on Zou et al.’s empirical comparison of fault localization227

on Java programs [78]. We chose their study because it is fairly recent (it was published in 2021), it is comprehensive228

(it targets 11 fault localization techniques in seven families, as well as combinations of some of these techniques),229

and it targets realistic programs and faults (357 bugs in five projects from the Defects4J curated collection).230

Ours is a differentiated conceptual replication [30] of Zou et al.’s study [78]. We target a comparable number231

of subjects (135 BUGSINPY [67] bugs vs. 357 Defects4J [28] bugs) from a wide selection of projects (13 real-world232

Python projects vs. five real-world Java projects). We study [78]’s four main fault localization families SBFL, MBFL,233

PS, and ST, but we exclude three other families that featured in their study: DS (dynamic slicing [18]), IRBFL234

(Information retrieval-based fault localization [77]), and HBFL (history-based fault localization [50]). IRBFL and235

HBFL were shown to be scarcely effective by Zou et al. [77], and rely on different kinds of artifacts that may not236

always be available when dynamically analyzing a program as done by the other “mainstream” fault localization237

techniques. Namely, IRBFL analyzes bug reports, which may not be available for all bugs; HBFL mines commit238

histories of programs. In contrast, our study only includes techniques that solely rely on tests to perform fault239

localization; this help make a comparison between techniques consistent. Finally, we excluded DS for practical240

reasons: implementing it requires accurate data- and control-dependency static analyses [73]. These are available241

in languages like Java through widely used frameworks like Soot [64, 32]; in contrast, Python currently offers few242

mature static analysis tools (e.g, Scalpel [34]), none with the features required to implement DS. Unfortunately,243

dynamic slicing has been implemented for Python in the past [6] but no implementation is publicly available; and244

building it from scratch is outside the present paper’s scope.245

Python fault localization. Despite Python’s popularity as a programming language, the vast majority of fault local-246

ization empirical studies target other languages—mostly C, C++, and Java. To our knowledge, CharmFL [63, 21]247

is the only available implementation of fault localization techniques for Python; the tool is limited to SBFL tech-248

niques. We could not find any realistic-size empirical study of fault localization using Python programs comparing249

techniques of different families. This gap in both the availability of tools [57] and the empirical knowledge about250

fault localization in Python motivated the present work.251

Note that numerous recent empirical studies looked into fault localization for deep-learning models imple-252

mented in Python [13, 17, 76, 75, 58, 65]. This is a very different problem, using very different techniques, than253

“classic” program-based fault localization, which is the topic of our paper.254

Deep learning-based fault localization. Deep learning models have recently been applied to the software fault local-255

ization problem. The key idea of techniques such as DeepFL [36], GRACE [38], and DEEPRL4FL [37] is to train a256

deep learning model to identify suspicious locations, giving it as input coverage information, as well as other en-257

coded information about the source code of the faulty programs (such as the data and control-flow dependencies).258

While these approaches are promising, we could not include them in our empirical study since they do not have259

the same level of maturity as the other “classic” FL techniques we considered. First, DeepFL and GRACE only260

work at function-level granularity, whereas the bulk of FL research targets statement-level granularity. Second,261

7https://mutmut.readthedocs.io
8https://pitest.org

6

https://mutmut.readthedocs.io
https://pitest.org

there are no reference implementations of techniques such as DEEPRL4FL that we can use for our experiments.9262

Third, the performance of a deep learning-based technique usually depends on the training set. Fourth, training263

a deep learning model is usually a time consuming process; how to account for this overhead when comparing264

efficiency is tricky.265

Nevertheless, our empirical study does feature one FL technique that is based on machine learning: CombineFL,266

which is Zou et al.’s application of learning to rank to fault localization [78]. The same paper also discusses how267

CombineFL outperforms other state-of-the-art machine learning-based fault localization techniques such as MUL-268

TRIC [35], Savant [3], TraPT [35], and FLUCCS [61]. Therefore, CombineFL is a valid representative of the capabilities269

of pre-deep learning machine learning FL techniques.270

Python vs. Java SBFL comparison. To our knowledge, Widyasari et al.’s recent empirical study of spectrum-based271

fault localization [68] is the only currently available large-scale study targeting real-world Python projects. Like272

our work, they use the bugs in the BUGSINPY curated collection as experimental subjects [67]; and they compare273

their results to those obtained by others for Java [49]. Besides these high-level similarities, the scopes of our study274

and Widyasari et al.’s are fundamentally different: i) We are especially interested in comparing fault localization275

techniques in different families; they consider exclusively five spectrum-based techniques, and drill down into the276

relative performance of these techniques. ii) Accordingly, we consider orthogonal categorization of bugs: we clas-277

sify bugs (see Section 4.3) according to characteristics that match the capabilities of different fault-localization278

families (e.g., stack-trace fault localization works for bugs that result in a crash); they classify bugs according to279

syntactic characteristics (e.g., multi-line vs. single-line patch). iii) Most important, even though both our paper and280

Widyasari et al.’s compare Python to Java, the framing of our comparisons is quite different: in Section 5.6, we281

compare our findings about fault localization in Python to Zou et al. [78]’s findings about fault localization in Java;282

for example, we confirm that SBFL techniques are generally more effective than MBFL techniques in Python, as283

they were found to be in Java. In contrast, Widyasari et al. directly compare various SBFL effectiveness metrics284

they collected on Python programs against the same metrics Pearson et al. [49] collected on Java programs; for285

example, Widyasari et al. report that the percentage of bugs in BUGSINPY that their implementation of the Ochiai286

SBFL technique correctly localized within the top-5 positions is considerably lower than the percentage of bugs in287

Defects4J that Pearson et al.’s implementation of the Ochiai SBFL technique correctly localized within the top-5.288

It is also important to note that there are several technical differences between ours and Widyasari et al.’s289

methodology. First, we handle ties between suspiciousness scores by computing the Einspect rank (described in Sec-290

tion 4.5); whereas they use average rank (as well as other effectiveness metrics). Even though we also take our291

subjects from BUGSINPY, we carefully selected a subset of bugs that are fully analyzable on our infrastructure with292

all fault localization techniques we consider (Section 4.1, Section 4.7); whereas they use all BUGSINPY available bugs.293

The selection of subjects is likely to impact the value of some metrics more than others (see Section 4.5); for example,294

the exam score is undefined for bugs that a fault localization technique cannot localize, whereas the top-k counts are295

lower the more faults cannot be localized. These and numerous other differences make our results and Widyasari296

et al.’s incomparable and mostly complementary. A replication of their comparison following our methodology is297

an interesting direction for future work, but clearly outside the present paper’s scope. In Section 6.1 we present298

some additional data, and outline a few directions for future work that are directly inspired by Widyasari et al.’s299

study [68].300

4 Experimental Design301

Our experiments assess and compare the effectiveness and efficiency of the seven FL techniques described in Sec-302

tion 2, as well as of their combinations, on real-world Python programs and faults. To this end, we target the303

following research questions:304

RQ1. How effective are the fault localization techniques?305

RQ1 compares fault localization techniques according to how accurately they identify program entities that are306

responsible for a fault.307

RQ2. How efficient are the fault localization techniques?308

RQ2 compares fault localization techniques according to their running time.309

RQ3. Do fault localization techniques behave differently on different faults?310

RQ3 investigates whether the fault localization techniques’ effectiveness and efficiency depend on which kinds311

of faults and programs it analyzes.312

RQ4. Does combining fault localization techniques improve their effectiveness?313

RQ4 studies whether combining the information of different fault localization techniques for the same faults314

improves the effectiveness compared to applying each technique in isolation.315

9The replication package of DEEPRL4FL [37] is not available at the time of writing.

7

RQ5. How does program entity granularity impact fault localization effectiveness?316

RQ5 analyzes the relation between effectiveness and granularity: does the relative effectiveness of fault local-317

ization techniques change as they target coarser-grained program entities?318

RQ6. Are fault localization techniques as effective on Python programs as they are on Java programs?319

RQ6 compares our overall results to Zou et al. [78]’s, exploring similarities and differences between Java and320

Python programs.321

4.1 Subjects322

To have a representative collection of realistic Python bugs,10 we used BUGSINPY [67], a curated dataset of real bugs323

collected from real-world Python projects, with all the information needed to reproduce the bugs in controlled324

experiments. Table 1 overviews BUGSINPY’s 501 bugs from 17 projects.325

Project category. Columns CATEGORY in Table 1 and Table 2 partition all BUGSINPY projects into four non-overlapping326

categories:327

Command line (CL) projects consist of tools mainly used through their command line interface.328

Development (DEV) projects offer libraries and utilities useful to software developers.329

Data science (DS) projects consist of machine learning and numerical computation frameworks.330

Web (WEB) projects offer libraries and utilities useful for web development.331

We classified the projects according to their description in their respective repositories, as well as how they are332

presented in BUGSINPY. Like any classification, the boundaries between categories may be somewhat fuzzy, but the333

main focus of most projects is quite obvious (such as DS for keras and pandas, or CL for youtube-dl).334

Unique bugs. Each bug b = ⟨p−b , p+b , Fb, Pb⟩ in BUGSINPY consists of: i) a faulty version p−b of the project, such that335

tests in Fb all fail on it (all due to the same root cause); ii) a fixed version p+b of the project, such that all tests in Fb ∪ Pb336

pass on it; iii) a collection of failing Fb and passing Pb tests, such that tests in Pb pass on both the faulty p−b and fixed337

p+b versions of the project, whereas tests in Fb fail on the faulty p−b version and pass on the fixed p+b version of the338

project.339

Bug selection. Despite BUGSINPY’s careful curation, several of its bugs cannot be reproduced because their depen-340

dencies are missing or no longer available; this is a well-known problem that plagues reproducibility of experi-341

ments involving Python programs [43]. In order to identify which BUGSINPY bugs were reproducible at the time of342

our experiments on our infrastructure, we took the following steps for each bug b:343

i) Using BUGSINPY’s scripts, we generated and executed the faulty p−b version and checked that tests in Fb fail344

whereas tests in Pb pass on it; and we generated and executed the fixed p+b version and checked that all tests in345

Fb ∪ Pb pass on it. Out of all of BUGSINPY’s bugs, 120 failed this step; we did not include them in our experiments.346

ii) Python projects often have two sets of dependencies (requirements): one for users and one for developers; both347

are needed to run fault localization experiments, which require to instrument the project code. Another 39 bugs348

in BUGSINPY miss some development dependencies; we did not include them in our experiments.349

iii) Two bugs resulted in an empty ground truth (Section 4.2): essentially, there is no way of localizing the fault in350

p−b ; we did not include these bugs in our experiments.351

This resulted in 501 − 120 − 39 − 2 = 340 bugs in 13 projects (all but ansible, matplotlib, PySnooper, and scrapy)352

that we could reproduce in our experiments.353

However, this is still an impractically large number: just reproducing each of these bugs in BUGSINPY takes nearly354

a full week of running time, and each FL experiment may require to rerun the same tests several times (hundreds355

of times in the case of MBFL). Thus, we first discarded 27 bugs that each take more than 48 hours to reproduce. We356

estimate that including these 27 bugs in the experiments would have taken over 14 CPU-months just for the MBFL357

experiments—not counting other FL techniques, nor the time for setup and dealing with unexpected failures.358

Running all the fault localization experiments for each of the remaining 313 = 340 − 27 bugs takes approxi-359

mately eleven CPU-hours, for a total of nearly five CPU-months. We selected 135 bugs out of the 313 using strat-360

ified random sampling with the four project categories as the “strata”, picking: 43 bugs in category CL, 30 bugs361

in category DEV, 42 bugs in category DS, and 20 bugs in category WEB. This gives us a still sizable, balanced, and362

representative11 sample of all bugs in BUGSINPY, which we could exhaustively analyze in around two CPU-months363

10Henceforth, we use the terms “bug” and “fault” as synonyms.
11For example, this sample size is sufficient to estimate a ratio with up to 5.5% error and 90% probability with the most conservative

(i.e., 50%) a priori assumption [9].

8

PROJECT KLOC |F| |M| BUGS SUBJECTS TESTS TEST KLOC CATEGORY DESCRIPTION

ansible 82.6 3 713 493 18 0 1 830 103.1 DEV IT automation platform
black 93.5 421 27 23 13 153 6.8 DEV Code formatter
cookiecutter 1.6 62 18 4 4 218 4.1 DEV Developer tool
fastapi 4.7 160 40 16 13 595 16.8 WEB Web framework for building APIs
httpie 3.5 197 34 5 4 217 2.4 CL Command-line HTTP client
keras 6.7 150 119 45 18 616 13.6 DS Deep learning API
luigi 22.0 2 004 120 33 13 1 508 21.2 DEV Pipelines of batch jobs management tool
matplotlib 99.6 5 526 147 30 0 2 484 34.9 DS Plotting library
pandas 128.0 5 466 234 169 18 12 226 200.9 DS Data analysis toolkit
PySnooper 0.7 60 7 3 0 49 3.9 DEV Debugging tool
sanic 7.3 462 61 5 3 466 8.3 WEB Web server and web framework
scrapy 15.7 1 509 179 40 0 1 572 24.5 WEB Web crawling and web scraping framework
spaCy 97.2 852 415 10 6 986 13.4 DS Natural language processing library
thefuck 4.7 604 203 32 16 614 7.3 CL Console command tool
tornado 17.9 1 124 35 16 4 926 13.1 WEB Web server
tqdm 3.3 200 28 9 7 120 2.7 CL Progress bar for Python and CLI
youtube-dl 125.0 3 078 818 43 16 237 5.1 CL Video downloader

total 714.0 25 588 2 978 501 135 24 817 482.1

Table 1: Overview of projects in BUGSINPY. For each PROJECT, the table reports the project’s overall size in KLOC
(thousands of non-empty non-comment lines of code, excluding tests), the number |F| of functions (excluding test
functions), the number |M| of modules (excluding test modules), the number of BUGS included in BUGSINPY, how
many we selected as SUBJECTS for our experiments, the corresponding number of TESTS (i.e., test functions), their
size in kLOC (TEST KLOC, thousands of non-empty non-comment lines of test code), the CATEGORY the project
belongs to (CL: command line; DEV: development tools; DS: data science; WEB: web tools), and a brief DESCRIPTION
of the project. Consistently with what done by the authors of BUGSINPY [67], the project statistics reported here
refer to the latest version of the projects on 2020-06-19.

worth of experiments. In all, we used this selection of 135 bugs as our empirical study’s subjects. Table 2 gives some364

details about the selected projects and their bugs.365

As a side comment, note that our experiments with BUGSINPY were generally more time consuming than Zou366

et al.’s experiments with Defects4J. For example, the average per-bug running time of MBFL in our experiments367

(15 774 seconds in Table 6) was 3.3 times larger than in Zou et al.’s (4800 seconds in [78, Table 9]). Even more368

strikingly, running all fault localization experiments on the 357 Defects4J bugs took less than one CPU-month;12 in369

contrast, running MBFL on just 27 “time consuming” bugs in BUGSINPY takes over 14 CPU-months. This difference370

may be partly due to the different characteristics of projects in Defects4J vs. BUGSINPY, and partly to the dynamic371

nature of Python (which is run by an interpreter).372

4.2 Faulty Locations: Ground Truth373

A fault localization technique’s effectiveness measures how accurately the technique’s list of suspicious entities374

matches the actual fault locations in a program—fault localization’s ground truth. It is customary to use programmer-375

written patches as ground truth [78, 49]: the program locations modified by the patches that fix a certain bug376

correspond to the bug’s actual fault locations.377

Concretely, here is how to determine the ground truth of a bug b = ⟨p−b , p+b , Fb, Pb⟩ in BUGSINPY. The programmer-378

written fix p+b consists of a series of edits to the faulty program p−b . Each edit can be of three kinds: i) add, which379

inserts into p+b a new program location; ii) remove, which deletes a program location in p−b ; iii) modify, which takes a380

program location in p−b and changes parts of it, without changing its location, in p+b . Take, for instance, the program381

in Figure 3b, which modifies the program in Figure 3a; the edited program includes two adds (lines 22, 31), one382

remove (line 35), and one modify (line 28).383

Bug b’s ground truth F (b) is a set of locations in p−b that are affected by the edits, determined as follows. First384

of all, ignore any blank or comment lines, since these do not affect a program’s behavior and hence cannot be385

responsible for a fault. Then, finding the ground truth locations corresponding to removes and modifies is straight-386

forward: a location ℓ that is removed or modified in p+b exists by definition also in p−b , and hence it is part of the387

ground truth. In Figure 3, line 10 is modified and line 17 is removed by the edit that transforms Figure 3a into388

Figure 3b; thus 10 and 17 are part of the example’s ground truth.389

12The sum of column AVERAGE in [78, Table 9] multiplied by 357 gives 2.04 million seconds or 0.79 months.

9

CATEGORY PROJECT BUGS (SUBJECTS) TESTS GROUND TRUTH

C P C P C P

CL

httpie

43

4

1188

217

139

12
thefuck 16 614 55
tqdm 7 120 22
youtube-dl 16 237 50

DEV
black

30
13

1879
153

300
208

cookiecutter 4 218 19
luigi 13 1508 73

DS
keras

42
18

13828
616

186
111

pandas 18 12226 64
spaCy 6 986 11

WEB
fastapi

20
13

1987
595

174
156

sanic 3 466 6
tornado 4 926 12

total 135 135 18882 18882 799 799

Table 2: Selected BUGSINPY bugs used in the paper’s experiments. The PROJECTs are grouped by CATEGORY; the
table reports—for each project individually (column P), as well as for all projects in the category (column C)—the
number of BUGS selected as SUBJECTS for our experiments, the corresponding number of TESTS (i.e., test functions),
and the total number of program locations that make up the GROUND TRUTH (described in Section 4.2).

Finding the ground truth locations corresponding to adds is more involved [57], because a location ℓ that is390

added to p+b does not exist in p−b : b is a fault of omission [49].13 A common solution [78, 49] is to take as ground391

truth the location in p−b that immediately follows ℓ. In Figure 3, line 6 corresponds to the first non-blank line that392

follows the assignment statement that is added at line 22 in Figure 3b; thus 6 is part of the example’s ground393

truth. However, an add at ℓ is actually a modification between two other locations; therefore, the location that394

immediately precedes ℓ should also be part of the ground truth, since it identifies the same insertion location. In395

Figure 3, line 1 precedes the assignment statement that is added at line 22 in Figure 3a; thus 1 is also part of the396

example’s ground truth.397

A location’s scope poses a final complication to determine the ground truth of adds. Consider line 31, added in398

Figure 3b at the very end of function foo’s body. The (non-blank, non-comment) location that follows it in Figure 3a399

is line 16; however, line 16 marks the beginning of another function bar’s definition. Function bar cannot be the400

location of a fault in foo, since the two functions are independent—in fact, the fact that bar’s declaration follows401

foo’s is immaterial. Therefore, we only include a location in the ground truth if it is within the same scope as402

the location ℓ that has been added. If ℓ is part of a function body (including methods), its scope is the function403

declaration; if ℓ is part of a class outside any function (e.g., an attribute), its scope is the class declaration; and404

otherwise ℓ’s scope is the module it belongs to. In Figure 3, both lines 1 and 6 are within the same module as the405

added statement at line 22 in Figure 3a. In contrast, line 16 is within a different scope than the added statement at406

line 31 in Figure 3a. Therefore, lines 1, 6, and 12 are part of the ground truth, but not line 16.407

Our definition of ground truth refines that used in related work [78, 49] by including the location that pre-408

cedes an add, and by considering only locations within scope. We found that this definition better captures the409

programmer’s intent and their corrective impact on a program’s behavior.410

How to best characterize bugs of omissions (fixed by an add) in fault localization remains an open issue [57].411

Pearson et al.’s study [49] proposed the first viable solution: including the location following an add. Zou et al. [78]412

followed the same approach, and hence we also include the location following an add in our ground truth com-413

putation. We also noticed that, by also including the location preceding an add, and by taking scope into account,414

our ground truth computation becomes more comprehensive; in particular, it also works for statements added at415

the very end of a file—a location that has no following lines. While our approach is usually more precise, it is not416

necessarily the preferable alternative in all cases. Consider again, for instance, the add at line 31 in Figure 3; if we417

ignored the scope (and the preceding statement), only line 16 would be included in its ground truth. If this fault418

localization information were consumed by a developer, it could still be useful and actionable even if it reports419

a line outside the scope of the actual add location: the developer would use the location as a starting point for420

their inspection of the nearby code; and they may prefer a smaller, if slightly imprecise, ground truth to a larger,421

redundant one. However, this paper’s focus is strictly evaluating the effectiveness of FL techniques as rigorously422

as possible—for which our stricter ground truth computation is more appropriate.423

13In BUGSINPY, 41% of all fixes include at least one add edit.

10

1 a = 3

2
3
4
5
6 c = 5

7
8 # Function foo

9 def foo(y):

10 if y > 3:

11 a = y

12 y = y * 2

13
14
15 # Function bar

16 def bar(z):

17 z = z + 2

18 return z

(a) Faulty program version. Lines with colored back-
ground are the ground truth locations. Extra blank
lines are added for readability.

19 a = 3

20
21 # Global variable b

22 b = None # add

23
24 c = 5

25
26 # Function foo

27 def foo(y):

28 if y >
:::
100: # modify

29 a = y

30 y = y * 2

31 a = y # add

32
33 # Function bar

34 def bar(z):

35 z = z + 2 # remove

36 return z

(b) Fixed program version, which edits Figure 3a’s pro-
gram with two adds, one

:::::
modify, and one remove.

Figure 3: An example of program edit, and the corresponding ground truth faulty locations.

PROGRAM ENTITY ℓ

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10

suspiciousness score s of ℓ 10 7 4 4 4 3 3 2 2 2
ℓ ∈ F (b)? é é é é

start(ℓ) 1 2 3 3 3 6 6 8 8 8
ties(ℓ) 1 1 3 3 3 2 2 3 3 3
faulty(ℓ) 0 1 1 1 1 0 0 2 2 2

Ib(ℓ, ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩) 1.0 2.0 4.0 4.0 4.0 6.0 6.0 8.3 8.3 8.3

Table 3: An example of calculating the Einspect metric Ib(ℓ, ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩) for a list of 10 suspicious locations
ℓ1, . . . , ℓ10 ordered by their decreasing suspiciousness scores s1, . . . , s10 . For each location ℓ, the table reports its
suspiciousness score s, and whether ℓ is a faulty location ℓ ∈ F (b); based on this ranking of locations, it also shows
the lowest rank start(ℓ) of the first location whose score is equal to ℓ’s, the number ties(ℓ) of locations whose score is
equal to ℓ’s, the number of faulty locations among these, and the corresponding Einspect value Ib(ℓ, L)—computed
according to (6).

predicate mutable

crashing

4 19

20

29

16
3 10

34
all bugs

Figure 4: Classification of the 135 BUGSINPY bugs used in our experiments into three categories.

11

4.3 Classification of Faults424

Bug kind. The information used by each fault localization technique naturally captures the behavior of different425

kinds of faults. Stack trace fault localization analyzes the call stack after a program terminates with a crash; predicate426

switching targets branching conditions as program entities to perform fault localization; and MBFL crucially relies427

on the analysis of mutants to track suspicious locations.428

Correspondingly, we classify a bug b = ⟨p−b , p+b , Fb, Pb⟩ as:429

Crashing bug if any failing test in Fb terminates abruptly with an unexpected uncaught exception.430

Predicate bug if any faulty entity in the ground truth F (b) includes a branching predicate (such as an if or while431

condition).432

Mutable bug if any of the mutants generated by MBFL’s mutation operators mutates any locations in the ground433

truth F (b). Precisely, a bug b’s mutability is the percentage of all mutants of p−b that mutate locations in F (b);434

and b is mutable if its mutability is greater than zero.435

The notion of crashing and predicate bugs is from Zou et al. [78].436

We introduced the notion of mutable bug to try to capture scenarios where MBFL techniques have a fighting437

chance to correctly localize bugs. Since MBFL uses mutant analysis for fault localization, its capabilities depend438

on the mutation operators that are used to generate the mutants. Therefore, the notion of mutable bugs is some-439

what dependent on the applied mutation operators.14 Our implementation of FAUXPY uses the standard operators440

offered by the popular Python mutation testing framework Cosmic Ray [8]. As we discussed in Section 3, Cosmic441

Ray features a set of mutation operators that are largely similar to several other general-purpose mutation testing442

frameworks—all based on Offut et al.’s well known work [44]. These strong similarities between the mutation op-443

erators offered by most widely used mutation testing frameworks suggest that our definition of “mutable bug” is444

not strongly dependent on the specific mutation testing framework that is used. Correspondingly, bugs that we445

classify as “mutable” are likely to remain amenable to localization with MBFL provided one uses (at least) this446

standard set of core mutation operators. Conversely, we expect that devising new, specialized mutation operators447

may extend the number of bugs that we can classify as “mutable”, and hence that are more likely to be amenable448

to localization with MBFL techniques.449

Figure 4 shows the kind of the 135 BUGSINPY bugs we used in the experiments, consisting of 49 crashing bugs,450

52 predicate bugs, 74 mutable bugs, and 34 bugs that do not belong to any of these categories.451

Project category. Another, orthogonal classification of bugs is according to the project category they belong to. We452

classify a bug b as a CL, DEV, DS, or WEB bug according to the category of project (Table 2) b belongs to.453

4.4 Ranking Program Entities454

Running a fault localization technique L on a bug b returns a list of program entities ℓ1, ℓ2, . . ., sorted by their455

decreasing suspiciousness scores s1 ≥ s2 ≥ The programmer (or, more realistically, a tool [48, 16]) will go456

through the entities in this order until a faulty entity (that is an ℓ ∈ F (b) that matches b’s ground truth) is found. In457

this idealized process, the earlier a faulty entity appears in the list, the less time the programmer will spend going458

through the list, the more effective fault localization technique L is on bug b. Thus, a program entity’s rank in the459

sorted list of suspicious entities is a key measure of fault localization effectiveness.460

Computing a program entity ℓ’s rank is trivial if there are no ties between scores. For example, consider Table 3’s461

first two program entities ℓ1 and ℓ2, with suspiciousness scores s1 = 10 and s2 = 7. Obviously, ℓ1’s rank is 1 and462

ℓ2’s is 2; since ℓ2 is faulty (ℓ2 ∈ F (b)), its rank is also a measure of how many entities will need to be inspected in463

the aforementioned debugging process.464

When several program entities tie the same suspiciousness score, their relative order in a ranking is immate-465

rial [10]. Thus, it is a common practice to give all of them the same average rank [57, 62], capturing an average-case466

number of program entities inspected while going through the fault localization output list. For example, consider467

Table 3’s first five program entities ℓ1, . . . , ℓ5; ℓ3, ℓ4, and ℓ5 all have the same suspiciousness score s = 4. Thus, they468

all have the same average rank 4 = (3 + 4 + 5)/3, which is a proxy of how many entities will need to be inspected469

if ℓ4 were faulty but ℓ2 were not.470

Capturing the “average number of inspected entities” is trickier still if more than one entity is faulty among a471

bunch of tied entities. Consider now all of Table 3’s ten program entities; entities ℓ8, ℓ9, and ℓ10 all have the suspi-472

ciousness score s = 2; ℓ8 and ℓ9 are faulty, whereas ℓ10 is not. Their average rank 9 = (8 + 9 + 10)/3 overestimates473

14In this sense, “mutable” is a qualitatively different attribute than “crashing” and “predicate”. Whether a bug b is “crashing” exclu-
sively depends on the failing tests that trigger the bug; whether b is a “predicate” bug depends on the branching syntactic structure of
b’s program and how it relates to b. In contrast, whether b is a “mutable” bug depends on the mutation operators used to analyze b, and
on whether they can change the program so as to effectively affect b’s buggy behavior.

12

Ib(L) = min
ℓ∈L(b)∩F (b)

Ib(ℓ, L(b)) Ĩb(L) = min
ℓ∈L∞(b)∩F (b)

Ib(ℓ, L∞(b)) Eb(L) =
Ib(L)
|p−b |

(7)

L@Bn =
∣∣{b ∈ B | Ib(L) ≤ n

}∣∣ ĨB(L) =
1
|B| ∑

b∈B
Ĩb(L) EB(L) =

1
|B| ∑

b∈B
Eb(L) (8)

Figure 5: Definitions of common FL effectiveness metrics. The top row shows two variants I , Ĩ of the Einspect metric,
and the exam score E , for a generic bug b and fault localization technique L. The bottom row shows cumulative
metrics for a set B of bugs: the “at n” metric L@Bn, and the average Ĩ and E metrics.

the number of entities to be inspected (assuming now that these are the only faulty entities in the output), since474

two entities out of three are faulty, and hence it is more likely that the faulty entity will appear before rank 9.475

To properly account for such scenarios, Zou et al. [78] introduced the Einspect metric, which ranks a program476

entity ℓ within a list ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩ of program entities ℓ1, . . . , ℓn with suspiciousness scores s1 ≥ . . . ≥ sn as:477

Ib(ℓ, ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩) = start(ℓ) +
ties(ℓ)−faulty(ℓ)

∑
k=1

k
(ties(ℓ)−k−1
faulty(ℓ)−1)

(ties(ℓ)
faulty(ℓ)

)
(6)

In (6), start(ℓ) is the position k of the first entity among those with the same score as ℓ’s; ties(ℓ) is the number of478

entities (including ℓ itself) whose score is the same as ℓ’s; and faulty(ℓ) is the number of entities (including ℓ itself)479

that tie ℓ’s score and are faulty (that is ℓ ∈ F (b)). Intuitively, the Einspect rank Ib(ℓ, ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩) is thus an480

average of all possible ranks where tied and faulty entities are shuffled randomly. When there are no ties, or only481

one entity among a group of ties is faulty, (6) coincides with the average rank.482

Henceforth, we refer to a location’s Einspect rank Ib(ℓ, ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩) as simply its rank.483

Better vs. worse ranks. A clarification about terminology: a high rank is a rank that is close to the top-1 rank (the484

first rank), whereas a low rank is a rank that is further away from the top-1 rank. Correspondingly, a high rank485

corresponds to a small numerical ordinal value; and a low rank corresponds to a large numerical ordinal value.486

Consistently with this standard usage, the rest of the paper refers to “better” ranks to mean “higher” ranks (corre-487

sponding to smaller ordinals); and “worse” ranks to mean “lower” ranks (corresponding to larger ordinals).488

4.5 Fault Localization Effectiveness Metrics489

Einspect effectiveness. Building on the notion of rank—defined in Section 4.4—we measure the effectiveness of a fault490

localization technique L on a bug b as the rank of the first faulty program entity in the list L(b) = ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩491

of entities and suspiciousness scores returned by L running on b—defined as Ib(L) in (7). Ib(L) is L’s Einspect rank492

on bug b, which estimates the number of entities in L’s one has to inspect to correctly localize b.493

Generalized Einspect effectiveness. What happens if a FL technique L cannot localize a bug b—that is, b’s faulty entities494

F (b) do not appear at all in L’s output? According to (6) and (7), Ib(L) is undefined in these cases. This is not ideal,495

as it fails to measure the effort wasted going through the location list when using L to localize b—the original496

intuition behind all rank metrics. Thus, we introduce a generalization L’s Einspect rank on bug b as follows. Given497

the list L(b) = ⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩ of entities and suspiciousness scores returned by L running on b, let L∞(b) =498

⟨ℓ1, s1⟩ . . . ⟨ℓn, sn⟩ ⟨ℓn+1, s0⟩⟨ℓn+2, s0⟩ . . . be L(b) followed by all other entities ℓn+1, ℓn+1, . . . in program p−b that are499

not returned by L, each given a suspiciousness s0 < sn lower than any suspiciousness scores assigned by L.500

With this definition, Ib(L) = Ĩb(L) whenever L can localize b—that is some entity from F (b) appears in501

L’s output list. If some technique L1 can localize b whereas another technique L2 cannot, Ĩb(L2) > Ĩb(L1), thus502

reflecting that L2 is worse than L1 on b. Finally, if neither L1 nor L2 can localize b, Ĩb(L2) > Ĩb(L1) if L2 returns503

a longer list than L1: all else being equal, a technique that returns a shorter list is “better” than one that returns a504

longer list since it requires less of the user’s time to inspect the output list. Accordingly, Ĩb(L) denotes L’s generalized505

Einspect rank on bug b—defined as in (7).506

Exam score effectiveness. Another commonly used effectiveness metric is the exam score Eb(L) [69], which is just a507

FL technique L’s Einspect rank on bug b over the number of program entities |p−b | of the analyzed buggy program508

p−b —as in (7). Just like Ib(L), Eb(L) is undefined if L cannot localize b.509

13

Effectiveness of a technique. To assess the overall effectiveness of a FL technique over a set B of bugs, we aggregate510

the previously introduced metrics in different ways—as in (8). The L@Bn metric counts the number of bugs in B511

that L could localize within the top-n positions (according to their Einspect rank); n = 1, 3, 5, 10 are common choices512

for n, reflecting a “feasible” number of entities to inspect. Then, the L@Bn% = 100 · L@Bn/|B| metric is simply513

L@Bn expressed as a percentage of the number |B| of bugs in B. ĨB(L) is L’s average generalized Einspect rank of514

bugs in B. And EB(L) is L’s average exam score of bugs in B (thus ignoring bugs that L cannot localize).515

Location list length. The |Lb| metric is simply the number of suspicious locations output by FL technique L when516

run on bug b; and |LB| is the average of |Lb| for all bugs in B. The location list length metric is not, strictly speaking,517

a measure of effectiveness; rather, it complements the information provided by other measures of effectiveness, as518

it gives an idea of how much output a technique produces to the user. All else being equal, a shorter location list519

length is preferable—provided it is not empty. In practice, we’ll compare the location list length to other metrics of520

effectiveness, in order to better understand the trade-offs offered by each FL technique.521

Different FL families use different kinds of information to compute suspiciousness scores; this is also reflected522

by the entities that may appear in their output location list. SBFL techniques include all locations executed by523

any tests Tb (passing or failing) even if their suspiciousness is zero; conversely, they omit all locations that are not524

executed by the tests. MBFL techniques include all locations executed by any failing tests Fb, since these locations are525

the targets of the mutation operators. PS includes all locations of predicates (branching conditions) that are executed526

by any failing tests Fb and that are critical (as defined in Section 2.3). ST includes all locations of all functions that527

appear in the stack trace of any crashing test in Fb.528

Effectiveness metrics: limitations. Despite being commonly used in fault localization research, the effectiveness met-529

rics presented in this section rely on assumptions that may not realistically capture the debugging work of devel-530

opers. First, they assume that a developer can understand the characteristics of a bug and devise a suitable fix by531

examining just one buggy entity; in contrast, debugging often involves disparate activities, such as analyzing con-532

trol and data dependencies and inspecting program states with different inputs [47]. Second, debugging is often533

not a linear sequence of activities [31] as simple as going through the ranked list of entities produced by fault local-534

ization techniques. Despite these limitations, we still rely on this section’s effectiveness metrics: on the one hand,535

they are used in practically all related work on fault localization (in particular, Zou et al. [77]); thus, they make our536

results comparable to others. On the other hand, there are no viable, easy-to-measure alternative metrics that are537

also fully realistic; devising such metrics is outside this paper’s scope and belongs to future work.538

4.6 Comparison: Statistical Models539

To quantitatively compare the capabilities of different fault localization techniques, we consider several standard540

statistics.541

Pairwise comparisons. Let Mb(L) be any metric M measuring the capabilities of fault-localization technique L on542

bug b; M can be any of Section 4.5’s effectiveness metrics, or L’s wall-clock running time Tb(L) on bug b as per-543

formance metric. Similarly, for a fault-localization family F, Mb(F) denotes the average value ∑k∈F Mb(k)/|F| of544

Mb for all techniques in family F. Given a set B = {b1, . . . , bn} of bugs, we compare the two vectors MB(F1) =545

⟨Mb1(F1) . . . Mbn (F1)⟩ and MB(F2) = ⟨Mb1(F2) . . . Mbn (F2)⟩ using three statistics:546

Correlation τ between MB(F1) and MB(F2) computed using Kendall’s τ statistics. The absolute value |τ| of the547

correlation τ measures how closely changes in the value of metric M for F1 over different bugs are associated to548

changes for F2 over the same bugs: if 0 ≤ |τ| ≤ 0.3 the correlation is negligible; if 0.3 < |τ| ≤ 0.5 the correlation549

is weak; if 0.5 < |τ| ≤ 0.7 the correlation is medium; and if 0.7 < |τ| ≤ 1 the correlation is strong.550

P-value p of a paired Wilcoxon signed-rank test—a nonparametric statistical test comparing MB(F1) and MB(F2).551

A small value of p is commonly taken as evidence against the “null-hypothesis” that the distributions under-552

lying MB(F1) and MB(F2) have different medians:15 usually, p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 are three553

conventional thresholds of increasing strength.554

Cliff’s δ effect size—a nonparametric measure of how often the values in MB(F1) are larger than those in MB(F2).555

The absolute value |δ| of the effect size δ measures how much the values of metric M differ, on the same bugs,556

between F1 and F2 [54]: if 0 ≤ |δ| < 0.147 the differences are negligible; if 0.145 ≤ |δ| < 0.33 the differences are557

small; if 0.33 ≤ |δ| < 0.474 the differences are medium; and if 0.474 ≤ |δ| ≤ 1 the differences are large.558

15The practical usefulness of statistical hypothesis tests has been seriously questioned in recent years [66, 2, 14]; therefore, we mainly
report this statistics for conformance with standard practices, but we refrain from giving it any serious weight as empirical evidence.

14

Regression models. To ferret out the individual impact of several different factors (fault localization family, project559

category, and bug kind) on the capabilities of fault localization, we introduce two varying effects regression models560

with normal likelihood and logarithmic link function.561 [
E b
T b

]
∼ MVNormal

([
eb
t b

]
, S
)

log(eb) = α + αfamily [b] + αcategory [b] log(t b) = β + βfamily [b] + βcategory [b] (9)

E b ∼ Normal (eb, σ) log(eb) =


α + αfamily [b] + αcategory [b]
+ cfamily [b] crashingb
+ pfamily [b] predicateb
+ mfamily [b] log(1 + mutabilityb)

 (10)

Model (9) is multivariate, as it simultaneously captures effectiveness and runtime cost of fault localization.562

For each fault localization experiment on a bug b, (9) expresses the vector [Eb, Tb] of standardized16 Einspect metric563

Eb and running time Tb as drawn from a multivariate normal distribution whose means eb and tb are log-linear564

functions of various predictors. Namely, log(eb) is the sum of a base intercept α; a family-specific intercept αfamily [b],565

for each fault-localization family SBFL, MBFL, PS, and ST; and a category-specific intercept αcategory [b], for each566

project category CL, DEV, DS, and WEB. The other model component log(tb) follows the same log-linear relation.567

Model (10) is univariate, since it only captures the relation between bug kinds and effectiveness. For each fault568

localization experiment on a bug b, (10) expresses the standardized Einspect metric Eb as drawn from a normal569

distribution whose mean eb is a log-linear function of a base intercept α; a family-specific intercept αfamily [b]; and570

a category-specific intercept αcategory [b]; a varying intercept cfamily [b]crashingb, for the interactions between each571

family and crashing bugs; a varying intercept pfamily [b]predicateb, for the interactions between each family and572

predicate bugs; and a varying slope mfamily [b] log(1 + mutabilityb), for the interactions between each family and573

bugs with different mutability.17 Variables crashing and predicate are indicator variables, which are equal to 1574

respectively for crashing or predicate-related bugs, and 0 otherwise; variable mutability is instead the mutability575

percentage defined in Section 4.3.576

After completing regression models (9) and (10) with suitable priors and fitting them on our experimental577

data18 gives a (sampled) distribution of values for the coefficients α’s, c, p, m, and β’s, which we can analyze to infer578

the effects of the various predictors on the outcome. For example, if the 95% probability interval of αF’s distribution579

lies entirely below zero, it suggests that FL family F is consistently associated with below-average values of Einspect580

metric I ; in other words, F tends to be more effective than techniques in other families. As another example, if the581

95% probability interval of βC’s distribution includes zero, it suggests that bugs in projects of category C are not582

consistently associated with different-than-average running times; in other words, bugs in these projects do not583

seem either faster or slower to analyze than those in other projects.584

4.7 Experimental Methodology585

To answer Section 4’s research questions, we ran FAUXPY using each of the 7 fault localization techniques described586

in Section 2 on all 135 selected bugs (described in Section 4.1) from BUGSINPY v. b4bfe91, for a total of 945 = 7× 135587

FL experiments. Henceforth, the term “standalone techniques” refers to the 7 classic FL techniques described in588

Section 2; whereas “combined techniques” refers to the four techniques introduced for RQ4.589

Test selection. The test suites of projects such as keras (included in BUGSINPY) are very large and can take more590

than 24 hours to run even once. Without a suitable test selection strategy, large-scale FL experiments would be591

prohibitively time consuming (especially for MBFL techniques, which rerun the same test suite hundreds of times).592

Therefore, we applied a simple test selection strategy to only include tests that directly target the parts of a program593

that contribute to the failures.19
594

As we mentioned in Section 4.1, each bug b in BUGSINPY comes with a selection of failing tests Fb and passing595

tests Pb. The failing tests are usually just a few, and specifically trigger bug b. The passing tests, in contrast, are much596

more numerous, as they usually include all non-failing tests available in the project. In order to cull the number of597

passing tests to only include those that expressly target the failing code, we applied a simple dependency analysis:598

for each BUGSINPY bug b used in our experiments, we built the module-level call graph G(b) for the whole of b’s599

16We standardize the data since this simplifies fitting the model; for the same reason, we also log-transform the running time in
seconds.

17We log-transform mutability in this term, since this smooths out the big differences between mutability scores in different experi-
ments (in particular, between zero and non-zero), which simplifies modeling the relation statistically. We add one to mutability before
log-transforming it, so that the logarithm is always defined.

18The replication package includes all details about the regression models, as well as their validation [15].
19The Defects4J curated collection also includes a selection of so-called relevant tests [29].

15

project;20 each node in G(b) is a module of the project (including its tests), and each edge xm → ym means that600

module xm directly uses some entities defined in module ym. Consider any of b’s project test module tm; we run the601

tests in tm in our experiments if and only if: i) tm includes at least one of the failing tests in Fb; ii) or, G(b) includes602

an edge tm → fm, where fm is a module that includes at least one of b’s faulty locations F (b) (see Section 4.2).603

In other words: we include all failing tests for b, as well as the passing tests that directly exercise the parts of the604

project that are faulty. This simple heuristics substantially reduced the number of tests that we had to run for the605

largest projects, without meaningfully affecting the fault localization’s scope.606

Our test selection strategy does not include test modules that indirectly involve failing locations (unless they607

include any failing tests): if the tests in a module tm only call directly an application module xm, and then some608

parts of module xm call another application module ym (i.e., tm → xm → ym in the module-level call graph), xm609

does not include any faulty locations, and ym does include some faulty locations, then we do not include the tests610

in tm in our test suite; instead, we will include other test modules um that directly call ym (i.e., um → ym).611

To demonstrate that our more aggressive test selection strategy does not exclude any relevant tests, and is un-612

likely to affect the quantitative fault localization results, we first computed, for each bug b used in our experiments:613

i) the set S0
b of tests selected using the strategy described above; and ii) the set S+

b ⊇ S0
b of tests selected by including614

also indirect dependencies (i.e., by taking the transitive closure of the module-level use relation). For 48% of the 135615

bugs used in our experiments, S+
b = S0

b , that is both test selection strategies select the same tests. However, there616

remain a long tail of bugs for which including indirect dependencies leads to many more tests being selected; for617

example, for 40 bugs in 7 projects, considering indirect dependencies leads to selecting more than 50 additional618

tests—which would significantly increase the experiments’ running time. Thus, we randomly selected one bug for619

each project among those 40 bugs for which indirect dependencies would lead to including more than 50 additional620

tests. For each bug b in this sample, we performed an additional run of our fault localization experiments with SBFL621

and MBFL techniques21 using all tests in S+
b , for a total of 35 new experiments. We found that none of the key fault622

localization effectiveness metrics significantly changed compared to the same experiments using only tests in S0
b .22

623

This confirms that our test selection strategy does not alter the general effectiveness of fault localization, and hence624

we adopted it for the rest of the paper’s experiments.625

Table 4 shows statistics about the fraction of tests that we selected for our experiments according to the test626

selection strategy. Those data indicate that test selection has a disproportionate impact on projects that have very627

large test suites, such as those in the DS category. In these projects, it happens often that the vast majority of628

tests are irrelevant for the portion of the project where a failure occurred; therefore, excluding these tests from629

our experiments is instrumental in drastically bringing down execution times without sacrificing experimental630

accuracy.631

Experimental setup. Each experiment ran on a node of USI’s HPC cluster,23 each equipped with 20-core Intel Xeon632

E5-2650 processor and 64 GB of DDR4 RAM, accessing a shared 15 TB RAID 10 SAS3 drive, and running CentOS633

8.2.2004.x86_64. We provisioned three CPython Virtualenvs with Python v. 3.6, 3.7, and 3.8; our scripts chose a634

version according to the requirements of each BUGSINPY subject. The experiments took more than two CPU-months635

to complete—not counting the additional time to setup the infrastructure, fix the execution scripts, and repeat any636

experiments that failed due to incorrect configuration.637

This paper’s detailed replication package includes all scripts used to ran these experiments, as well as all raw638

data that we collected by running them. The rest of this section details how we analyzed and summarized the data639

to answer the various research questions.24
640

4.7.1 RQ1. Effectiveness641

To answer RQ1 (fault localization effectiveness), we report the L@B1%, L@B3%, L@B5%, and L@B10% counts, the642

average generalized Einspect rank ĨB(L), the average exam score EB(L), and the average location list length |LB| for643

each technique L among Section 2’s seven standalone fault localization techniques; as well as the same metrics av-644

eraged over each of the four fault localization families. These metrics measure the effectiveness of fault localization645

from different angles. We report these measures for all 135 BUGSINPY bugs B selected for our experiments.646

20To build the call graph we used Python static analysis framework Scalpel [34], which in turn relies on PyCG [56] for this task.
21Since PS and ST only use failing tests, their behavior does not change as S0

b always includes the same failing tests as S+
b .

22Precisely, in 20 of these 35 experiments the Einspect score did not change at all. As for the remaining experiments, the Einspect score
changed but only for bugs that were not effectively localized: the bugs localized in the top-1, top-3, top-5, and top-10 positions did not
change, except for a single bug whose Ib(Metallaxis) went from 13 to 9 when we added the extra tests.

23Managed by USI’s Institute of Computational Science (https://intranet.ics.usi.ch/HPC).
24Research questions RQ1, RQ2, RQ3, RQ4, and RQ6 only consider statement-level granularity; in contrast, RQ5 considers all granu-

larities (see Section 2.5).

16

https://intranet.ics.usi.ch/HPC

CATEGORY PROJECT MIN MEDIAN MEAN MAX

C P C P C P C P

% # % # % # % # % # % # % # %

CL

httpie

1 0.6

1 0.8

17.0 15.2

7.0 4.7

40.6 17.9

8.0 7.2

126 100.0

17 100.0
thefuck 3 0.6 5.0 1.7 7.4 2.0 18 5.4
tqdm 1 1.7 63.0 95.2 47.9 82.1 77 100.0
youtube-dl 15 14.3 89.5 51.0 78.7 43.8 126 55.8

DEV
black

2 0.2
16 88.5

80.0 27.6
91.0 91.0

80.8 19.9
83.3 91.2

198 93.5
129 93.5

cookiecutter 11 5.2 44.0 26.3 39.8 20.9 60 28.0
luigi 2 0.2 91.0 11.3 90.8 11.6 198 33.2

DS
keras

1 0.0
18 3.0

67.5 3.2
58.0 10.5

112.8 2.1
76.6 13.9

1 036 51.6
288 51.6

pandas 1 0.0 91.5 0.8 159.8 1.4 1 036 8.9
spaCy 13 1.4 75.0 7.8 80.5 8.6 152 16.9

WEB
fastapi

1 0.3
1 0.3

32.0 4.5
5.0 1.5

139.6 25.7
37.6 8.8

787 76.7
282 49.9

sanic 98 21.2 265.0 56.5 220.3 47.3 298 64.2
tornado 32 3.4 411.5 40.5 410.5 41.9 787 76.7

overall 1 0.0 1 0.0 53.0 8.9 53.0 8.9 86.6 4.6 86.6 4.6 1 036 100.0 1 036 100.0

Table 4: Tests used in the fault localization experiments with the bugs of Table 2. Following the procedure described
in Section 4.7, we selected sb tests out of the tb BUGSINPY tests for each bug b among the 135 bugs used in our
experiments. For each PROJECT, the table reports the MINimum, MEDIAN, MEAN, and MAXimum percentage 100 ·
sb/tb % of selected tests among bugs b in the project (columns P); similarly, columns # report the same statistics
the MINimum, MEDIAN, MEAN, and MAXimum number of selected tests sb among all bug b in the project. Finally,
columns C report the same statistics among all bugs in projects of the same CATEGORY; and the bottom row reports
the overall statistics among all 135 bugs.

To qualitatively summarize the effectiveness comparison between two FL techniques A and B, we consider647

their counts A@1% ≤ A@3% ≤ A@5% ≤ A@10% and B@1% ≤ B@3% ≤ B@5% ≤ B@10% and compare them648

pairwise: A@k% vs. B@k%, for the each k among 1, 3, 5, 10. We say that:649

A ≫ B: “A is much more effective than B”, if A@k% > B@k% for all ks, and A@k% − B@k% ≥ 10 for at least three ks650

out of four;651

A > B: “A is more effective than B”, if A@k% > B@k% for all ks, and A@k% − B@k% ≥ 5 for at least one k out of652

four;653

A ≥ B: “A tends to be more effective than B”, if A@k% ≥ B@k% for all ks, and A@k% > B@k% for at least three ks654

out of four;655

A ≃ B: “A is about as effective as B”, if none of A ≫ B, A > B, A ≥ B, B ≫ A, B > A, and B ≥ A holds.656

To visually compare the effectiveness of different FL families, we use scatterplots—one for each pair F1, F2 of657

families. The scatterplot comparing F1 to F2 displays one point at coordinates (x, y) for each bug b analyzed in658

our experiments. Coordinate x = Ĩb(F1), that is the average generalized Einspect rank that techniques in family659

F1 achieved on b; similarly, y = Ĩb(F2), that is the average generalized Einspect rank that techniques in family F2660

achieved on b. Thus, points lying below the diagonal line x = y (such that x > y) correspond to bugs for which661

family F2 performed better (remember that a lower Einspect score means more effective fault localization) than family662

F1; the opposite holds for points lying above the diagonal line. The location of points in the scatterplot relative to663

the diagonal gives a clear idea of which family performed better in most cases.664

To analytically compare the effectiveness of different FL families, we report the estimates and the 95% probability665

intervals of the coefficients αF in the fitted regression model (9), for each FL family F. If the interval of values lies666

entirely below zero, it means that family F’s effectiveness tends to be better than the other families on average; if667

it lies entirely above zero, it means that family F’s effectiveness tends to be worse than the other families; and if it668

includes zero, it means that there is no consistent association (with above- or below-average effectiveness).669

4.7.2 RQ2. Efficiency670

To answer RQ2 (fault localization efficiency), we report the average wall-clock running time TB(L), for each tech-671

nique L among Section 2’s seven standalone fault localization techniques, on bugs in B; as well as the same metric672

averaged over each of the four fault localization families. This basic metric measures how long the various FL673

techniques take to perform their analysis. We report these measures for all 135 BUGSINPY bugs B selected for our674

experiments.675

17

To qualitatively summarize the efficiency comparison between two FL techniques A and B, we compare pair-676

wise their average running times T(A) and T(B), and say that:677

A ≫ B: “A is much more efficient than B”, if T(A) > 10 · T(B);678

A > B: “A is more efficient than B”, if T(A) > 1.1 · T(B);679

A ≃ B: “A is about as efficient as B”, if none of A ≫ B, A > B, B ≫ A, and B > A holds.680

To visually compare the efficiency of different FL families, we use scatterplots—one for each pair F1, F2 of fam-681

ilies. The scatterplot comparing F1 to F2 displays one point at coordinates (x, y) for each bug b analyzed in our682

experiments. Coordinate x = Tb(F1), that is the average running time of techniques in family F1 on b; similarly,683

y = Tb(F2), that is the average running time of techniques in family F2 on b. The interpretation of these scatterplots684

is as those considered for RQ1.685

To analytically compare the efficiency of different FL families, we report the estimates and the 95% probability686

intervals of the coefficients βF in the fitted regression model (9), for each FL family F. The interpretation of the687

regression coefficients’ intervals is similar to those considered for RQ1: βF’s lies entirely above zero when F tends688

to be slower (less efficient) than other families; it lies entirely below zero when F tends to be faster; and it includes689

zero when there is no consistent association with above- or below-average efficiency.690

4.7.3 RQ3. Kinds of Faults and Projects691

To answer RQ3 (fault localization behavior for different kinds of faults and projects), we report the same effectiveness692

metrics considered in RQ1 (F@X1%, F@X3%, F@X5%, and F@X10% percentages, average generalized Einspect ranks693

ĨX(F), average exam scores EX(F), and average location list length |FX |), as well as the same efficiency metrics694

considered in RQ2 (average wall-clock running time TX(F)) for each standalone fault localization family F and695

separately for i) bugs X of different kinds: crashing bugs, predicate bugs, and mutable bugs (see Figure 4); ii) bugs696

X from projects of different category: CL, DEV, DS, and WEB (see Section 4.3).697

To visually compare the effectiveness and efficiency of fault localization families on bugs from projects of different698

category, we color the points in the scatterplots used to answer RQ1 and RQ2 according to the bug’s project category.699

To analytically compare the effectiveness of different FL families on bugs of different kinds, we report the estimates700

and the 95% probability intervals of the coefficients cF, pF, and mF in the fitted regression model (10), for each FL701

family F. The interpretation of the regression coefficients’ intervals is similar to those considered for RQ1 and RQ2:702

cF, pF, and mF characterize the effectiveness of family F respectively on crashing, predicate, and mutable bugs,703

relative to the average effectiveness of the same family F on other kinds of bugs.704

Finally, to understand whether bugs from projects of certain categories are intrinsically harder or easier to local-705

ize, we report the estimates and the 95% probability intervals of the coefficients αC and βC in the fitted regression706

model (9), for each project category C. The interpretation of these regression coefficients’ intervals is like those707

considered for RQ1 and RQ2; for example if αC’s interval is entirely below zero, it means that bugs of projects in708

category C are easier to localize (higher effectiveness) than the average of bugs in any project. This sets a baseline709

useful to interpret the other data that answer RQ3.710

4.7.4 RQ4. Combining Techniques711

To answer RQ4 (the effectiveness of combining FL techniques), we consider two additional fault localization tech-712

niques: CombineFL and AvgFL—both combining the information collected by some of Section 2’s standalone tech-713

niques from different families.714

CombineFL was introduced by Zou et al. [78]; it uses a learning-to-rank model to learn how to combine lists715

of ranked locations given by different FL techniques. After fitting the model on labeled training data,25 one can716

use it like any other fault localization technique as follows: i) Run any combination of techniques L1, . . . , Ln on a717

bug b; ii) Feed the ranked location lists output by each technique into the fitted learning-to-rank model; iii) The718

model’s output is a list ℓ1, ℓ2, . . . of locations, which is taken as the FL output of technique CombineFL. We used Zou719

et al. [78]’s replication package to run CombineFL on the Python bugs that we analyzed using FAUXPY.720

To see whether a simpler combination algorithm can still be effective, we introduced the combined FL tech-721

nique AvgFL, which works as follows: i) Each basic technique Lk returns a list ⟨ℓk
1, sk

1⟩ . . . ⟨ℓk
nk

, sk
nk
⟩ of locations with722

normalized26 suspiciousness scores 0 ≤ sk
j ≤ 1; ii) AvgFL assigns to location ℓx the weighted average ∑k wksk

x, where723

k ranges over all of FL techniques supported by FAUXPY but Tarantula, and wk is an integer weight that depends on724

the FL family of k: 3 for SBFL, 2 for MBFL, and 1 for PS and ST;27 iii) The list of locations ranked by their weighted725

average suspiciousness is taken as the FL output of technique AvgFL.726

25Since the training time is negligible, we ignore it in all measures of running time—consistently with Zou et al. [78].
26We used min-max normalization, also known as feature scaling [24].
27These weights roughly reflect the relative effectiveness and applicability of FL techniques suggested by our experimental results.

18

Finally, we answer RQ4 by reporting the same effectiveness metrics considered in RQ1 (the L@B1%, L@B3%,727

L@B5%, and L@B10% counts, the average generalized Einspect rank ĨB(L), the average exam score EB(L), and the728

average location list length |LB|) for techniques CombineFL and AvgFL. Precisely, we consider two variants A and729

S of CombineFL and of AvgFL, giving a total of four combined fault localization techniques: variants A (CombineFLA730

and AvgFLA) use the output of all FL techniques supported by FAUXPY but Tarantula—which was not considered731

in [78]; variants S (CombineFLS and AvgFLS) only use the Ochiai, DStar, and ST FL techniques (excluding the more732

time-consuming MBFL and PS families).733

4.7.5 RQ5. Granularity734

To answer RQ5 (how fault localization effectiveness changes with granularity), we report the same effectiveness735

metrics considered in RQ1 (the L@B1, L@B3, L@B5, and L@B10 counts, the average generalized Einspect rank ĨB(L),736

the average exam score EB(L), and the average location list length |LB|) for all seven standalone techniques, and for737

all four combined techniques, but targeting functions and modules as suspicious entities. Similar to Zou et al. [78],738

for function-level and module-level granularities, we define the suspiciousness score of an entity as the maximum739

suspiciousness score computed for the statements in them.740

4.7.6 RQ6. Comparison to Java741

To answer RQ6 (comparison between Python and Java), we quantitatively and qualitatively compare the main find-742

ings of Zou et al. [78]—whose empirical study of fault localization in Java was the basis for our Python replication—743

against our findings for Python.744

For the quantitative comparison of effectiveness, we consider the metrics that are available in both studies: the745

percentage of all bugs each technique localized within the top-1, top-3, top-5, and top-10 positions of its output746

(L@1%, L@3%, L@5%, and L@10%); and the average exam score. For Python, we consider all 135 BUGSINPY bugs747

we selected for our experiments; the data for Java is about Zou et al.’s experiments on 357 bugs in Defects4J [28].748

We consider all standalone techniques that feature in both studies: Ochiai and DStar (SBFL), Metallaxis and Muse749

(MBFL), predicate switching (PS), and stack-trace fault localization (ST).750

We also consider the combined techniques CombineFLA and CombineFLS. The original idea of the CombineFL751

technique was introduced by Zou et al.; however, the variants used in their experiments combine all eleven FL752

techniques they consider, some of which we did not include in our replication (see Section 3 for details). There-753

fore, we modified [78]’s replication package to extract from their Java experimental data the rankings obtained by754

CombineFLA and CombineFLS combining the same techniques as in Python (see Section 4.7.4). This way, the quanti-755

tative comparison between Python and Java involves exactly the same techniques and combinations thereof.756

Since we did not re-run Zou et al.’s experiments on the same machines used for our experiments, we cannot757

compare efficiency quantitatively. Anyway, a comparison of this kind between Java and Python would be outside758

the scope of our studies, since any difference would likely merely reflect the different performance of Java and759

Python—largely independent of fault localization efficiency.760

For the qualitative comparison between Java and Python, we consider the union of all findings presented in this761

paper or in Zou et al. [78]; we discard all findings from one paper that are outside the scope of the other paper (for762

example, Java findings about history-based fault localization, a standalone technique that we did not implement763

for Python; or Python findings about AvgFL, a combined technique that Zou et al. did not implement for Java); for764

each within-scope finding, we determine whether it is confirmed Ë (there is evidence corroborating it) or refuted é765

(there is evidence against it) for Python and for Java.766

5 Experimental Results767

This section summarizes the experimental results that answer the research questions detailed in Section 4.7. All re-768

sults except for Section 5.5’s refer to experiments with statement-level granularity; results in Sections Section 5.1–5.3769

only consider standalone techniques. To keep the discussion focused, we mostly comment on the @n% metrics of770

effectiveness, whereas we only touch upon the exam score, Einspect, and location list length when they complement771

other results.772

5.1 RQ1. Effectiveness773

Family effectiveness. Among standalone techniques, the SBFL fault localization family achieves the best effective-774

ness according to several metrics. Table 5 shows that all SBFL techniques have better average Einspect rank Ĩ ; and775

19

FAMILY TECHNIQUE L ĨB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|
F T F T F T F T F T F T F T

MBFL Metallaxis 6 710 6 706 8 10 22 25 27 30 34 37 0.0029 0.0035 113.9 113.9
Muse 6 714 6 19 25 32 0.0023 113.9

PS 11 945 11 945 3 3 5 5 7 7 7 7 0.0001 0.0001 1.0 1.0

SBFL
DStar

1 584
1 583

12
11

30
30

43
42

54
54

0.0042
0.0042

2 521.3
2 521.3

Ochiai 1 583 12 30 43 54 0.0042 2 521.3
Tarantula 1 586 12 30 43 54 0.0042 2 521.3

ST 9 810 9 810 0 0 4 4 6 6 13 13 0.0024 0.0024 42.9 42.9

Table 5: Effectiveness of standalone fault localization techniques at the statement-level granularity on all 135 se-
lected bugs B. Each row reports a TECHNIQUE L’s average generalized Einspect rank ĨB(L); the percentage of all
bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output (L@B1%, L@B3%, L@B5%, and
L@B10%); its average exam score EB(L); and its average suspicious locations length |LB|. Columns F report the
same metrics averaged for all techniques that belong to the same FAMILY. Highlighted numbers denote the best
technique according to each metric.

higher percentages of faulty locations in the top-1, top-3, top-5, and top-10. The advantage over MBFL—the second776

most-effective family—is consistent and conspicuous. According to the same metrics, the MBFL fault localization777

family achieves clearly better effectiveness than PS and ST. Then, PS tends to do better than ST, but only according778

to some metrics: PS has better @1%, @3%, and @5%, and location list length, whereas ST has better Einspect and779

@10%.780

Finding 1.1: SBFL is the most effective standalone fault localization family.
781

Finding 1.2: Standalone fault localization families ordered by effectiveness: SBFL > MBFL ≫ PS ≃ ST,
where > means better, ≫ much better, and ≃ about as good.

782

Contrary to these general trends, PS achieves the best (lowest) exam score and location list length of all fam-783

ilies; and ST is second-best according to these metrics. As Section 5.3 will discuss in more detail, PS and ST are784

techniques with a narrower scope than SBFL and MBFL: they can perform very well on a subset of bugs, but they785

fail spectacularly on several others. They also tend to return shorter lists of suspicious locations, which is also con-786

ducive to achieving a better exam score: since the exam score is undefined when a technique fails to localize a bug787

at all (as explained in Section 4.5), the average exam score of ST and, especially, PS is computed over the small set788

of bugs on which they work fairly well.789

Finding 1.3: PS and ST are specialized fault localization techniques, which may work well only on a small subset of bugs, and thus
often return short lists of suspicious locations.

790

Figure 6’s scatterplots confirm SBFL’s general advantage: in each scatterplot involving SBFL, all points are on791

a straight line corresponding to low ranks for SBFL but increasingly high ranks for the other family. The plots also792

indicate that MBFL is often better than PS and ST, although there are a few hard bugs for which the latter are just793

as effective (points on the diagonal line). The PS-vs-ST scatterplot suggests that these two techniques are largely794

complementary: on several bugs, PS and ST are as effective (points on the diagonal); on several others, PS is more795

effective (points above the diagonal); and on others still, ST is more effective (points below the diagonal).796

Figure 7a confirms these results based on the statistical model (9): the intervals of coefficients αSBFL and αMBFL797

are clearly below zero, indicating that SBFL and MBFL have better-than-average effectiveness; conversely, those of798

coefficients αPS and αST are clearly above zero, indicating that PS and ST have worse-than-average effectiveness.799

Figure 7a’s estimate of αSBFL is below that of αMBFL, confirming that SBFL is the most effective family overall.800

The bottom-left plot in Figure 6 confirms that SBFL’s advantage can be conspicuous but is observed only on a801

minority of bugs—whereas SBFL and MBFL achieve similar effectiveness on the majority of bugs. In fact, the effect802

size comparing SBFL and MBFL is −0.18—weakly in favor of SBFL.803

Finding 1.4: SBFL and MBFL often achieve similar effectiveness; however, SBFL is strictly better than MBFL on a minority of bugs.
804

Technique effectiveness. FL techniques of the same family achieve very similar effectiveness. Table 5 shows nearly805

identical results for the 3 SBFL techniques Tarantula, Ochiai, and DStar. The plots and statistics in Figure 8 con-806

firm this: points lie along the diagonal lines in the scatterplots, and Einspect ranks for the same bugs are strongly807

correlated and differ by a vanishing effect size.808

20

Corr: 0.07
p−value: 0.00***

Effect: 0.70***

Corr: −0.01
p−value: 0.00***

Effect: 0.45**

Corr: 0.15

p−value: 0.01*

Effect: −0.18*

Corr: 0.54**
p−value: 0.01**

Effect: −0.18*

Corr: 0.06

p−value: 0.00***

Effect: −0.78***

Corr: 0.07

p−value: 0.00***

Effect: −0.56***

MBFL PS ST SBFL

M
B

F
L

P
S

S
T

S
B

F
L

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 20 130 210 290 400

0%
25%
50%
75%

100%

0
100
200
300
400

0
100
200
300
400

0
100
200
300
400

CL DEV DS WEB

Figure 6: Pairwise visual comparison of four FL families for effectiveness. Each point in the scatterplot at row la-
beled R and column labeled C has coordinates (x, y), where x is the generalized Einspect rank Ĩb(C) of FL techniques
in family C and y is the rank Ĩb(R) of FL techniques in family R on the same bug b. Thus, points below (resp. above)
the diagonal line denote bugs on which R had better (resp. worse) Einspect ranks. Points are colored according to
the bug’s project category. The opposite box at row labeled C and column labeled R displays three statistics (cor-
relation, p-value, and effect size, see Section 4.6) quantitatively comparing the same average generalized Einspect
ranks of C and R; negative values of effect size mean that R tends to be better, and positive values mean that C
tends to be better. Each bar plot on the diagonal at row F, column F is a histogram of the distribution of Ĩb(F) for
all bugs. Horizontal axes of all diagonal plots have the same Einspect scale as the bottom-right plot’s (SBFL); their
vertical axes have the same 0–100% scale as the top-left plot (MBFL).

Finding 1.5: All techniques in the SBFL family achieve very similar effectiveness.
809

The 2 MBFL techniques also behave similarly, but not quite as closely as the SBFL ones. Metallaxis has a not810

huge but consistent advantage over Muse according to Table 5. Figure 9 corroborates this observation: the cloud811

of points in the scatterplot is centered slightly above the diagonal line; the correlation between Muse’s and Metal-812

laxis’s data is medium (not strong); and the effect size suggests that Metallaxis is more effective on around 11% of813

subjects.814

Muse’s lower effectiveness can be traced back to its stricter definition of “mutant killing”, which requires that a815

failing test becomes passing when run on a mutant (see Section 2.2). As observed elsewhere [49], this requirement816

may be too demanding for fault localization of real-world bugs, where it is essentially tantamount to generating a817

mutant that is similar to a patch.818

Finding 1.6: The techniques in the MBFL family achieve generally similar effectiveness, but Metallaxis tends to be better than Muse.
819

5.2 RQ2. Efficiency820

As demonstrated in Table 6, the four FL families differ greatly in their efficiency—measured as their wall-clock821

running time. ST is by far the fastest, taking a mere 2 seconds per bug on average; SBFL is second-fastest, taking822

around 10 minutes on average; PS is one order of magnitude slower, taking approximately 2.7 hours on average;823

and MBFL is slower still, taking over 4 hours per bug on average.824

21

−4

−2

0

2

MBFL PS SBFL ST
fault localization family

α f
am

ily
 /

β f
am

ily

All bugs Einspect Time

(a) Estimates and 95% probability intervals for the coefficients
αfamily and βfamily in model (9) fitted on all bugs, for each FL family
MBFL, PS, SBFL, and ST.

−2

−1

0

1

2

CL DEV DS WEB
project category

α c
at

eg
or

y /
 β

ca
te

go
ry

All bugs Einspect Time

(b) Estimates and 95% probability intervals for the coefficients
αcategory and βcategory in model (9) fitted on all bugs, for each project
category CL, DEV, DS, and WEB.

Figure 7: Point estimates (boxes) and 95% probability intervals (lines) for the regression coefficients of model (9).
The scale of the vertical axes is over standard deviation log-units.

Corr: 0.99***

p−value: 1.00

Effect: −0.00

Corr: 0.94***

p−value: 0.09

Effect: 0.02

Corr: 0.94***

p−value: 0.06

Effect: 0.02

DStar Ochiai Tarantula

D
S

tar
O

chiai
Tarantula

0 50 100 150 0 50 100 150 10 50 80 120 160

0%

25%

50%

75%

100%

0

50

100

150

0

50

100

150

CL DEV DS WEB

Figure 8: Pairwise visual comparison of 3 SBFL techniques for effectiveness. The interpretation of the plots is the
same as in Figure 6.

Finding 2.1: Standalone fault localization families ordered by efficiency: ST ≫ SBFL ≫ PS > MBFL,
where > means faster, and ≫ much faster.a

aAs we discuss at the end of Section 5.2, these results are largely expected given how the different fault localization techniques work algorithmically.
825

Figure 10’s scatterplots confirm that ST outperforms all other techniques, and that SBFL is generally second-826

fastest. It also shows that MBFL and PS have similar overall performance but can be slower or faster on different827

bugs: a narrow majority of points lies below the diagonal line in the scatterplot (meaning PS is faster than MBFL),828

22

Corr: 0.62**

p−value: 0.00**

Effect: 0.11

Metallaxis Muse

M
etallaxis

M
use

0 50 100 150 200 10 70 120 160 220

0%

25%

50%

75%

100%

0

50

100

150

200

CL DEV DS WEB

Figure 9: Pairwise visual comparison of 2 MBFL techniques for effectiveness. The interpretation of the plots is the
same as in Figure 6.

FAMILY TECHNIQUE L ALL CRASHING PREDICATE MUTABLE CL DEV DS WEB

MBFL Metallaxis 15 774 18 278 19 671 17 744 3 770 18 694 29 799 7 753Muse

PS 9 751 11 419 17 287 12 932 528 20 210 15 972 828

SBFL
DStar

589 890 1 284 521 30 38 1 726 231Ochiai
Tarantula

ST 2 2 2 2 2 1 2 1

Table 6: Efficiency of fault localization techniques at the statement-level granularity. Each row reports a TECHNIQUE
L’s per-bug average wall-clock running time TX(L) in seconds on: ALL 135 bugs selected for the experiments
(X = B); CRASHING, PREDICATE-related, and MUTABLE bugs; bugs in projects of category CL, DEV, DS, and WEB
(see Section 4.3). The running time is the same for all techniques of the same FAMILY. Highlighted numbers denote
the fastest technique for bugs in each group.

but there are also several points that are on the opposite side of the diagonal—and their effect size (0.34) is medium,829

lower than all other pairwise effect sizes in the comparison of efficiency.830

Finding 2.2: PS is more efficient than MBFL on average; however, the two families tend to be faster or slower on different bugs.
831

Based on the statistical model (9), Figure 7a clearly confirms the differences of efficiency: the intervals of coeffi-832

cients βST and βSBFL are well below zero, indicating that ST and SBFL are faster than average (with ST the fastest, as833

its estimated βST is lower); conversely, the intervals of coefficients βMBFL and βPS are entirely above zero, indicating834

that MBFL and PS stand out as slower than average compared to the other families.835

These major differences in efficiency are unsurprising if one remembers that the various FL families differ in836

what kind of information they collect for localization. ST only needs the stack-trace information, which only re-837

quires to run once the failing tests; SBFL compares the traces of passing and failing runs, which involves running838

all tests once. PS dynamically tries out a large number of different branch changes in a program, each of which runs839

the failing tests; in our experiments, PS tried 4 588 different “switches” on average for each bug—up to a whop-840

ping 101 454 switches for project black’s bug #6. MBFL generates hundreds of different mutations of the program841

under analysis, each of which has to be run against all tests; in our experiments, MBFL generated 461 mutants on842

average for each bug—up to 2 718 mutants for project black’s bug #6. After collecting this information, the addi-843

tional running time to compute suspiciousness scores (using the formulas presented in Section 2) is negligible for844

all techniques—which explains why the running times of techniques of the same family are practically indistin-845

guishable.846

23

Corr: 0.56**
p−value: 0.00***

Effect: −0.34**

Corr: 0.18
p−value: 0.00***

Effect: −1.00***

Corr: 0.09

p−value: 0.00***

Effect: −0.96***

Corr: 0.59**
p−value: 0.00***

Effect: −0.77***

Corr: 0.32*

p−value: 0.00***

Effect: −0.49***

Corr: 0.20

p−value: 0.00***

Effect: 0.86***

MBFL PS ST SBFL

M
B

F
L

P
S

S
T

S
B

F
L

0 1000 2000 0 1000 2000 0 1000 2000 100 900 1500 2100 2800

0%
25%
50%
75%

100%

0

1000

2000

0

1000

2000

0

1000

2000

CL DEV DS WEB

Figure 10: Pairwise visual comparison of four FL families for efficiency. Each point in the scatterplot at row la-
beled R and column labeled C has coordinates (x, y), where x is the average per-bug wall-clock running time of
FL techniques in family C and y average per-bug wall-clock running time of FL techniques in family R. Points are
colored according to the bug’s project category. The opposite box at row labeled C and column labeled R displays
three statistics (correlation, p-value, and effect size, see Section 4.6) quantitatively comparing the same per-bug
average running times of C and R; negative values of effect size mean that R tends to be better, and positive values
that C tends to be better.

5.3 RQ3. Kinds of Faults and Projects847

Project category: effectiveness. Figure 7’s intervals of coefficients αcategory in model (9) indicate that fault localization848

tends to be more accurate on projects in categories DEV and WEB, and less accurate on projects in categories CL and849

DS.850

This finding is consistent with the observations that data science programs, their bugs, and their fixes are of-851

ten different compared to traditional programs [22, 23]. For instance, bug #38 in project keras is an example of852

what Islam et al. call “structural data flow” bugs [22]: its root cause is passing an incorrect input shape setting to853

a neural network layer. These characteristics also determine long spectra (i.e., execution traces) that span several854

functions—which are required to construct the various layer objects; as a result, SBFL techniques struggle to effec-855

tively localize this bug. Bugs #68 and #137 in project pandas are instead examples of API bugs, whose root causes856

are incorrect import statements. While such bugs may occur in any kind of project, they are common in data science857

programs [22] due to their complex dependencies. In Python, import statements are usually top-level declarations;858

therefore, FL techniques that can only target locations inside functions end up being ineffective at localizing these859

API bugs. As yet another example, the overall mutability of bugs in DS projects is 0.7%, whereas it is 1.3% for bugs860

in other categories of projects. This indicates that the standard mutation operators, used by MBFL, are a poor fit861

for the kinds of bugs that are most commonly found in data science projects.862

Finding 3.1: Bugs in data science projects challenge fault localization’s effectiveness (that is, they are harder to localize correctly)
more than bugs in other categories of projects.

863

The data in Table 7’s bottom section confirm that SBFL remains the most effective FL family, largely independent864

of the category of projects it analyzes. MBFL ranks second for effectiveness in every project category; it is not that865

far from SBFL for projects in categories DEV and CL (for example, MBFL and SBFL both localize 9% of CL bugs in the866

first position; and both localize over 40% of DEV bugs in the top-10 positions). In contrast, SBFL’s advantage over867

MBFL is more conspicuous for projects in categories DS and WEB. Given that bugs in categories CL are generally868

24

BUGS X FAMILY F ĨX(F) F@X1% F@X3% F@X5% F@X10% EX(F) |FX |

ALL

MBFL 6 710 8 22 27 34 0.0029 113.9
PS 11 945 3 5 7 7 0.0001 1.0

SBFL 1 584 12 30 43 54 0.0042 2 521.3
ST 9 810 0 4 6 13 0.0024 42.9

CRASHING

MBFL 7 806 7 21 27 34 0.0018 104.4
PS 15 607 0 0 0 0 – 0.3

SBFL 897 14 31 43 53 0.0025 3 147.5
ST 5 273 0 10 16 37 0.0024 118.1

PREDICATE

MBFL 1 891 11 33 40 52 0.0031 146.5
PS 8 425 8 13 17 17 0.0001 1.3

SBFL 374 12 23 38 50 0.0065 3 041.5
ST 9 194 0 2 6 17 0.0007 47.2

MUTABLE

MBFL 489 14 41 50 63 0.0029 138.7
PS 10 081 5 9 12 12 0.0001 1.1

SBFL 524 12 35 50 57 0.0042 2 396.2
ST 9 304 0 4 5 19 0.0007 35.3

CL

MBFL 2 910 9 33 38 45 0.0032 34.3
PS 8 667 2 5 5 5 0.0002 0.3

SBFL 2 356 9 42 60 74 0.0056 687.1
ST 9 124 0 9 9 14 0.0084 19.9

DEV

MBFL 4 720 12 25 28 40 0.0045 160.6
PS 7 768 3 7 10 10 0.0001 2.1

SBFL 2 081 20 33 37 47 0.0053 1 431.5
ST 8 279 0 0 10 13 0.0028 12.4

DS

MBFL 14 519 4 12 19 24 0.0006 169.3
PS 22 847 2 5 7 7 0.0000 1.0

SBFL 827 6 23 30 43 0.0018 5 775.4
ST 15 174 0 0 0 12 0.0003 97.7

WEB

MBFL 1 465 8 18 20 25 0.0042 98.7
PS 2 362 5 5 5 5 0.0002 1.1

SBFL 770 15 15 40 45 0.0049 1 266.4
ST 2 319 0 5 5 15 0.0014 22.7

Table 7: Effectiveness of fault localization families at the statement-level granularity on different kinds of bugs and
categories of projects. Each row reports a FAMILY F’s average generalized Einspect rank ĨX(F); the percentage of all
bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output (F@X1%, F@X3%, F@X5%, and
F@X10%); its average exam score EX(F) and the length |FX | of the output list of locations on different groups X
of bugs: ALL bugs selected for the experiments (same results as in Table 5); bugs of different kinds (CRASHING,
PREDICATE-related, and MUTABLE bugs); and bugs from projects of different categories (CL, DEV, DS, and WEB).
Highlighted numbers denote the best family on each group of bugs according to each metric.

harder to localize, this suggests that the characteristics of bugs in these projects seem to be a good fit for MBFL.869

As we have seen in Section 5.2, MBFL is the slowest FL family by far; since it reruns the available tests hundreds,870

or even thousands, of times, projects with a large number of tests are near impossible to analyze efficiently with871

MBFL. As we’ll discuss below, MBFL is considerably faster on projects in category CL than on projects in other872

categories; this is probably the main reason why MBFL is also more effective on these projects: it simply generates873

a more manageable number of mutants, which sharpen the dynamic analysis.874

Finding 3.2: SBFL remains the most effective standalone fault localization family on all categories of projects.
875

Figure 6’s plots confirm some of these trends. In most plots, we see that the points positioned far apart from the876

diagonal line correspond to projects in the CL and DS categories, confirming that these “harder” bugs exacerbate877

the different effectiveness of the various FL families.878

Project category: efficiency. Figure 7’s intervals of coefficients βcategory in model (9) indicate that fault localization879

tends to be more efficient (i.e., faster) on projects in category CL, and less efficient (i.e., slower) on projects in880

category DS (βDS barely touches zero). In contrast, projects in categories DEV and WEB do not have a consistent881

association with faster or slower fault localization. Table 2 shows that projects in category DS have the largest882

number of tests by far (mostly because of outlier project pandas); furthermore, some of their tests involve training883

and testing different machine learning models, or other kinds of time-consuming tasks. Since FL invariably requires884

to run tests, this explains why bugs in DS projects tend to take longer to localize.885

25

−3

−2

−1

0

1

2

MBFL PS SBFL ST
fault localization family

c f
am

ily

Crashing bugs Einspect

(a) Estimates and 95% probability intervals
for the coefficients cfamily in model (10), for
each FL family MBFL, PS, SBFL, and ST.

−1

0

1

MBFL PS SBFL ST
fault localization family

p f
am

ily

Predicate bugs Einspect

(b) Estimates and 95% probability intervals
for the coefficients pfamily in model (10), for
each FL family MBFL, PS, SBFL, and ST.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

MBFL PS SBFL ST
fault localization family

m
fa

m
ily

Mutable bugs Einspect

(c) Estimates and 95% probability intervals
for the coefficients mfamily in model (10), for
each FL family MBFL, PS, SBFL, and ST.

Figure 11: Point estimates (boxes) and 95% probability intervals (lines) for the regression coefficients of model (10).
The scale of the vertical axes is over standard deviation log-units.

Finding 3.3: Bugs in data science projects challenge fault localization’s efficiency (that is, they take longer to localize) more than
bugs in other categories of projects.

886

The data in Table 6’s right-hand side generally confirm the same rankings of efficiency among FL families,887

largely regardless of what category of projects we consider: ST is by far the most efficient, followed by SBFL, and888

then—at a distance—PS and MBFL. The difference of performance between SBFL and ST is largest for projects in889

category DS (three orders of magnitude), large for projects in category WEB (two orders of magniture), and more890

moderate for projects in categories CL and DEV (one order of magnitude). PS is slower than MBFL only for projects891

in category DEV, although their absolute difference of running times is not very big (around 7.5%); in contrast, it is892

one order of magnitude faster for projects in categories CL and WEB.893

Finding 3.4: The difference in efficiency between MBFL and SBFL is largest for data science projects.
894

In most of Figure 10’s plots, we see that the points most frequently positioned far apart from the diagonal line895

correspond to projects in category DS, confirming that these bugs take longer to analyze and aggravate perfor-896

mance differences among techniques. In the scatterplot comparing MBFL to PS, points corresponding to projects897

in categories WEB and CL are mostly below the diagonal line, which corroborates the advantage of PS over MBFL898

for bugs of projects in these two categories.899

Crashing bugs: effectiveness. According to Figure 11a, both FL families ST and MBFL are more effective on crashing900

bugs than on other kinds of bugs. Still, their absolute effectiveness on crashing bugs remains limited compared to901

SBFL’s, as shown by the results in Table 7’s middle part; for example, @CRASHING10% is 37% for ST, 34% for MBFL,902

and 53% for SBFL, whereas ST localizes zero (crashing) bugs in the top rank. Remember that ST assigns that same903

suspiciousness to all statements within the same function (see Section 2.4); thus, it cannot be as accurate as SBFL904

even on the minority of crashing bugs.905

Finding 3.5: ST and MBFL are more effective on crashing bugs than on other kinds of bugs
(but they remain overall less effective than SBFL even on crashing bugs).

906

On the other hand, PS is less effective on crashing bugs than on other kinds of bugs; in fact, it localizes zero bugs907

among the top-10 ranks. PS has a chance to work only if it can find a so-called critical predicate (see Section 2.3);908

only three of the crashing bugs included critical predicates, and hence PS was a bust.909

26

Finding 3.6: PS is the least effective on crashing bugs.
910

Predicate-related bugs: effectiveness. Figure 11b says that no FL family achieves consistently better or worse effective-911

ness on predicate-related bugs. Table 7 complements this observation; the ranking of families by effectiveness is912

different for predicate-related bugs than it is for all bugs: MBFL is about as effective as SBFL, whereas PS is clearly913

more effective than ST.914

Finding 3.7: On predicate-related bugs, MBFL is about as effective as SBFL, and PS is more effective than ST.
915

This outcome is somewhat unexpected for PS: predicate-related bugs are bugs whose ground truth includes at916

least a branching predicate (see Section 4.3), and yet PS is still clearly less effective than SBFL or MBFL. Indeed,917

the presence of a faulty predicate is not sufficient for PS to work: the predicate must also be critical, which means918

that flipping its value turns a failing test into a passing one. When a program has no critical predicates, PS simply919

returns an empty list of locations. In contrast, when a program has a critical predicate, PS is highly effective:920

PS@χ1% = 14%, PS@χ3% = 24%, and PS@χ5% = 31% for PS on the 29 bugs χ with a critical predicate—even921

better than SBFL’s results for the same bugs (SBFL@χ1% = 13%, SBFL@χ3% = 16%, and SBFL@χ5% = 20%). In all,922

PS is a highly specialized FL technique, which works quite well for a narrow category of bugs, but is inapplicable923

in many other cases.924

Finding 3.8: On the few bugs that it can analyze successfully, PS is the most effective standalone fault localization technique.
925

Mutable bugs: effectiveness. According to Figure 11c, FL family MBFL tends to be more effective on mutable bugs926

than on other kinds of bugs: mMBFL 95% probability interval is mostly below zero (and the 87% probability interval927

would be entirely below zero). Furthermore, Table 7 shows that MBFL is the most effective technique on mutable928

bugs, where it tends to outperform even SBFL. Intuitively, a bug is mutable if the syntactic mutation operators used929

for MBFL “match” the fault in a way that it affects program behavior. Thus, the capabilities of MBFL ultimately930

depend on the nature of faults it analyzes and on the selection of mutation operators it employs.931

Finding 3.9: MBFL is more effective on mutable bugs than on other kinds of bugs; in fact, it is the most effective standalone fault
localization family on these bugs.

932

Figure 11c also suggests that PS and ST are less effective on mutable bugs than on other kinds of bugs. Possibly,933

this is because mutable bugs tend to be more complex, “semantic” bugs, whereas ST works well only for “simple”934

crashing bugs, and PS is highly specialized to work on a narrow group of bugs.935

Finding 3.10: PS and ST are less effective on mutable bugs than on other kinds of bugs.
936

Bug kind: efficiency. Table 6 does not suggest any consistent changes in the efficiency of FL families when they work937

on crashing, predicate-related, or mutable bugs—as opposed to all bugs. In other words, for every kind of bugs: ST938

is orders of magnitude faster than SBFL, which is one order of magnitude faster than PS, which is 14–37% faster939

than MBFL. As discussed above, the kind of information that a FL technique collects is the main determinant of its940

overall efficiency; in contrast, different kinds of bugs do not seem to have any significant impact.941

Finding 3.11: The relative efficiency of each fault localization family does not depend on the kinds of bugs that are analyzed.
942

5.4 RQ4. Combining Techniques943

Effectiveness. Table 8 clearly indicates that the combined FL techniques AvgFL and CombineFL achieve high effective-944

ness—especially according to the fundamental @n% metrics. CombineFLA and AvgFLA, combining the information945

from all other FL techniques, beat every other technique. For example, AvgFLA localizes in the top position 18% of946

all bugs, CombineFLA localizes 20% of all bugs, whereas the next-best technique is SBFL, which localizes 12% of all947

bugs (Table 5). CombineFLS and AvgFLS, combining the information from only SBFL and ST techniques, do at least948

as well as every other standalone technique.949

Finding 4.1: Combined fault localization techniques AvgFLA and CombineFLA, which combine all baseline techniques, achieve better
effectiveness than any other techniques.

950

While CombineFLA is strictly more effective than AvgFLA, their difference is usually modest (at most three per-951

centage points). Similarly, the difference between CombineFLS, AvgFLS, and SBFL is generally limited; however,952

27

TECHNIQUE L ĨB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB| TB(L)

AvgFL
AvgFLA 1 575 18 36 47 59 0.0033 2 548.4 26 116
AvgFLS 1 585 12 33 44 56 0.0040 2 548.4 591

CombineFL
CombineFLA 1 580 20 39 49 60 0.0033 2 548.4 26 116
CombineFLS 1 584 12 32 41 56 0.0039 2 548.4 591

Table 8: Effectiveness and efficiency of fault localization techniques AvgFL and CombineFL at the statement-level
granularity on all 135 selected bugs B. Each row reports a TECHNIQUE L’s average generalized Einspect rank ĨB(L);
the percentage of all bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output (L@B1%,
L@B3%, L@B5%, and L@B10%); its average exam score EB(L); its average suspicious locations length |LB|; and
its average per-bug wall-clock running time TB(L) in seconds. The four rows correspond to two variants AvgFLA
and CombineFLA that combine the information of all FL techniques but Tarantula, and two variants AvgFLS and
CombineFLS that combine the information of SBFL and ST techniques but Tarantula. Highlighted numbers denote
the best technique according to each metric.

SBFL tends to be less effective than AvgFLS, whereas CombineFLS is never strictly more effective than AvgFLS. In all,953

AvgFL is a simpler approach to combining techniques than CombineFL, but both are quite successful at boosting FL954

effectiveness.955

Finding 4.2: Fault localization families ordered by effectiveness:
CombineFLA ≥ AvgFLA > CombineFLS ≃ AvgFLS > SBFL > MBFL ≫ PS ≃ ST,
where > means better, ≥ better or as good, ≫ much better, and ≃ about as good.

956

The suspicious location length is the very same for AvgFL and CombineFL, and higher than for every other957

technique. This is simply because all variants of AvgFL and CombineFL consider a location as suspicious if and only958

if any of the techniques they combine considers it so. Therefore, they end up with long location lists—at least as959

long as any combined technique’s.960

Efficiency. The running time of AvgFL and CombineFL is essentially just the sum of running times of the FL families961

they combine, because merging the output list of locations and training CombineFL’s machine learning model take962

negligible time. This makes AvgFLA and CombineFLA the least efficient FL techniques in our experiments; and963

AvgFLS and CombineFLS barely slower than SBFL.964

Finding 4.3: Combined fault localization techniques AvgFLA and CombineFLA, which combine all baseline techniques, achieve worse
efficiency than any other techniques.

965

Combining these results with those about effectiveness, we conclude that AvgFLA and CombineFLA exclusively966

favor effectiveness; whereas AvgFLS and CombineFLS promise a modest improvement in effectiveness in exchange967

for a modest performance loss.968

Finding 4.4: Fault localization families ordered by efficiency:
ST ≫ SBFL ≥ AvgFLS ≃ CombineFLS ≫ PS > MBFL > AvgFLA ≃ CombineFLA,
where > means faster, ≥ faster or as fast, ≫ much faster, and ≃ about as fast.

969

5.5 RQ5. Granularity970

Function-level granularity. Table 9’s data about function-level effectiveness of the various FL techniques and families971

lead to very similar high-level conclusions as for statement-level effectiveness: combination techniques CombineFLA972

and AvgFLA achieves the best effectiveness, followed by CombineFLS and AvgFLS, then SBFL, and finally MBFL;973

differences among techniques in the same family are modest (often negligible).974

ST is the only technique whose relative effectiveness changes considerably from statement-level to function-975

level: ST is the least effective at the level of statements, but becomes considerably better than PS at the level of func-976

tions. This change is no surprise, as ST is precisely geared towards localizing functions responsible for crashes—and977

cannot distinguish among statements belonging to the same function. ST’s overall effectiveness remains limited,978

since the technique is simple and can only work on crashing bugs.979

Module-level granularity. Table 10 leads to the same conclusions for module-level granularity: the relative effective-980

ness of the various techniques is very similar as for statement-level granularity, except that ST gains effectiveness981

simply because it is designed for coarser granularities.982

28

FAMILY TECHNIQUE L ĨB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|
F T F T F T F T F T F T F T

AvgFLA 66 66 53 53 71 71 77 76 84 84 0.0129 0.0130 296.3 296.3
CombineFLA 66 53 70 77 84 0.0128 296.3

AvgFLS 67 66 44 44 64 64 73 73 79 79 0.0153 0.0153 296.3 296.3
CombineFLS 67 44 64 73 79 0.0154 296.3

MBFL Metallaxis 95 93 31 34 51 56 61 64 67 70 0.0150 0.0135 30.7 30.7
Muse 97 27 46 57 64 0.0166 30.7

PS 618 618 8 8 13 13 13 13 15 15 0.0025 0.0025 0.6 0.6

SBFL
DStar

67
67

37
37

61
61

72
72

79
79

0.0156
0.0156

296.3
296.3

Ochiai 67 38 61 72 79 0.0156 296.3
Tarantula 67 36 61 71 78 0.0156 296.3

ST 451 451 21 21 27 27 27 27 29 29 0.0045 0.0045 1.0 1.0

Table 9: Effectiveness of fault localization techniques at the function-level granularity on all 135 selected bugs B.
The table reports the same metrics as Table 5 and Table 8 but targeting functions as suspicious entities. Highlighted
numbers denote the best technique according to each metric.

FAMILY TECHNIQUE L ĨB(L) L@B1% L@B3% L@B5% L@B10% EB(L) |LB|
F T F T F T F T F T F T F T

AvgFLA 2 2 70 70 89 89 93 93 99 99 0.0339 0.0338 20.9 20.9
CombineFLA 2 70 89 93 99 0.0340 20.9

AvgFLS 2 2 64 64 87 87 93 93 98 98 0.0362 0.0363 20.9 20.9
CombineFLS 2 64 87 93 98 0.0362 20.9

MBFL Metallaxis 6 6 52 57 80 82 86 87 90 92 0.0406 0.0366 5.6 5.6
Muse 7 47 77 85 87 0.0446 5.6

PS 67 67 13 13 17 17 21 21 28 28 0.0234 0.0234 0.4 0.4

SBFL
DStar

2
2

60
61

86
87

92
93

98
98

0.0369
0.0365

20.9
20.9

Ochiai 2 61 87 93 98 0.0365 20.9
Tarantula 2 59 84 91 98 0.0375 20.9

ST 61 61 29 29 33 33 36 36 41 41 0.0284 0.0284 0.6 0.6

Table 10: Effectiveness of fault localization techniques at the module-level granularity on all 135 selected bugs B. The
table reports the same metrics as Table 5 and Table 8 but targeting modules (files in Python) as suspicious entities.
Highlighted numbers denote the best technique according to each metric.

Finding 5.1: ST is more effective than PS both at the function-level and module-level granularity; however, it remains considerably
less effective than other fault localization techniques even at these coarser granularities.

983

Comparisons between granularities. It is apparent that fault localization’s absolute effectiveness strictly increases as we984

target coarser granularities—from statements, to functions, to modules. This happens simply because the number985

of entities at a coarser granularity is considerably less than the number of entities at a finer granularity: each986

function consists of several statements, and each module consists of several functions. Therefore, it does not make987

sense to directly compare the same effectiveness metric measured at two different granularity levels, since each988

granularity level refers to different entities—and inspecting different entities involves incomparable effort.989

We do not discuss efficiency (i.e., running time) in relation to granularity: the running time of our fault lo-990

calization techniques does not depend on the chosen level of granularity, which only affects how the collected991

information is combined (see Section 2).992

5.6 RQ6. Comparison to Java993

Table 11 collects the main quantitative results for Python fault localization effectiveness that we presented in detail994

in previous parts of the paper, and displays them next to the corresponding results for Java. The results are selected995

so that they can be directly compared: they exclude any technique (e.g., Tarantula) or family (e.g., history-based996

29

FAMILY TECHNIQUE L L@1% L@3% L@5% L@10% E(L)

Python Java Python Java Python Java Python Java Python Java

CombineFL
CombineFLA 20 19 39 33 49 42 60 52 0.0033 0.0186
CombineFLS 12 10 32 23 41 30 56 40 0.0039 0.0265

MBFL Metallaxis 10 6 25 22 30 29 37 36 0.0035 0.1180
Muse 6 7 19 12 25 16 32 19 0.0023 0.3040

PS 3 1 5 4 7 6 7 6 0.0001 0.3310

SBFL DStar 11 5 30 24 42 31 54 43 0.0042 0.0330
Ochiai 12 4 30 23 43 31 54 44 0.0042 0.0330

ST 0 6 4 9 6 11 13 11 0.0024 0.3110

Table 11: Effectiveness of fault localization techniques in Python and Java. Each row reports a TECHNIQUE L’s
percentage of all bugs it localized within the top-1, top-3, top-5, and top-10 positions of its output (L@1%, L@3%,
L@5%, and L@10%); and its average exam score E(L). Python’s data corresponds to the experiments discussed in
the rest of the paper on the 135 bugs from BUGSINPY; Java’s data is taken from Zou et al.’s empirical study [78] or
computed from its replication package. Highlighted numbers denote each language’s best technique according to
each metric.

fault localization) that was not experimented within both our paper and Zou et al. [78]; and the rows about Com-997

bineFL were computed using [78]’s replication package so that they combine exactly the same techniques (DStar,998

Ochiai, Metallaxis, Muse, PS, and ST for CombineFLA; and DStar, Ochiai, and ST for CombineFLS).999

Then, Table 12 lists all claims about fault localization made in our paper or in [78] that are within the scope of1000

both papers, and shows which were confirmed or refuted for Python and for Java. Most of the findings (25/28)1001

were confirmed consistently for both Python and Java. Thus, the big picture about the effectiveness and efficiency1002

of fault localization is the same for Python programs and bugs as it is for Java programs and bugs.1003

There are, however, a few interesting discrepancies; let’s discuss possible explanations for them. The most1004

marked difference is about the effectiveness of ST, which was mediocre on Python programs but competitive on1005

Java programs (row 3 in Table 12). We think the main reason for these differences is that there were more Java ex-1006

perimental subjects that were an ideal target for ST: 20 out of the 357 Defects4J bugs used in [78]’s experiments con-1007

sisted of short failing methods whose programmer-written fixes entirely replaced or removed the method body.28
1008

In these cases, the ground truth consists of all locations within the method; thus, ST easily ranks the fault location1009

at the top by simply reporting all lines of the crashing method with the same suspiciousness. As a result, Table 111010

shows that ST was consistently more effective than PS in the Java experiments—whereas there was no consistent1011

difference between ST and PS in our Python experiments. For the same reason, the difference between Java and1012

Python is even more evident on crashing bugs: ST outperformed all other techniques on such bugs in Java but not1013

in Python (row 19 in Table 12). We still confirmed that ST works better on crashing bugs than on other kinds of1014

bugs in Python as well, but the nature of our experimental subjects did not allow ST to reach an overall competitive1015

effectiveness on crashing bugs.1016

Other findings about MBFL were different in Python compared to Java, but the differences were more nu-1017

anced in this case. In particular, Zou et al. found that the correlation between the effectiveness of SBFL and MBFL1018

techniques is negligible, whereas we found a medium correlation (τ = 0.54). It is plausible that the discrepancy1019

(reflected in Table 12’s row 23) is simply a result of several details of how this correlation was measured: we use1020

Kendall’s τ, they use the coefficient of determination r2; we use a generalized Einspect measure Ĩ that applies to all1021

bugs, they exclude experiments where a technique completely fails to localize the bug (I); we compare the average1022

effectiveness of SBFL vs. MBFL techniques, they pairwise compare individual SBFL and MBFL techniques. Even1023

if the correlation patterns were actually different between Python and Java, this would still have limited practical1024

consequences: MBFL and SBFL techniques still have clearly different characteristics, and hence they remain largely1025

complementary. The same analysis applies to the other correlation discrepancy (reflected in Table 12’s row 25): in1026

Python, we found a medium correlation between the effectiveness of the Metallaxis and Muse MBFL techniques1027

(τ = 0.62); in Java, Zou et al. found negligible correlation.1028

Finally, a clarification about the finding that “On predicate-related bugs, MBFL is about as effective as SBFL”, which1029

Table 12 reports as confirmed for both Python and Java. This claim hinges on the definition of “about as effective”,1030

which we rigorously introduced in Section 4.7.1. To clarify the comparison, Table 13 displays the Python and Java1031

data about the effectiveness of MBFL and SBFL on predicate bugs. On Python predicate-related bugs (left part of1032

Table 13), MBFL achieves better @3%, @5%, and @10% than SBFL but a worse @1% (by only one percentage point);1033

similarly, on Java predicate-related bugs (right part of Table 13), MBFL achieves better @1%, @3%, and @5% than1034

28For example, project Chart’s bug #17 in Defects4J v1.0.1.

30

FINDING PYTHON JAVA

1 SBFL is the most effective standalone fault localization family. Ë f 1.1 Ë [78, f 1.1]

2 Standalone fault localization families ordered by effectiveness:
SBFL > MBFL ≫ PS, ST

Ë f 1.2 Ë [78, T 3]

3 Regarding effectiveness, PS ≃ ST. Ë f 1.2 é T 11

4 All techniques in the SBFL family achieve very similar effectiveness. Ë f 1.5 Ë [78, T 3]

5 The techniques in the MBFL family achieve generally similar effectiveness. Ë f 1.6 Ë [78, T 3]

6 Metallaxis tends to be better than Muse. Ë f 1.6 Ë [78, T 3]

7 Standalone fault localization families ordered by efficiency:
ST ≫ SBFL > PS > MBFL

Ë f 2.1 Ë [78, f 4.2]

8 PS is more efficient than MBFL on average. Ë f 2.2 Ë [78, T 9]

9 ST is more effective on crashing bugs than on other kinds of bugs. Ë f 3.5 Ë [78, f 1.3]

10 MBFL is more effective on crashing bugs than on other kinds of bugs. Ë f 3.5 Ë [78, T 3] , [78, T 4]

11 PS is the least effective on crashing bugs. Ë f 3.6 Ë [78, T 4]

12 On predicate-related bugs, MBFL is about as effective as SBFL. Ë T 13 , f 3.7 Ë T 13 , [78, T 5]

13 On predicate-related bugs, PS tends to be more effective than ST. Ë f 3.7 Ë [78, T 5]

14 Combined fault localization technique CombineFLA, which combines all base-
line techniques, achieves better effectiveness than any other techniques.

Ë f 4.1 Ë T 11

15 Fault localization families ordered by effectiveness:
CombineFLA > CombineFLS > SBFL > MBFL ≫ PS, ST

Ë f 4.2 Ë T 11

16 Combined fault localization technique CombineFLA, which combines all base-
line techniques, achieves worse efficiency than any other technique.

Ë f 4.3 Ë [78, T 10]

17 Fault localization families ordered by efficiency:
ST ≫ SBFL ≥ CombineFLS > PS > MBFL > CombineFLA

Ë f 4.4 Ë [78, T 10]

18 ST is more effective than PS at the function-level granularity; however, it re-
mains considerably less effective than other fault localization techniques even
at this coarser granularity.

Ë f 5.1 Ë [78, T 11]

19 ST is the most effective technique for crashing bugs. é T 7 Ë [78, f 1.3]

20 PS is not the most effective technique for predicate-related faults. Ë T 7 Ë [78, f 1.4]

21 Different correlation patterns exist between the effectiveness of different pairs
of techniques.

Ë F 6 , F 8 Ë [78, f 2.1]

22 The effectiveness of most techniques from different families is weakly corre-
lated.

Ë F 6 Ë [78, f 2.2]

23 The SBFL family’s effectiveness has medium correlation with the MBFL fam-
ily’s.

Ë F 6 é [78, T 6]

24 The effectiveness of SBFL techniques is strongly correlated. Ë F 8 Ë [78, T 6]

25 The effectiveness of MBFL techniques is weakly correlated. é F 9 Ë [78, T 6]

26 Techniques with strongly correlated effectiveness only exist in the same fam-
ily.

Ë F 6 , F 8 , F 9 Ë [78, f 2.3]

27 Not all techniques in the same family have strongly correlated effectiveness. Ë F 8 , F 9 Ë [78, f 2.3]

28 The main findings about the relative effectiveness of fault localization families
at statement-level granularity still hold at function-level granularity.

Ë T 9 Ë [78, f 5.1]

Table 12: A comparison of findings about fault localization in Python vs. Java. Each row lists a FINDING discussed
in the present paper or in Zou et al. [78], whether the finding was confirmed Ë or refuted é for PYTHON and for
JAVA, and the reported evidence that confirms or refutes it (a reference to a numbered finding, Figure, or Table in
our paper or in [78]).

SBFL but a worse @10% (by three percentage points). In both cases, MBFL is not strictly better than SBFL, but one1035

could argue that a clear tendency exists. Regardless of the definition of “more effective” (which can be arbitrary),1036

the conclusion we can draw remain very similar in Python as in Java.1037

Finding 6.1: Our experiments confirmed for Python programs most of Zou et al. [78]’s findings about fault localization techniques
on Java programs.

1038

31

PYTHON JAVA

FAMILY F F@1% F@3% F@5% F@10% F@1% F@3% F@5% F@10%

MBFL 11 33 40 52 9 21 29 34
SBFL 12 23 38 50 4 18 26 37

Table 13: A comparison of MBFL’s and SBFL’s effectiveness on Python and Java predicate-related bugs. The left part
of the table reports a portion of the same data as Table 7: each column @k% reports the average percentage of
the 52 predicate bugs in BUGSINPY Python projects used in our experiments that techniques in the MBFL or SBFL
family ranked within the top-k. The right part of the table averages some of the data in [78, Table 5] by family: each
column @k% reports the average percentage of the 115 predicate bugs in Defects4J Java projects used in Zou et al.’s
experiments that techniques in the MBFL or SBFL family ranked within the top-k. Highlighted numbers denote
each language’s best family according to each metric.

5.7 Threats to Validity1039

Construct validity refers to whether the experimental metrics adequately operationalize the quantities of interest.1040

Since we generally used widely adopted and well-understood metrics of effectiveness and efficiency, threats of this1041

kind are limited.1042

The metrics of effectiveness are all based on the assumption that users of a fault localization technique process1043

its output list of program entities in the order in which the technique ranked them. This model has been criticized1044

as unrealistic [48]; nevertheless, the metrics of effectiveness remain the standard for fault localization studies, and1045

hence are at least adequate to compare the capabilities of different techniques and on different programs.1046

Using BUGSINPY’s curated collection of Python bugs helps reduce the risks involved with our selection of sub-1047

jects; as we detail in Section 4.1, we did not blindly reuse BUGSINPY’s bugs but we first verified which bugs we1048

could reliably reproduce on our machines.1049

Internal validity can be threatened by factors such as implementation bugs or inadequate statistics, which may1050

jeopardize the reliability of our findings. We implemented the tool FAUXPY to enable large-scale experimenting1051

with Python fault localization; we applied the usual best practices of software development (testing, incremental1052

development, refactoring to improve performance and design, and so on) to reduce the chance that it contains1053

fundamental bugs that affect our overall experimental results. To make it a robust and scalable tool, FAUXPY’s1054

implementation uses external libraries for tasks, such as coverage collection and mutant generation, for which1055

high-quality open-source implementations are available.1056

The scripts that we used to process and summarize the experimental results may also include mistakes; we1057

checked the scripts several times, and validated the consistency between different data representations.1058

We did our best to validate the test-selection process (described in Section 4.7), which was necessary to make1059

feasible the experiments with the largest projects; in particular, we ran fault localization experiments on about 301060

bugs without test selection, and checked that the results did not change after we applied test selection.1061

Our statistical analysis (Section 4.6) follows best practices [15], including validations and comparisons of the1062

chosen statistical models (detailed in the replication package). To further help future replications and internal1063

validity, we make available all our experimental artifacts and data in a detailed replication package.1064

External validity is about generalizability of our findings. Using bugs from real-world open-source projects sub-1065

stantially mitigates the threat that our findings do not apply to realistic scenarios. Precisely, we analyzed 135 bugs1066

in 13 projects from the curated BUGSINPY collection, which ensures a variety of bugs and project types.1067

As usual, we cannot make strong claims that our findings generalize to different application scenarios, or to1068

different programming languages. Nevertheless, our study successfully confirmed a number of findings about1069

fault localization in Java [78] (see Section 5.6), which further mitigates any major threats to external validity.1070

Zou et al.’s study used the Defects4J [28] curated collection of real-world Java faults as their experimental1071

subjects; we used the BUGSINPY [67] curated collection of real-world Python faults. This invariably limits the gen-1072

eralizability of our findings to all Python programs, and the generalizability of our comparison to all Python vs.1073

Java programs: the two curated collections of bugs may not represent all programs and faults in Python or Java.1074

While there is always a risk that any selection of experimental subjects is not fully representative of the whole1075

population, choosing standard well-known benchmarks such as Defects4J and BUGSINPY helps mitigate this threat.1076

First, BUGSINPY was explicitly inspired by Defects4J, and was built following a very similar approach but applied1077

to real-world open-source Python programs. Second, BUGSINPY projects were “selected as they represent the di-1078

verse domains [. . .] that Python is used for” [67, Sec. 1], which bodes well for generalizability. Third, BUGSINPY1079

and Defects4J are extensible frameworks, which have been and will be extended with new projects and bugs; thus,1080

32

using them as the basis of FL studies helps to make future research in this area comparable to previous results.1081

While BUGSINPY and Defects4J are only imperfect proxies for a fully general comparison of FL in Java and Python,1082

they are a sensible basis given the current state of the art.1083

6 Conclusions1084

This paper described an extensive empirical study of fault localization in Python, based on a differentiated con-1085

ceptual replication of Zou et al.’s recent Java empirical study [78]. Besides replicating for Python several of their1086

results for Java, we shed light on some nuances, and released detailed experimental data that can support further1087

replications and analyses.1088

As a concluding discussion, let’s highlight a few points relevant for possible follow-up work. Section 6.1 dis-1089

cusses a different angle for a comparison with other studies, suggested by Widyasari et al.’s recent work [68].1090

Section 6.2 describes broader ideas to improve the capabilities of fault localization in Python.1091

6.1 Other Fault Localization Studies1092

As we discussed in Section 3, Widyasari et al.’s recent work [68] is the only other large-scale study targeting fault1093

localization in real-world Python projects. We also explained how our study’s goals and methodology is quite1094

different from theirs; as a result, we cannot directly compare most of their findings to ours. Now that we have1095

presented our results in detail, we are in a better position to discuss how Widyasari et al.’s methodology suggests1096

future work that complements our own.1097

Widyasari et al. directly compare FL effectiveness metrics (such as exam score) between their experiments on1098

Python subjects from BUGSINPY and Pearson et al.’s experiments on Java subjects from Defects4J [49]. Table 14a1099

displays the key results of their comparison, alongside a roughly similar comparison between our experiments on1100

Python subjects from BUGSINPY and Zou et al.’s experiments on Java subjects from Defects4J [78]. The picture that1101

emerges from these comparisons is somewhat inconclusive: in our comparison, there is a significant difference,1102

with large effect size, between Python and Java with respect to exam scores, but not with respect to the Einspect1103

metric; conversely, in their comparison, there is a significant difference, with large/medium effect size, between1104

Python and Java with respect to the top-k ranks in the best-case debugging scenarios (roughly analogous to the1105

Einspect ranking metric), whereas the differences with respect to exam scores are significant but with small effect1106

sizes. Furthermore, the sign of the effect sizes is opposite: in our comparison, fault localization is more effective on1107

Python programs (negative effect sizes); in their comparison, it is more effective on Java programs (positive effect1108

sizes). It is plausible to surmise that these inconsistencies reflect differences between the effectiveness metrics, how1109

they are measured in each study, and—most important—differences between the experimental subjects; the exam1110

score metric, in particular, also depends on the size of the programs under analysis. As we discussed in Section 5.7,1111

even though both benchmarks BUGSINPY and Defects4J are carefully curated and of significant size, there is the risk1112

that they do not necessarily represent all Python and Java real-world projects and their faults. This suggests that1113

follow-up studies targeting different projects in Python and Java (or different selections of projects from BUGSINPY1114

and Defects4J) could help validate the generalizability of any results. Conversely, applying stricter project and bug1115

selection criteria could also be useful not to generalize findings, but to strengthen their validity in more specific1116

settings (for example, with projects of certain characteristics). Without provisioning stricter experimental controls,1117

directly comparing, fault localization effectiveness metrics on sundry programs in two different programming1118

languages, as we did in Table 14a for the sake of illustration, is unlikely to lead to clear-cut, robust findings.1119

Even though Widyasari et al.’s study found some statistically significant differences of effectiveness between1120

SBFL techniques, those differences tend to be modest or insignificant. As shown in Table 14b, this is largely con-1121

sistent with our findings: even though we found some weakly statistically significant differences between SBFL1122

techniques (between DStar and Tarantula for p < 0.1, and between Ochiai and Tarantula for p < 0.06) these have1123

little practical consequence as the effect sizes of the differences are vanishing small.1124

Our study did not consider two dimensions of analysis that play an important role in Widyasari et al.’s study:1125

different debugging scenarios, and a classification of faults according to their syntactic characteristics. Debugging1126

scenarios determine how we classify a fault as localized when it affects multiple lines. In our paper, we only1127

considered the “best-case” scenario: as long as any of the ground-truth locations is localized, we consider the fault1128

localized. Widyasari et al. also consider other scenarios such as the worst-case scenario (all ground-truth locations1129

must be localized). While they did not find any significant differences in the various findings under different1130

debugging scenarios, investigating the robustness of our empirical findings in different scenarios remains a viable1131

direction for future work.1132

33

THIS PAPER [68]

METRIC TECHNIQUE L p EFFECT p EFFECT REFERENCE

E(L) DStar 0.0000 −0.64 L 0.000000 0.32 S [68, Tab. 5]Ochiai 0.0000 −0.64 L 0.000093 0.15 S

I(L) DStar 0.0000 −0.27 S 0.000000 0.54 L [68, Tab. 3]Ochiai 0.0000 −0.28 S 0.000000 0.41 M

(a) Comparison of SBFL techniques on Python vs. Java programs. Each row compares the same SBFL TECHNIQUE L applied to PYTHON
and to JAVA programs, reporting the p-value of a Wilcoxon rank-sum test, and Cliff’s delta EFFECT size; a letter gives a qualitative
assessment of the effect size: N for negligible, S for small, M for medium, and L for large. The data for THIS PAPER is each technique L’s
exam score E(L) and Einspect rank I(L) for each bug among all 135 Python bugs used in the rest of the paper’s experiments, and for each
Java bug in Zou et al.’s replication package data [78]; to reflect the behavior on all bugs in these statistics, bugs that were not localized
are assigned an I rank and an exam score of −1 (unlike the rest of the paper where this value is undefined). The statistics of [68] (in the
four rightmost columns) are taken from its Table 5 (exam score, which they compute based on their top-k ranks) and Table 3 (best-case
debugging scenario top-k ranks).

THIS PAPER [68, Tab. 14]

TECHNIQUE L1 TECHNIQUE L2 p EFFECT EFFECT

DStar Ochiai 0.584 0.00 N 0.14 N
DStar Tarantula 0.093 −0.01 N 0.19 S
Ochiai Tarantula 0.056 −0.01 N 0.04 N

(b) Pairwise comparison of SBFL techniques according to exam score. Each
row compares the exam scores of two TECHNIQUEs L1 and L2 for signifi-
cant differences, reporting the p-value of a Wilcoxon signed-rank test, and
Cliff’s delta EFFECT size; a letter gives a qualitative assessment of the effect
size: N for negligible, S for small, M for medium, and L for large. The data
for THIS PAPER is each technique L’s exam score E(L) for each bug among
all 135 Python bugs used in the rest of the paper’s experiments; to reflect
the behavior on all bugs in these statistics, bugs that were not localized are
assigned an exam score of −1 (unlike the rest of the paper where this value
is undefined). The statistics of [68] (in the two rightmost columns) are taken
from its Table 14.

Table 14: A summary of some data presented in Widyasari et al.’s fault localization study [68] vis-à-vis analogous
data presented in this paper.

6.2 Future Work1133

One of the dimensions of analysis that we included in our empirical study was the classification of projects (and1134

their bugs) in categories, which led to the finding that faults in data science projects tend to be harder and take1135

longer to localize. This is not a surprising finding if we consider the sheer size of some of these projects (and of their1136

test suites). However, it also highlights an important category of projects that are much more popular in Python1137

as opposed to more “traditional” languages like Java. In fact, a lot of the exploding popularity of Python in the1138

last decade has been connected to its many usages for statistics, data analysis, and machine learning. Furthermore,1139

there is growing evidence that these applications have distinctive characteristics—especially when it comes to1140

faults [22, 19, 53]. Thus, investigating how fault localization can be made more effective for certain categories of1141

projects is an interesting direction for related work (which we briefly discussed in Section 3).1142

It is remarkable that SBFL techniques, proposed nearly two decades ago [26], still remain formidable in terms1143

of both effectiveness and efficiency. As we discussed in Section 3, MBFL was introduced expressly to overcome1144

some limitations of SBFL. In our experiments (similarly to Java projects [78]) MBFL performed generally well but1145

not always on par with SBFL; furthermore, MBFL is much more expensive to run than SBFL, which may put its1146

practical applicability into question. Our empirical analysis of “mutable” bugs (Section 5.3) indicated that MBFL1147

loses to SBFL usually when its mutation operators are not applicable to the faulty statements (which happened for1148

nearly half of the bugs we used in our experiments); in these cases, the mutation analysis will not bring relevant1149

information about the faulty parts of the program. These observations raise the question of whether it is possible to1150

predict the effectiveness of MBFL based on preliminary information about a failure; and whether one can develop1151

new mutation operators that extend the practical capabilities of MBFL to new kinds of bugs. More generally, one1152

could try to relate the various kinds of source-code edits (add, remove, modify) [60] introduced to fix a fault to1153

the effectiveness of different fault localization algorithms. We leave answering these questions to future research1154

in this area.1155

34

Acknowledgements1156

Work partially supported by SNF grant 200021-182060 (Hi-Fi).1157

Data Availability1158

A replication package with data, analysis scripts, and other artifacts related to the research described in this paper1159

are available: https://doi.org/10.6084/m9.figshare.23254688.1160

Declaration of Competing Interest1161

The authors declare that they have no competing interests that are related to the work described in this paper.1162

References1163

1. Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of spectrum-based fault localization.1164

In Proceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION,1165

pages 89–98, 2007.1166

2. Valentin Amrehin, Sander Greenland, and Blake McShane. Scientists rise up against statistical significance.1167

Nature, 567:305–307, 2019.1168

3. Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank based fault localization ap-1169

proach using likely invariants. In Proceedings of the 25th International Symposium on Software Testing and Analysis,1170

pages 177—-188, 2016. doi: 10.1145/2931037.2931049.1171

4. Ned Batchelder. Coverage.py. https://coverage.readthedocs.io/, 2023. [Online; accessed 6-April-2023].1172

5. Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas Zimmermann.1173

What makes a good bug report? In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations1174

of Software Engineering, pages 308–318, 2008. doi: 10.1145/1453101.1453146.1175

6. Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William C. Chu, and Baowen Xu. Dynamic slicing of Python1176

programs. In 2014 IEEE 38th Annual Computer Software and Applications Conference, pages 219–228, 2014. doi:1177

10.1109/COMPSAC.2014.30.1178

7. Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceedings of the 27th International1179

Conference on Software Engineering, pages 342–351, 2005. doi: 10.1145/1062455.1062522.1180

8. Cosmic Ray. Cosmic Ray: mutation testing for Python. https://cosmic-ray.readthedocs.io/, 2019. [Online;1181

accessed 6-April-2023].1182

9. Wayne W. Daniel. Biostatistics: A Foundation for Analysis in the Health Sciences. Wiley, 7 edition, 1999.1183

10. Vidroha Debroy, W. Eric Wong, Xiaofeng Xu, and Byoungju Choi. A grouping-based strategy to improve the1184

effectiveness of fault localization techniques. In 2010 10th International Conference on Quality Software, pages1185

13–22, 2010. doi: 10.1109/QSIC.2010.80.1186

11. Anna Derezińska and Konrad Hałas. Analysis of mutation operators for the Python language. In Wojciech1187

Zamojski, Jacek Mazurkiewicz, Jarosław Sugier, Tomasz Walkowiak, and Janusz Kacprzyk, editors, Proceedings1188

of the 9th International Conference on Dependability and Complex Systems, pages 155–164, 2014.1189

12. Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled experimentation with testing1190

techniques: An infrastructure and its potential impact. Empirical Softw. Engg., 10(4):405–435, 2005. doi: 10.1001191

7/s10664-005-3861-2.1192

13. Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. DeepFault: Fault localization for deep neural networks.1193

In Reiner Hähnle and Wil van der Aalst, editors, Fundamental Approaches to Software Engineering, pages 171–191.1194

Springer International Publishing, 2019.1195

14. Carlo A. Furia, Robert Feldt, and Richard Torkar. Bayesian data analysis in empirical software engineering1196

research. IEEE Transactions on Software Engineering, 47(9):1786–1810, September 2021.1197

15. Carlo A. Furia, Richard Torkar, and Robert Feldt. Applying Bayesian analysis guidelines to empirical soft-1198

ware engineering data: The case of programming languages and code quality. ACM Transactions on Software1199

Engineering and Methodology, 31(3):40:1–40:38, July 2022.1200

16. Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair: A survey. IEEE Transactions1201

on Software Engineering, 45:34–67, 2019. doi: 10.1109/TSE.2017.2755013.1202

17. Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen. Audee: Automated1203

testing for deep learning frameworks. In Proceedings of the 35th IEEE/ACM International Conference on Automated1204

Software Engineering, pages 486–498, 2020. doi: 10.1145/3324884.3416571.1205

35

https://doi.org/10.6084/m9.figshare.23254688
https://coverage.readthedocs.io/
https://cosmic-ray.readthedocs.io/

18. Clemens Hammacher. Design and implementation of an efficient dynamic slicer for Java. Bachelor’s Thesis,1206

November 2008.1207

19. Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella.1208

Taxonomy of real faults in deep learning systems. In ICSE ’20: 42nd International Conference on Software Engi-1209

neering, Seoul, South Korea, 27 June - 19 July, 2020, pages 1110–1121. ACM, 2020. doi: 10.1145/3377811.3380395.1210

URL https://doi.org/10.1145/3377811.3380395.1211

20. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of dataflow- and control-1212

flow-based test adequacy criteria. In Proceedings of 16th International Conference on Software Engineering, pages1213

191–200, 1994. doi: 10.1109/ICSE.1994.296778.1214

21. Qusay Idrees Sarhan, Attila Szatmári, Rajmond Tóth, and Árpád Beszédes. CharmFL: A fault localization tool1215

for Python. In IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM),1216

pages 114–119, 2021. doi: 10.1109/SCAM52516.2021.00022.1217

22. Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep learning1218

bug characteristics. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and1219

Symposium on the Foundations of Software Engineering, pages 510–520, 2019. doi: 10.1145/3338906.3338955.1220

23. Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. Repairing deep neural networks: Fix1221

patterns and challenges. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering,1222

pages 1135–1146, 2020. doi: 10.1145/3377811.3380378.1223

24. Md. Johirul Islam, Shamim Ahmad, Fahmida Haque, Mamun Bin Ibne Reaz, Mohammad Arif Sobhan Bhuiyan,1224

and Md. Rezaul Islam. Application of min-max normalization on subject-invariant emg pattern recognition.1225

IEEE Transactions on Instrumentation and Measurement, 71:1–12, 2022. doi: 10.1109/TIM.2022.3220286.1226

25. Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE Transactions1227

on Software Engineering, 37(5):649–678, 2011. doi: 10.1109/TSE.2010.62.1228

26. James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automatic fault-localization1229

technique. In Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, pages1230

273–282, 2005. doi: 10.1145/1101908.1101949.1231

27. René Just. The major mutation framework: Efficient and scalable mutation analysis for java. In Proceedings of1232

the International Symposium on Software Testing and Analysis, pages 433–436, 2014. doi: 10.1145/2610384.2628053.1233

28. René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing faults to enable controlled1234

testing studies for java programs. In Proceedings of the International Symposium on Software Testing and Analysis,1235

pages 437–440, 2014. doi: 10.1145/2610384.2628055.1236

29. René Just, Darioush Jalali, and other Defects4J contributors. Defects4J repository. https://github.com/rjust/d1237

efects4j#export-version-specific-properties, 2023.1238

30. Natalia Juristo Juzgado and Omar S. Gómez. Replication of software engineering experiments. In Empirical1239

Software Engineering and Verification – International Summer Schools, LASER 2008-2010, Elba Island, Italy, Revised1240

Tutorial Lectures, volume 7007 of Lecture Notes in Computer Science, pages 60–88. Springer, 2010. doi: 10.1007/971241

8-3-642-25231-0_2. URL https://doi.org/10.1007/978-3-642-25231-0_2.1242

31. Amy J. Ko and Brad A. Myers. Debugging reinvented: asking and answering why and why not questions1243

about program behavior. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, 30th International1244

Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pages 301–310. ACM, 2008.1245

doi: 10.1145/1368088.1368130. URL https://doi.org/10.1145/1368088.1368130.1246

32. Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot framework for Java program analysis:1247

a retrospective. In Cetus Users and Compiler Infrastructure Workshop (CETUS 2011), October 2011. URL https:1248

//www.bodden.de/pubs/lblh11soot.pdf.1249

33. Tien-Duy B. Le, Ferdian Thung, and David Lo. Theory and practice, do they match? a case with spectrum-1250

based fault localization. In IEEE International Conference on Software Maintenance, pages 380–383, 2013. doi:1251

10.1109/ICSM.2013.52.1252

34. Li Li, Jiawei Wang, and Haowei Quan. Scalpel: The Python static analysis framework. arXiv preprint1253

arXiv:2202.11840, 2022.1254

35. Xia Li and Lingming Zhang. Transforming programs and tests in tandem for fault localization. Proc. ACM1255

Program. Lang., 1(OOPSLA):1–30, 2017. doi: 10.1145/3133916. Replication package: https://github.com/deepr1256

l4fl2021icse/deeprl4fl-2021-icse.1257

36. Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. DeepFL: Integrating multiple fault diagnosis dimensions1258

for deep fault localization. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing1259

and Analysis, pages 169–180, 2019. doi: 10.1145/3293882.3330574.1260

37. Yi Li, Shaohua Wang, and Tien N. Nguyen. Fault localization with code coverage representation learning. In1261

Proceedings of the 43rd International Conference on Software Engineering, pages 661–673, 2021. doi: 10.1109/ICSE1262

43902.2021.00067.1263

38. Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. Boosting1264

coverage-based fault localization via graph-based representation learning. In Proceedings of the 29th ACM Joint1265

36

https://doi.org/10.1145/3377811.3380395
https://github.com/rjust/defects4j#export-version-specific-properties
https://github.com/rjust/defects4j#export-version-specific-properties
https://github.com/rjust/defects4j#export-version-specific-properties
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1145/1368088.1368130
https://www.bodden.de/pubs/lblh11soot.pdf
https://www.bodden.de/pubs/lblh11soot.pdf
https://www.bodden.de/pubs/lblh11soot.pdf
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse
https://github.com/deeprl4fl2021icse/deeprl4fl-2021-icse

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,1266

pages 664–676, 2021. doi: 10.1145/3468264.3468580.1267

39. Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. MuJava: an automated class mutation system. Software Testing,1268

Verification and Reliability, 15(2):97–133, 2005. doi: https://doi.org/10.1002/stvr.308.1269

40. David MacIver, Zac Hatfield-Dodds, and Many Contributors. Hypothesis: A new approach to property-based1270

testing. Journal of Open Source Software, 4(43):1891–1893, 2019. doi: 10.21105/joss.01891.1271

41. Steve McConnell. Code Complete. Microsoft Press, 2nd edition, 2004.1272

42. Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the mutants: Mutating faulty programs for1273

fault localization. In IEEE Seventh International Conference on Software Testing, Verification and Validation, pages1274

153–162, 2014. doi: 10.1109/ICST.2014.28.1275

43. Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. Fixing dependency errors for Python build1276

reproducibility. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis,1277

pages 439–451, 2021. doi: 10.1145/3460319.3464797.1278

44. A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. An experimental1279

determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118, apr 1996. ISSN1280

1049-331X. doi: 10.1145/227607.227610. URL https://doi.org/10.1145/227607.227610.1281

45. Mike Papadakis and Yves Le Traon. Metallaxis-fl: Mutation-based fault localization. Softw. Test. Verif. Reliab.,1282

25(5–7):605–628, 2015. doi: 10.1002/stvr.1509.1283

46. Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. Chapter six - mutation1284

testing advances: An analysis and survey. volume 112 of Advances in Computers, pages 275–378. 2019. doi:1285

https://doi.org/10.1016/bs.adcom.2018.03.015.1286

47. Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping programmers?1287

In Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages 199–209, 2011. doi:1288

10.1145/2001420.2001445.1289

48. Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping programmers? In1290

Matthew B. Dwyer and Frank Tip, editors, Proceedings of the 20th International Symposium on Software Testing and1291

Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages 199–209. ACM, 2011. doi: 10.1145/2001420.1292

2001445. URL https://doi.org/10.1145/2001420.2001445.1293

49. Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Ben-1294

jamin Keller. Evaluating and improving fault localization. In Proceedings of the 39th International Conference on1295

Software Engineering, pages 609–620, 2017. doi: 10.1109/ICSE.2017.62.1296

50. Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar Devanbu. Bugcache for inspections:1297

Hit or miss? In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations1298

of Software Engineering, pages 322–331, 2011. doi: 10.1145/2025113.2025157.1299

51. M. Renieres and S.P. Reiss. Fault localization with nearest neighbor queries. In Proceedings of 18th IEEE Inter-1300

national Conference on Automated Software Engineering, pages 30–39, 2003. doi: 10.1109/ASE.2003.1240292.1301

52. Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program profiling for software mainte-1302

nance with applications to the year 2000 problem. In Proceedings of the 6th European SOFTWARE ENGINEERING1303

Conference Held Jointly with the 5th ACM SIGSOFT International Symposium on Foundations of Software Engineering,1304

pages 432–449, 1997. doi: 10.1145/267895.267925.1305

53. Mohammad Rezaalipour and Carlo A. Furia. An annotation-based approach for finding bugs in neural net-1306

work programs. Journal of Systems and Software, 201:111669, July 2023.1307

54. J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Should we really be using t-test and Cohen’s d for1308

evaluating group differences on the NSSE and other surveys? In Annual meeting of the Florida Association of1309

Institutional Research, 2006.1310

55. Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. Improving bug localization using1311

structured information retrieval. In 28th IEEE/ACM International Conference on Automated Software Engineering1312

(ASE), pages 345–355, 2013. doi: 10.1109/ASE.2013.6693093.1313

56. Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dimitris Mitropoulos. PyCG:1314

Practical call graph generation in Python. In Proceedings of the 43rd International Conference on Software Engineer-1315

ing, pages 1646–1657, 2021. doi: 10.1109/ICSE43902.2021.00146.1316

57. Qusay Idrees Sarhan and Árpád Beszédes. A survey of challenges in spectrum-based software fault localiza-1317

tion. IEEE Access, 10:10618–10639, 2022. doi: 10.1109/ACCESS.2022.3144079.1318

58. Eldon Schoop, Forrest Huang, and Bjoern Hartmann. Umlaut: Debugging deep learning programs using pro-1319

gram structure and model behavior. In Proceedings of the 2021 CHI Conference on Human Factors in Computing1320

Systems, 2021. doi: 10.1145/3411764.3445538.1321

59. Adrian Schroter, Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. Do stack traces help developers fix1322

bugs? In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pages 118–121, 2010. doi:1323

10.1109/MSR.2010.5463280.1324

37

https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/2001420.2001445

60. Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and Marcelo de Almeida Maia. Dis-1325

section of a bug dataset: Anatomy of 395 patches from Defects4J. In Rocco Oliveto, Massimiliano Di Penta,1326

and David C. Shepherd, editors, 25th International Conference on Software Analysis, Evolution and Reengineer-1327

ing, SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 130–140. IEEE Computer Society, 2018. doi:1328

10.1109/SANER.2018.8330203. URL https://doi.org/10.1109/SANER.2018.8330203.1329

61. Jeongju Sohn and Shin Yoo. FLUCCS: Using code and change metrics to improve fault localization. In Pro-1330

ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 273–283, 2017.1331

doi: 10.1145/3092703.3092717.1332

62. Friedrich Steimann, Marcus Frenkel, and Rui Abreu. Threats to the validity and value of empirical assessments1333

of the accuracy of coverage-based fault locators. In Proceedings of the International Symposium on Software Testing1334

and Analysis, pages 314–324, 2013. doi: 10.1145/2483760.2483767.1335

63. Attila Szatmári, Qusay Idrees Sarhan, and Árpád Beszédes. Interactive fault localization for Python with1336

CharmFL. In Proceedings of the 13th International Workshop on Automating Test Case Design, Selection and Eval-1337

uation, pages 33–36, 2022. doi: 10.1145/3548659.3561312.1338

64. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. Soot – a1339

Java bytecode optimization framework. In Stephen A. MacKay and J. Howard Johnson, editors, Proceedings of1340

the 1999 conference of the Centre for Advanced Studies on Collaborative Research, November 8-11, 1999, Mississauga,1341

Ontario, Canada, page 13. IBM, 1999. URL https://dl.acm.org/citation.cfm?id=782008.1342

65. Mohammad Wardat, Wei Le, and Hridesh Rajan. Deeplocalize: Fault localization for deep neural networks. In1343

ICSE’21: The 43nd International Conference on Software Engineering, 2021.1344

66. Ronald L. Wasserstein and Nicole A. Lazar. The ASA statement on p-values: Context, process, and purpose.1345

The American Statistician, 70(2):129–133, 2016. https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf.1346

67. Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin Tay, Constance Tan, Fiona Wee,1347

Jodie Ethelda Tan, Yuheng Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and1348

Eng Lieh Ouh. BugsInPy: A database of existing bugs in Python programs to enable controlled testing and1349

debugging studies. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and1350

Symposium on the Foundations of Software Engineering, pages 1556–1560, 2020. doi: 10.1145/3368089.3417943.1351

68. Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus Agus Haryono, Shaowei Wang, and David Lo. Real1352

world projects, real faults: Evaluating spectrum based fault localization techniques on Python projects. Empir-1353

ical Softw. Engg., 27(6), 2022. doi: 10.1007/s10664-022-10189-4.1354

69. Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method for effective fault local-1355

ization. In 1st International Conference on Software Testing, Verification, and Validation, pages 42–51, 2008. doi:1356

10.1109/ICST.2008.65.1357

70. W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The DStar method for effective software fault local-1358

ization. IEEE Transactions on Reliability, 63(1):290–308, 2014. doi: 10.1109/TR.2013.2285319.1359

71. W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault localization.1360

IEEE Transactions on Software Engineering, 42(8):707–740, 2016. doi: 10.1109/TSE.2016.2521368.1361

72. Jifeng Xuan and Martin Monperrus. Learning to combine multiple ranking metrics for fault localization. In1362

2014 IEEE International Conference on Software Maintenance and Evolution, pages 191–200, 2014. doi: 10.1109/IC1363

SME.2014.41.1364

73. Andreas Zeller. Why Programs Fail – A Guide to Systematic Debugging, 2nd Edition. Academic Press, 2009. ISBN1365

978-0-12-374515-6. URL http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search.1366

74. X. Zhang, R. Gupta, and N. Gupta. Locating faults through automated predicate switching. In Software Engi-1367

neering, International Conference on, pages 272–281, 2006. doi: 10.1145/1134285.1134324.1368

75. Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. Autotrainer: An automatic dnn training problem de-1369

tection and repair system. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages1370

359–371, 2021. doi: 10.1109/ICSE43902.2021.00043.1371

76. Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, and Tao Xie. Detecting numeri-1372

cal bugs in neural network architectures. In Proceedings of the 28th ACM Joint Meeting on European Software1373

Engineering Conference and Symposium on the Foundations of Software Engineering, pages 826–837, 2020. doi:1374

10.1145/3368089.3409720.1375

77. Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? more accurate information1376

retrieval-based bug localization based on bug reports. In 34th International Conference on Software Engineering1377

(ICSE), pages 14–24, 2012. doi: 10.1109/ICSE.2012.6227210.1378

78. Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang. An empirical study of fault1379

localization families and their combinations. IEEE Transactions on Software Engineering, 47(2):332–347, 2021.1380

doi: 10.1109/TSE.2019.2892102.1381

38

https://doi.org/10.1109/SANER.2018.8330203
https://dl.acm.org/citation.cfm?id=782008
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
http://store.elsevier.com/product.jsp?isbn=9780123745156&pagename=search

	Introduction
	Fault Localization and FauxPy
	Related Work
	Experimental Design
	Experimental Results
	Conclusions

