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Abstract. The comprehensive functionality and nontrivial design of realistic general-purpose container
libraries pose challenges to formal verification that go beyond those of individual benchmark problems
mainly targeted by the state of the art. We present our experience verifying the full functional correctness
of EiffelBase2: a container library offering all the features customary in modern language frameworks, such
as external iterators, and hash tables with generic mutable keys and load balancing. Verification uses the
automated deductive verifier AutoProof, which we extended as part of the present work. Our results indicate
that verification of a realistic container library (135 public methods, 8,400 LOC) is possible with moderate
annotation overhead (1.4 lines of specification per LOC) and good performance (0.2 seconds per method on
average).
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1. Introduction

The moment of truth for software verification technology comes when it is applied to realistic programs in
practically relevant domains. Libraries of general-purpose data structures—called containers—are a prime
example of such domains, given their pervasive usage as fundamental software components. Data structures
are also “natural candidates for full functional verification” [ZKR08] since they have well-understood seman-
tics and typify challenges in automated reasoning such as dealing with aliasing and the heap. This paper
presents our work on verifying full functional correctness1 of a realistic, object-oriented container library.

1.1. Challenges

Realistic software has nontrivial size, a design that promotes flexibility and reuse, and an implementation
that offers competitive performance. General-purpose software includes all the functionalities that users can

Work mainly done while the authors were affiliated with ETH Zurich, Switzerland. A preliminary version appeared in the 20th
International Symposium on Formal Methods in 2015 [PTF15].
Correspondence and offprint requests to: Nadia Polikarpova, 32 Vassar street 32-G714, Cambridge, MA 02139, USA, e-mail:
polikarn@csail.mit.edu
1 “Functional correctness” refers to the input/output behavior of programs [DB82, HLL+12].
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reasonably expect, accessible through uniform and rich interfaces. Full specifications completely capture the
behavior of a software component relative to the level of abstraction given by its interface. Notwithstanding
the vast amount of research on functional verification of heap-manipulating programs and its applications
to data-structure implementations, no previous work has, to our knowledge, tackled all these challenges in
combination.

Rather, the focus has previously been on verifying individually chosen data-structure operations, often
stripped or tailored to particular reasoning techniques. Some concrete examples from recent work in this area
(see Section 5 for more): Zee et al. [ZKR08] verify a significant selection of complex linked data structures
but not a complete container library, and they do no include certain features expected of general-purpose
implementations, such as iterators or user-defined key equivalence in hash tables. Pek et al. [PQM14] analyze
realistic implementations of linked lists and trees but do not always verify full functional correctness (for
example, they do not prove that reversal procedures actually reverse the elements in a list), nor can their
technique handle arbitrary heap structures. Kawaguchi et al. [KRJ09] verify complex functional properties
but their approach targets functional languages, where the abstraction gap between specification and imple-
mentation is narrow; hence, their specifications have a different flavor and their techniques are inapplicable
to object-oriented designs. These observations do not detract from the value of these works; in fact, each
challenge is formidable enough in its own right to require dedicated focused research, and all are necessary
steps towards verifying realistic implementations—which has remained, however, an outstanding challenge.

1.2. Result

Going beyond the state of the art in this area, we completely verified a realistic container library, called
EiffelBase2, against full functional specifications. The library, described in Section 4, consists of over 8,000
lines of Eiffel code in 46 classes, and offers arrays, lists, stacks, queues, sets, and tables (dictionaries).
EiffelBase2’s interface specifications are written in first-order logic and characterize the abstract object state
using mathematical entities, such as sets and sequences. To demonstrate the usefulness of these specifications
for clients, we also verified correctness properties of around 2,700 lines of client code that uses some of
EiffelBase2’s containers.

1.3. Techniques

A crucial feature of any verification technique is the amount of automation it provides. While some ap-
proaches, such as abstract interpretation, can offer complete “push button” automation by focusing on
somewhat restricted properties, full functional verification of realistic software still largely relies on inter-
active theorem provers, which require massive amounts of effort from highly-trained experts. For example,
verifying the seL4 OS kernel [KEH+09]—consisting of complex system-level code—took 20 person-years in
Isabelle/HOL. Another example is Leroy’s verification of a realistic compiler [Ler09]. Even data-structure
verification uses interactive provers, such as in Zee et al. ’s work [ZKR08], to discharge the most complex
verification conditions. Advances in verification technology that target this class of tools have little chance
of directly improving usability for serious yet non-expert users—as opposed to verification mavens.

In response to these concerns, an important line of research has developed verification tools that target
expressive functional correctness properties, yet provide more automation and do not require interacting
with back-end provers directly. Since their degree of automation is intermediate between fully automatic
and interactive, such tools are called auto-active [LM10a]; examples are Dafny [Lei10], VCC [CDH+09], and
VeriFast [JSP+11], as well as AutoProof, which we developed in previous work [PTFM14, TFNP15] and
significantly extended as part of the work presented here.

At the core of AutoProof’s verification methodology for heap-manipulating programs is semantic col-
laboration [PTFM14]: a flexible approach to reasoning about class invariants in the presence of complex
inter-object dependencies. Previously, we applied the methodology only to a selection of stand-alone bench-
marks; in the present work, to enable the verification of a realistic library, we extended it with support
for custom mathematical types, abstract interface specifications, and inheritance. We also redesigned Auto-
Proof’s encoding of verification conditions in order to achieve predictable performance on larger problems.
These improvements, which we describe in Section 3, directly benefit serious users of the tool by providing
more automation, better user experience, and all-out support of object-oriented features as used in practice.
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1.4. Contributions

This paper’s work makes the following contributions:

• The first verification of full functional correctness of a realistic general-purpose data-structure library in
a heap-based object-oriented language.

• The first verification of a significant collection of data structures carried out entirely using an auto-active
verifier.

• The first full-fledged verification of several advanced object-oriented patterns that involve complex inter-
object dependencies but are widely used in realistic implementations (see Section 2).

• A practical verification methodology and the supporting AutoProof verifier, which are suitable to reason,
with moderate annotation overhead and predictable performance, about the full gamut of object-oriented
language constructs.

The fully annotated source code of the EiffelBase2 container library and a web interface for the AutoProof
verifier are available at:

https://github.com/nadia-polikarpova/eiffelbase2 (cite as [Pol15])

The paper focuses on presenting EiffelBase2’s verification effort and the new features of AutoProof that we
introduced to this end; to make the paper self-contained, we also include an overview of some components
of AutoProof’s verification methodology that had been also reported in our previous work but were crucial
to EiffelBase2’s verification, such as semantic collaboration [PTFM14] and model-based interface specifica-
tions [PFM10]. For an in-depth presentation of these techniques and of the rest of AutoProof’s features, we
refer readers to the related publications [PTFM14, PFM10, TFNP15, FNPT16, Pol14].

2. Illustrative Examples

Using excerpts from two data structures in EiffelBase2—a linked list and a hash table—we demonstrate our
approach to specifying and verifying full functional correctness of containers, and illustrate some challenges
specific to realistic container libraries.

2.1. Linked List

Figure 1 shows excerpts from two EiffelBase2 classes that implement singly linked lists and their iterators.
Class LINKED_LIST is parametrized by the generic type G of list elements, and inherits from an abstract class LIST,
which defines the interface common to all three implementations of lists available in EiffelBase2—arrayed,
singly linked, and doubly linked. As shown in Figure 5, class LIST in turn inherits indirectly from class
CONTAINER, which is the root of EiffelBase2’s container hierarchy. The excerpt in Figure 1 includes two public
API methods: first, for accessing the first element of a list, and extend_back, for inserting an element at the
list’s end. The excerpt also shows the private attributes of LINKED_LIST that make up its internal representation:
first_cell stores a reference to the first node (for accessing the list’s content), and last_cell stores a reference
to the last node in the list (for making insertion at the end a constant-time operation). List nodes use a helper
class LINKABLE [G] with two attributes: item: G (the value stored in the node) and right: LINKABLE [G] (a reference
to the following node). The rest of LINKED_LIST’s attributes are there solely for specification purposes, hence
their designation as ghost [FGP14].2

Class LINKED_LIST_ITERATOR implements iterator objects; any such object is attached to a given linked list
upon construction (constructor method make), and can traverse the list (method forth) while accessing list
elements (method item) as well as inserting or removing elements at the current iterator position (methods
such as remove_right). An iterator’s state consists of a publicly visible reference to the target list and a private
reference active to the list node at the current position.

The Eiffel language includes notation for method preconditions (require) and postconditions (ensure), and
class invariants; AutoProof provides additional keywords to annotate methods with frame conditions (modify

2 Section 3.2 better explains the notion of ghost elements.

https://github.com/nadia-polikarpova/eiffelbase2
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class LINKED_LIST [G] inherit LIST [G]
model sequence

feature {public}
ghost sequence: MML_SEQUENCE [G]
ghost bag: MML_BAG [G] -- inherited from CONTAINER

first: G -- First element.
require not sequence.is_empty
do

assert inv
Result := first_cell.item

ensure Result = sequence.first

extend_back (v: G) -- Insert ‘v’ at the back.
require all o ∈ observers : not o.closed
modify model Current [sequence]
local cell: LINKABLE [G]
do

create cell.put (v)
if first_cell = Void then

first_cell := cell
else

last_cell.put_right (cell)
end
last_cell := cell
cells := cells + 〈cell〉
sequence := sequence + 〈v〉

ensure sequence = old sequence + 〈v〉

feature {private}
first_cell: LINKABLE [G]
last_cell: LINKABLE [G]
ghost cells: MML_SEQUENCE [LINKABLE [G]]

invariant {public}
seq_refines_bag: bag = sequence.to_bag

invariant {private}
cells_domain: sequence.count = cells.count
first_cell_empty: cells.is_empty = (first_cell = Void)
last_cell_empty: cells.is_empty = (last_cell = Void)
owns_definition: owns = cells.range
cells_exist: cells.non_void
sequence_implementation: all i ∈ 1 .. cells.count :

sequence [i] = cells [i].item
cells_linked: all i, j ∈ 1 .. cells.count :

i + 1 = j implies cells [i].right = cells [j]
cells_first: cells.count > 0 implies

first_cell = cells.first
cells_last: cells.count > 0 implies

last_cell = cells.last and last_cell.right = Void
end

class LINKED_LIST_ITERATOR [G] inherit LIST_ITERATOR [G]
model target, index

feature {public}
target: LINKED_LIST [G]
ghost index: INTEGER

make (list: LINKED_LIST [G]) -- Constructor.
modify Current
modify field list [observers, closed]
do

target := list
target.add_iterator (Current)
assert target.inv_only (seq_refines_bag)

ensure
target = list
index = 0
list.observers = old list.observers + {Current}

item: G -- Item at current position.
require not off and all s ∈ subjects : s.closed
do

assert inv and target.inv
Result := active.item

ensure Result = target.sequence [index]

forth -- Move one position forward.
require not off and all s ∈ subjects : s.closed
modify model Current [index]
do . . .
ensure index = old index + 1

remove_right -- Remove element after the current.
require

1≤ index≤ target.sequence.count − 1
target.is_wrapped -- closed and owner = Void
all o ∈ target.observers :

o 6= Current implies not o.closed
modify model target [sequence]
do . . .
ensure target.sequence =

old target.sequence.removed_at (index + 1)

feature {private}
active: LINKABLE [G]

invariant {public}
target_exists: target 6= Void
subjects_definition: subjects = {target}
index_range: 0≤ index≤ target.sequence.count + 1

invariant {private}
cell_off: (index <1 or target.sequence.count <index)

= (active = Void)
cell_not_off: 1≤ index≤ target.sequence.count

implies active = target.cells [index]
end

Fig. 1. Excerpt from EiffelBase2 classes LINKED_LIST and LINKED_LIST_ITERATOR. (The syntax is occasionally sim-
plified for readability.)

and read), which express what a method’s body may modify or access. Every specification element (such as a
precondition or a class invariant) consists of one or more clauses (assertions), which are implicitly conjoined.
A clause may have a name (tag), which carries no semantics but is useful to refer to specific parts of a
large specification element, in particular in error messages. For example, LINKED_LIST’s class invariant has ten
clauses; the first one is named seq_refines_bag.
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2.1.1. Interface Specifications

An important goal when specifying libraries is simplifying client reasoning: the interface specification must,
on the one hand, hide from clients all the irrelevant details, such as the intricate heap structure underlying
a container’s implementation; on the other hand, it must provide enough relevant details for clients to
reason, formally and informally, about whether they are interacting with the container correctly and what
the observable effect of their interactions is. In EiffelBase2 we meet these diverging requirements with a
specification methodology that explicitly distinguishes between concrete and abstract state of a class; the
specification of the publicly observable behavior must be as precise as possible, but only relative to the
information captured by the abstract state.

Each EiffelBase2 class declares its abstract state as a set of model attributes. In the case of LINKED_LIST, it
is a single attribute sequence, which denotes the sequence of list elements; its type MML_SEQUENCE is not a normal
Eiffel class, but a so-called model class (which defines a specification type) from the Mathematical Model
Library (MML). Instances of model classes are mathematical values with custom logical representations
in the underlying prover. Since attribute sequence is declared as ghost, it exists only for specification and
verification purposes but is stripped away by the compiler; thus, any elements introduced for specification
purposes bring no runtime overhead.

It is good practice—uniformly accepted in Eiffel [Mey97]—to separate methods into commands and
queries; EiffelBase2 method specifications reflect this command/query separation. Commands—methods
with observable side effects that return no value—modify the abstract state of objects listed in their frame
specification according to their postcondition. For example, the ensure clause of command extend_back in
Figure 1 states that its effect on the abstract state is appending its argument to the lists’s sequence of
elements; at the same time, its modify clause implies that this will be the only observable side effect: model
attribute sequence is the only piece of visible abstract state that extend_back may modify. Queries—methods
that return a value without observable side effects—specify, in their postcondition, their returned value as
a function of the abstract state, which they do not modify. For example, the ensure clause of query first in
Figure 1 states that it simply returns the first element in the list’s sequence of elements.

By referring to an explicitly declared model, interface specifications are concise, have a consistent level of
abstraction, and can be checked for completeness, that is whether they uniquely characterize the results of
queries and the effect of commands on the model state. Such abstract specifications are convenient for clients,
which can reason about the effect of method calls solely in terms of the model while ignoring implementation
details. Indeed, LINKED_LIST’s public specification is the same as LIST’s—its abstract ancestor class—and is
oblivious to the fact that the sequence of elements is stored in linked nodes on the heap.

While clients have it easy, verifying different implementations of the same abstract interface poses addi-
tional challenges in ensuring consistency without compromising on individual implementation features.

2.1.2. Connecting Abstract and Concrete State

Verifying the implementation of first in Figure 1 requires relating the model of the list to its concrete
representation: more precisely, specifying that the first element of the abstract sequence is the same as the item

stored in the first node of the list, referenced by first_cell. We accomplish this through the class invariant: the
clause named sequence_implementation asserts that model attribute sequence lists the items stored in the sequence
of LINKABLE nodes denoted as cells; cells is an auxiliary specification-only attribute connected to the concrete
list representation by invariant clauses cells_first and cells_linked, which together say that one can traverse
cells (when it’s not empty) by following right links starting at first_cell.

2.1.3. Invariant Methodology

Reasoning based on class invariants is germane to object-oriented programming, yet the semantics of in-
variants is tricky. A fundamental issue is when (at what program points) invariants should hold. Simple
syntactic approaches, which require invariants to hold at predefined points (for example, before and after
every public call), are not flexible enough to reason about complex object structures. Our methodology is
based on the notion of closed (and open) objects [LM04, BN04]: invariants have to hold only for closed ob-
jects. Programs modify objects following a protocol that requires opening an object, changing its state, and
then closing it, while providing evidence that the invariant has been restored; the only way to open and close
an object is through built-in methods unwrap and wrap respectively. By default, AutoProof implicitly opens
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the Current object3 at the beginning of every public command and closes it at the end: hence the absence of
explicit annotations in the body of extend_back; this behavior can be easily overridden when more flexibility
is necessary.

2.1.4. Ownership

LINKED_LIST’s invariant relies on the content of its cells. This might threaten modularity of reasoning, since
an independent modification of a cell by an unknown client may break consistency of the list object. The
developer’s intent, however, is that the cells be part of the list’s internal representation, which should not be
directly accessible to other clients; a verifier must provide means to both state and formally verify this intent.
For such hierarchical object dependencies, AutoProof implements an ownership scheme [LM04, CDH+09] to
specify which objects have unique control over which other objects. LINKED_LIST’s invariant clause owns_definition

asserts that the list owns precisely its cells; the owner is the gatekeeper to any modification of the cells’
content, which is then only possible when the owner is open.

2.1.5. Safe Iterators

Like standard container libraries in other languages, EiffelBase2 offers iterator classes, which provide the
most idiomatic and uniform way of manipulating containers (in particular, lists). When multiple iterators
are active on the same list, consistency problems may arise: modifying the list, through its own interface or
one of the iterators, may invalidate the other iterators. Concretely, consider the invariant clause cell_not_off

of LINKED_LIST_ITERATOR in Figure 1: it connects the abstract state of the iterator—the integer index of its current
position inside the list—with its concrete state—the reference active to the current list node. If two iterators
are positioned on consecutive elements of the same list, calling remove_right on the leftmost iterator removes
the active node of the other iterator, and thus indirectly violates the latter’s invariant clause cell_not_off.

Such scenarios are not only a challenge to verification but practical programming problems: even in the
absence of formalized invariants, a client would observe undesired behavior (namely, an iterator’s item method
returning a value that is no longer in the list). To address it, Java’s java.util iterators implement fail-safe
behavior, which amounts to equipping containers with a version attribute, checking its value at every iterator
usage, and raising an exception if that value has changed. This is not a robust solution, since “the fail-fast
behavior of an iterator cannot be guaranteed”, and hence one cannot “write a program that [depends] on this
exception for its correctness” [Jav16a]. Other collection libraries, such as .NET’s Generic Collections, choose
to provide no protection and rely on the programmer’s informal reasoning, who should be aware that “if
changes are made to the collection, such as adding, modifying, or deleting elements, the [iterator’s] behavior
is undefined” [.NE16b]; to reduce the resulting ample possibility for human error, the .NET library restricts
the interface of its iterators, preventing them from modifying the underlying collections.

In contrast, through complete specifications, EiffelBase2 offers robust safe iterators: clients reason about
correct usage statically, so that safe behavior can be guaranteed without runtime overhead or functionality
restrictions. To enable this, once again, a verifier must allow developers to precisely formalize and verify
their intent : namely, that a container is allowed to have either multiple active reader-iterators or a single
active writer-iterator (or no iterators, in which case clients are free to modify the container through it own
interface).

2.1.6. Collaborative Invariants

Object dependencies such as those arising between a list and its iterators do not quite fit hierarchical
ownership schemes (Section 2.1.4): an iterator’s consistency depends on the list, but any one iterator cannot
own the list—simply because other iterators may be active on the same list. In such cases we rely on
collaborative invariants, introduced in our previous work [PTFM14], to specify which objects depend on
which other objects for consistency. LINKED_LIST_ITERATOR’s invariant clause subjects_definition asserts that the
iterator might depend on its target list (one of its subjects); correspondingly, the list has to include all active
iterators among its observers when they register upon construction by calling add_iterator. By reasoning about
the objects in sets subjects and observers, we ascertain that closed iterators remain valid. For example, the

3 Keyword Current is the Eiffel equivalent of this in Java and similar languages; it is a reference to the receiver object within
the object’s class text.
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class HASH_TABLE [K, V]
model map, lock

feature {public}
ghost map: MML_MAP [K, V]
ghost lock: LOCK [K]

extend (k: K; v: V) -- Add key-value pair.
require

k ∈ lock.owns
all x ∈ map.domain : not x.is_equal (k)
lock.is_wrapped
observers = {}

modify model Current [map]
do . . .
ensure map = old map.updated (k, v)

feature {private}
buckets: ARRAY [LINKED_LIST [PAIR [K, V]]]

invariant {public}
subjects_definition: subjects = {lock}
keys_locked: map.domain≤ lock.owns
no_duplicates: all x, y ∈ map.domain :

x 6= y implies not lock.eq [x, y]
invariant {private}

keys_in_buckets: all x ∈ map.domain :
buckets [index (lock.hash [x])].has (x)

end

ghost class LOCK [K]
model eq, hash

feature {public}
eq: MML_RELATION [K, K]
hash: MML_MAP [K, INTEGER]

lock (key: K) -- Acquire ownership of ‘key’.
require key.is_wrapped
modify Current
modify field key [owner]
do . . .
ensure owns = old owns + {key}

unlock (key: K) -- Relinquish ownership of ‘key’.
require

key ∈ owns
all o ∈ observers : not key ∈ o.map.domain

modify Current
do . . .
ensure

owns = old owns − {key}
key.is_wrapped

invariant {public}
eq_definition: all x, y ∈ owns : eq [x, y] = x.is_equal (y)
hash_definition: all x ∈ owns : hash [x] = x.hash_code

end

Fig. 2. Excerpts from classes HASH_TABLE and LOCK. (The syntax and specifications are occasionally simplified
for readability.)

precondition of method remove_right in class LINKED_LIST_ITERATOR requires that all other observers of the target

list apart from the receiver be open, which enables updating the list’s state without running the risk of
breaking invariants of closed objects. At the same time, methods like item and forth do not impose this
requirement, which allows multiple closed iterators to read from the same list. Thus collaborative invariants
readily support formalization of the intended iterator behavior outlined in the previous paragraph.

2.2. Hash Table

Figure 2 shows excerpts from EiffelBase2’s class HASH_TABLE, alongside the auxiliary specification-only class
LOCK. Method extend inserts a new key/value pair into a hash table; its effect is specified in terms of model
attribute map, which abstracts the state of the hash table as a finite mathematical map from keys to values. The
private representation of a hash table is an array of buckets; following a traditional open hashing (chaining)
implementation [CLRS09, Sec. 12.2], each bucket is a linked list of key/value pairs. The key property of a
hash table, which makes lookup efficient, is formalized by invariant clause keys_in_bucket: each key in map’s
domain is stored in the bucket designated by the hash function hash.

2.2.1. Custom Mutable Keys

As in any realistic container library, EiffelBase2’s hash tables support arbitrary objects as keys, with user-
defined equivalence relations and hash functions. For example, a class BOOK might override the is_equal method
(equals in Java) to compare two books by their ISBN, and define hash_code accordingly. When a table compares
keys by object content rather than by reference, changing the state of an object used as key may break the
table’s consistency. Libraries without full formal specifications cannot precisely characterize such unsafe key
modifications; Java’s java.util maps, for example, generically recommend “great care [if] mutable objects are
used as map keys”, since “the behavior of a map is not specified if the value of an object is changed in a
manner that affects equals comparisons while the object is a key in the map” [Jav16b]; similarly, .NET’s
Generic Collections’ dictionaries require that “As long as an object is used as a key in the dictionary, it
must not change in any way that affects its hash value” [.NE16a]. In contrast, EiffelBase2’s specification
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test
local
lock: LOCK
location: HASH_TABLE [BOOK, STRING]
copies: HASH_TABLE [BOOK, INTEGER]
b: BOOK

do
-- Create two tables with a shared lock:
create lock
create location.make (lock)
create copies.make (lock)
.. .

-- Add the same book to both tables:
create b.with_isbn (1840226358)
lock.lock (b)
location.extend (b, "Aisle 3")
copies.extend (b, 10)
.. .
-- Modify the book used as key:
lock.unwrap
b.set_year (1922)
lock.wrap

end

Fig. 3. Example usage of HASH_TABLE in client code.

AutoProof Boogie Z3

annotated
Eiffel code

Boogie code
verification
conditions

Fig. 4. AutoProof’s toolchain.

precisely captures which key modifications affect consistency, ensuring safe behavior without restricting
usage scenarios.

2.2.2. Shared Ownership

A table’s consistency depends on its keys, but this dependency fits neither ownership nor collaboration
straightforwardly: keys may be shared between tables, and hence any one table cannot own its keys; col-
laboration would require key objects to register their host tables as observers, thus preventing the use of
independently developed classes as keys. In EiffelBase2, we address these challenges by means of a shared
ownership specification pattern that combines ownership and collaboration. A class LOCK (outlined in Figure 2)
acts as an intermediary between tables and keys: it owns keys and maintains a summary of their relevant
properties (their hash codes and the equivalence relation induced by is_equal); multiple tables observe a single
LOCK object and rely on its summary instead of directly observing keys. For example, the code in Figure 3
demonstrates how an EiffelBase2 client, which is part of a book store information system, can use a single
BOOK object as a key in two different hash tables, location and copies.

Figure 3 also shows how clients can modify keys that are in use by one or more hash tables, as long as
the invariant of the keys’ lock is maintained. In order to invoke set_year on key b, the client must open its
owner, lock; closing back the lock after performing the modification requires proving its invariant, which is
only possible if set_year is guaranteed to leave b’s ISBN unchanged. Therefore, if the client code in Figure 3
verifies, we can be sure that the new state of b is still consistent with the lock’s summary of its equivalence
class and hash code, and thus no hash tables have been made inconsistent by the change.

LOCK is a ghost class: all its state and operations are absent from the compiled code. The actual implementa-
tion of LOCK in EiffelBase2 is more general than the simplified version presented in Figure 2; in particular, it is
usable with structures other than hash tables, and uses an advanced feature of semantic collaboration called
update guards [PTFM14] to support locking and unlocking objects without notifying the lock’s observers,
which helps limit manual annotation overhead.

3. Verification Approach

AutoProof works by translating annotated Eiffel code into the Boogie intermediate verification language [BCD+05],
and uses the Boogie verifier to generate verification conditions, which are then discharged by the SMT solver
Z3 [dMB08] (see Figure 4). As part of verifying EiffelBase2 we extended the verification methodology of
AutoProof (the tool’s underlying logic) and substantially redesigned its Boogie encoding. This section de-
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scribes the most significant aspects of the improved methodology and tool, which the examples of Section 2
informally introduced; we refer to both the methodology and the tool simply as “AutoProof”.

3.1. Specification Types

AutoProof offers a Mathematical Model Library (MML) of specification types: sets, bags (multisets), pairs,
relations, maps, and sequences. Each type corresponds to a model class [Cha06]: a purely applicative class
whose semantics for verification is given by a collection of type signatures, function signatures, and axioms
in Boogie. Unlike verifiers that use built-in syntax for specification types, AutoProof is extensible with new
types by providing an Eiffel wrapper class and a matching Boogie theory, which can be used like any existing
MML type. The MML implementation used in EiffelBase2 relies on 228 Boogie axioms (see [Pol14, Ch. 6]
for details); most of them have been borrowed from Dafny’s background theory, whose broad usage supports
confidence in their consistency.

3.2. Ghost State

Auto-active verification commonly relies on ghost state—variables that are only mentioned in specifications
and do not affect executable code—as its main mechanism for abstraction. This is different from specialized
mechanisms such as model variables [CLSE05, LBR06, Lei95, Mül02] used, for example, in JML. A model
variable is a special kind of attribute that cannot be directly modified; its value gets updated automatically
with every modification of the concrete state so as to satisfy a special invariant called the abstraction
function.4 The model variable approach offers the advantage of not requiring explicit updates to keep abstract
and concrete state in sync; however, it also has known soundness and modularity issues [LM06]. First,
it often happens that the abstraction is well-defined if the concrete state is consistent, but may become
undefined during intermediate states in an update—when the class invariant is temporarily violated; in
these cases, the constraints that regulate the automatic update of model variables may become unsatisfiable,
thus introducing unsoundness in the form of assuming an unsatisfiable predicate. Second, updates to the
concrete state may have instant effects on the values of model variables elsewhere in the system, which is
detrimental to modularity.

To preserve simplicity while avoiding these issues, AutoProof follows other practical auto-active tools,
such as Dafny and VCC, and encodes abstractions as regular5 variables and attributes, with the relation
between abstract and concrete states given in the class invariant. Since AutoProof only requires invariants
to hold for closed objects (see Section 3.4), this treatment naturally supports partial abstraction functions,
while also giving methods the freedom to modify an object’s abstract and concrete states independently when
the object is open. Under this scheme, unsatisfiable constraints on the abstract state are easily detected,
since they prevent an object from ever becoming closed.

The downside of AutoProof’s approach is that it requires explicit updates to the ghost state inside
method bodies. Explicit update code quickly proliferates in realistic programs with many ghost variables
such as EiffelBase2, even if it generally remains straightforward because the relation between abstract and
concrete program state tends to be simple. For an example look at LINKED_LIST’s ghost attribute bag in Figure 1:
the attribute is inherited from class CONTAINER, where it is a model attribute (a generic container does not
impose order on elements); in LIST, however, bag becomes subsumed by the new model attribute sequence, and
in fact the invariant clause seq_refines_bag defines bag in terms of sequence. Such a tedious pattern of “legacy”
ghost attributes requiring explicit updates is recurrent in EiffelBase2 because of its rich inheritance hierarchy.

To assuage this common problem, AutoProof offers implicit updates for ghost attributes: for every class
invariant clause ga = expr that relates a ghost attribute ga to an expression expr, AutoProof implicitly adds
the assignment ga := expr just before the receiver object transitions from open to closed state. In Figure 1,
for example, invariant clause seq_refines_bag gives rise to the implicit assignment bag := sequence.to_bag at the
end of extend_back; this has the effect of automatically keeping the inherited attribute (bag) in sync with its
refinement (sequence). We believe that implicit attributes successfully address the excess annotation overhead

4 As a side remark, the term “abstraction function” is a bit of a misnomer, since model variables are deliberately meant to
support relational rather than (more common) functional specifications.
5 The distinction between ghost and concrete state only exists for the compiler, while the verifier treats both in the same way.
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of ghost state in simple cases, while retaining the conceptual simplicity and flexibility that are required in
more sophisticated scenarios.

3.3. Model-Based Specifications

As illustrated in Section 2, each class specification includes a model clause, which designates a subset of
attributes of the class as the class model. The model precisely defines the publicly observable abstract state
of the class, on which clients solely rely. Method postconditions refer to the model: commands (such as
extend_back in Figure 1) relate the model post-state to the model pre-state (referenced by old expressions);
queries (such as first in Figure 1) relate the returned Result to the model state.

Model attributes and ghost attributes (Section 3.2) are orthogonal concepts; in particular, models may
include concrete (non-ghost) attributes whenever implementation elements are also part of the interface (as
is the case for target in Figure 1).

While abstracting object state is a common technique in formal methods, the model-based specification
discipline we advocate here has additional advantages: it upholds rigorous and actionable quality criteria, such
as completeness [PFM10] and observability [WEH+96]. Informally, a command’s postcondition is complete if
it uniquely defines the effect of the command on the model; a query’s postcondition is complete if it uniquely
defines the returned result in terms of the model; the model of a class C is complete if it supports complete
specifications of all public methods in C. For example, a set is not a complete model for LINKED_LIST in Figure 1
because the precise result of first cannot be defined as a function of a set.

If a method’s specification is complete (with respect to a chosen mathematical model), clients can reason
about any effects the method has on the state abstracted by the model. An incomplete method specification
calls for strengthening the method’s postcondition; when this turns out to be impossible, we have a a strong
indication that the model was chosen poorly. While complete specifications should be the norm, there are
situations where incomplete ones are preferable or even necessary; these include inherently nondeterministic
behavior—such as methods reading input from the outside world—and partial abstractions—resulting from
using inheritance to factor out common parts of individually complete specifications. Even when incomplete-
ness turns out to be necessary, the very act of assessing the completeness of specifications is still likely to
improve the understanding of the programs being written and to promote rigorous, motivated design choices
regarding interfaces and inheritance hierarchies.

The model of a class is observable if any two different model states are distinguishable by the results
returned by calling public methods of the class. For example, a sequence is not an observable model of a class
CONTAINER (mentioned in Section 2.1) because a container’s interface provides no methods that discriminate
element ordering, and hence two sequences with the same elements in different order are indistinguishable.
Weide et al. [WEH+96] discuss the importance of observability for understandable specifications; most impor-
tant, non-observable specifications are confusing for clients, because they introduce immaterial distinctions
in the model. When a class specification is complete but not observable, we may want to reconsider our
choice of model or add more features to the class interface.

In related work [Pol14, Ch. 3] we present a formalization of completeness and observability within the
theory of abstract data types, and introduce an encoding of these properties for checking them mechanically.
AutoProof currently does not implement this encoding; however, we find that even reasoning informally
about completeness and observability—as we did sweepingly in the design of EiffelBase2—helps provide clear
guidelines for writing interface specifications and substantiates the notion of “full functional correctness”.

3.4. Class Invariants

Class invariants are central to AutoProof’s verification approach, since they can naturally express idiomatic
object-oriented patterns and support succinct client reasoning. In EiffelBase2, they provide three kinds of
specification: abstract invariants are interface specifications that constrain the model state of valid objects
(for example, clause index_range in Figure 1); representation invariants connect abstract and concrete state
(for example, cells_first in Figure 1); linking invariants define legacy model attributes, which are inherited
but no longer directly used, in terms of the current model (for example, bag_definition in Figure 1, where bag

is the model of ancestor class CONTAINER).
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Visibility. Out of the three categories of invariant clauses, abstract and linking invariants are part of the
public interface of the class, while representation invariants are hidden from clients. In Figure 1 and 2, in the
interest of readability, we introduced visibility annotations on invariant blocks in order to distinguish between
public and private invariant clauses. The actual Eiffel syntax does not offer such an annotation kind; instead,
the visibility of a specification clause (including invariants) is determined by the visibility of the methods
and attributes it mentions; users can rely on editors or IDEs to generate different views of the class code.

However, Eiffel has a more fine-grained visibility mechanism than most object-oriented languages: in
addition to being completely public or completely private, an attribute (and hence a specification clause)
may be selectively exported, that is visible only to a user-defined set of classes. This mechanism is well aligned
with AutoProof’s notion of collaboration: the representation-specific attributes and invariants of the class
LINKED_LIST, for simplicity denoted as private in Figure 1, are in fact selectively exported to LINKED_LIST_ITERATOR,
which can then refer to them in its invariants and implementation.

Inconsistent states. To precisely and flexibly define when invariants should hold, AutoProof follows the
Spec# approach [LM04, BN04] of equipping every object with a built-in ghost Boolean attribute closed.
Whenever an object is closed (closed is true), its invariant has to hold; but when it is open (closed is false)
the invariant is allowed to be violated. The only way to update closed is through built-in ghost methods
unwrap and wrap: unwrap opens a closed object, which becomes available for modification; wrap closes an open
object provided its invariant holds. To reduce manual annotations, AutoProof adds calls to Current.unwrap and
Current.wrap respectively at the beginning and end of every public command, and adds Current.closed to its pre-
and postcondition; defaults can be overridden to implement different behavior.

This type of invariant reasoning fosters a flexible decoupling between knowing that an object is consistent
and knowing details of its invariant. This is a powerful abstraction mechanism: it simplifies client reasoning,
enables reusing inherited implementations and proofs (Section 3.6), and supports a more efficient Boogie
encoding (Section 3.7). A similar decoupling is available in separation logic through abstract predicates and
abstract predicate families [PB08], while, to our knowledge, it hasn’t been incorporated into verification
methodologies based on dynamic frames [Kas06]6.

Dependent invariants. Class invariants may involve multiple objects that are part of a coherent object
structure (such as a linked list and its nodes, or an iterator and its target container). Such dependencies
challenge invariant reasoning: how can one guarantee that the invariants of all closed objects hold, given that
updating an object y could break the invariant of a dependent closed object x that y might not even know
about? To address this issue AutoProof implements an invariant methodology called semantic collaboration,
which supports sound and flexible reasoning about dependent invariants.

3.4.1. Hierarchical Object structures

For hierarchical object dependencies, AutoProof provides an ownership model, closely following VCC’s [CDH+09].
Each object x includes a built-in ghost attribute owns, which stores the set of “owned” objects y on which
x may depend. AutoProof enforces that y cannot be opened (and thus modified) while x is closed, thus
preventing indirectly breaking the consistency of x.

EiffelBase2’s LINKED_LIST—a clear example of a hierarchical object dependency—relies on a chain of linked
nodes as part of its internal representation and refers to their state (both their stored items and their right

links) in its invariant clauses sequence_implementation, cells_linked, and cells_last. AutoProof deems these clauses
admissible thanks to another clause, owns_definition, which stipulates that all elements of the cell sequence
are members of the list’s owns set. Modifying the state of a node, such as inside the call to last_cell.put_right in
extend_back, requires that the node be open; at the same time, unwrapping any object requires that its owner
be open; thus it is not possible to manipulate the state of the list’s nodes—and violate its invariant—while
the list is closed.

The definition of owns is fairly straightforward in LINKED_LIST, but supporting a wide variety of hierarchical
object structures requires in general the full expressive power of first-order logic. A semantic approach like

6 Note that simply wrapping an invariant definition in a predicate does not quite achieve decoupling; in order to make full use
of such a decomposition, the verifier must be able to distinguish between modules that need to know the predicate definition
for their verification and those that do not; for the latter, proofs can be reused even when the predicate definition changes (for
instance, due to inheritance).
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AutoProof’s provides such unrestricted expressiveness to specify the structure of owns even in cases that were
precluded to previous, more rigid, syntactic approaches [LM04].

3.4.2. Collaborative Object Structures

In realistic object-oriented programs not all dependencies are hierarchical: sometimes objects on the same
level of abstraction collaborate to achieve a shared goal. For such “flat” object dependencies AutoProof
provides a collaboration model, proposed in our previous work [PTFM14]. Each object x includes built-in
ghost attributes subjects and observers; subjects is the set of objects x may depend on, and observers is the set of
objects that may depend on x. AutoProof checks that subjects and observers are consistent across dependent
objects (that is, any subject y of x contains x in its observers set), and that every update to a subject does
not affect the consistency of its observers.

The dependency between a linked list and its iterators provides a nice illustration of collaborative ob-
ject structures. Similarly as in ownership, the content of sets subjects and observers may be defined in the
invariants. The invariant of LINKED_LIST_ITERATOR specifies that the target list is one of the iterator’s subjects

(clause subjects_definition); the following invariant clauses can depend on the state of the target thanks to
this declaration of subjects. Whenever the list changes its state, such as when executing extend_back, it has
to guarantee that all its observers are open and hence won’t be invalidated by the state change; indeed, the
precondition of extend_back fulfills this guarantee.

In addition, soundness requires that the observers set of a list object l contain all closed iterator objects that
include l among their subjects. A key insight of semantic collaboration is that such consistency between sub-
jects and observers can be guaranteed simply by implicitly adding a clause all s ∈ subjects : Current ∈ s.observers
to the invariant of every class. Upon construction of an iterator object i, the clause forces the constructor
LINKED_LIST_ITERATOR.make to add i to l’s observers set by calling target.add_iterator. Afterwards, the same clause
prevents l from removing i from its observers set: modifying l.observers, just like any other attribute, requires
unwrapping i7; once unwrapped and removed from l.observers, i cannot be wrapped anymore, since the im-
plicit clause of its invariant remains violated. In related work [PTFM14], we show that this treatment of
collaborative invariants is extremely flexible and supports a wide variety of common object-oriented patterns;
this is also confirmed by the present work, where semantic collaboration supported reasoning about object
structures, such as iterators and hash tables with mutable keys, in a realistic setting.

3.5. Framing

Frame specifications—expressing which parts of the heap are modified by which methods—work hand in
hand with the invariant methodology to provide effective local reasoning. A method m’s frame specification
modify s1, . . . , sn—where, for k = 1, . . . , n, each sk denotes a set of objects—specifies that m is only allowed
to modify objects y such that one of three conditions holds: (1) y is newly allocated by m’s body, (2)
y ∈ s1 ∪ · · · ∪ sn, or (3) there exists an object z ∈ s1 ∪ · · · ∪ sn such that z transitively owns y. Automatically
including transitively owned objects into method frames promotes information hiding: it is natural that
modifying an object entails modifying other objects that are part of its internal representation, so this should
be allowed by default; at the same time, clients should not rely on the state of such owned objects, nor have
to check whether their state has changed. For example, Current is part of extend_back’s frame specification in
Figure 1; thus, extend_back can update last_cell (one of the list’s cells) because Current owns it.

For finer-grained frame specifications, AutoProof provides the syntax modify field s[a1, . . . , an]: a method
with such a frame specification may only modify attributes a1, . . . , an of the objects in set s. Model attributes
play a special role in frame specifications: a method annotated with modify model s[m1,. . .,mn] may only modify
attributes m1, . . . , mn in the abstract state of the objects in set s, but has no direct restrictions on modifying
the concrete state of any object in s (for example, method forth of LINKED_LIST_ITERATOR in Figure 1 can modify
Current.active but not Current.target). This construct enables fine-grained, yet abstract, frame specifications, in
a way similar to data groups [LPZ02].

7 Unless the attribute under modification has a nontrivial update guard [PTFM14]; in fact, in our implementation the update
guard of the observers attribute makes it possible to only unwrap the observer objects that are being removed from the set.
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3.6. Inheritance

Inheritance poses a challenge to modular verification methodologies, which have to find a good trade-off
between permitting the descendant classes to extend and modify inherited specifications and implementations
on the one hand, and maximizing code and proof reuse on the other hand. In this section we describe the
solutions we chose for AutoProof, which we found particularly suitable for a reusable library with an extensive
inheritance hierarchy such as EiffelBase2.

3.6.1. Invariants and Inheritance

The interaction between invariants and inheritance has been the subject of much existing research [BDF+04,
MPHL06, LW08, PB08]. The main challenge is that invariants are allowed to be strengthened in descendant
classes, and as a result any method that was proven to (re-)establish the receiver’s invariant, might not
be doing the job any longer in the descendant. A simple solution—re-verifying the bodies of all inherited
methods—is infeasible whenever the source code of the ancestor class is unavailable, and inefficient in any
case.

Existing approaches to this problem [LM09, PB08] are based on the observation that inherited methods
will not break the new invariant if different classes in the hierarchy are concerned with separate portions
of an object’s state. For example, Spec# [LM09] by default prohibits an invariant declared in class C from
mentioning attributes introduced in its ancestor class B; this way C’s invariant cannot be violated by the
methods it inherited from B8. Moreover, Spec# has a more fine-grained mechanism for keeping track of
object consistency: in place of AutoProof’s Boolean attribute closed, it features a class-valued attribute
called inv, which, for an object x, ranges from object to the dynamic type of x, and denotes the most specific
class whose invariant must currently hold for x. When unwrapping x, the programmer specifies the desired
new value of inv. This fine-grained mechanism allows the methods redefined and newly introduced in class
C to operate on the new portion of the receiver’s state without having to reverify the preservation of the
portion of the invariant that originated in class B.

We found such prior approaches unsatisfactory for the purpose of verifying EiffelBase2. In EiffelBase2
inheritance is normally used to refine an abstract concept, rather than to extend a concept with an orthogonal
aspect, and therefore the invariants of most descendant classes do impose new constraints on inherited state;
a prototypical example are linking invariants (see Section 3.4). Using Spec#’s approach in this setting would
have forced us to mark most of the inherited attributes as additive [LW08]—so that they can be mentioned
in the descendants’ invariants—which in turn would have required us to redefine every method that modifies
such additive arguments. In EiffelBase2, however, we can always assume that the source code of an ancestor
class is available (Eiffel does not support separate compilation or information hiding within a class hierarchy),
and thus methods modifying additive arguments should simply be re-verified without being redefined. Based
on these considerations, we chose a different trade-off between conceptual simplicity, annotation overhead,
and proof reuse, which is more suitable in our domain.

In AutoProof, method implementations can be declared covariant or nonvariant. A nonvariant imple-
mentation cannot depend on the dynamic type of the receiver object (denoted by Current), and hence on the
precise definition of its invariant; therefore, a correct nonvariant implementation remains correct in descen-
dant classes with stronger invariants, and need not be re-verified. In contrast, a covariant implementation
may depend on the dynamic type of the receiver, and hence must be re-verified when inherited. In practice,
method implementations have to be covariant only if they call Current.wrap, which is the case for commands
that directly modify attributes of Current (such as extend_back in Figure 1): wrap checks that the invariant holds,
a condition that may become stronger along the inheritance hierarchy. Otherwise, queries and commands that
modify Current indirectly by calling other commands can be declared nonvariant: method append in LINKED_LIST

(not shown in Figure 1) calls extend_back in a loop; it then only needs to know that Current is closed but not
any details of the actual invariant. Nonvariant implementations are a prime example of how decoupling the
uninterpreted notion of consistency from invariant definitions (Section 3.4) promotes modular verification.

8 Parkinson and Bierman’s support for inheritance in abstract predicate families [PB08] is based on a similar principle, albeit
expressed in a more flexible way using separation logic.
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3.6.2. Framing and Inheritance

Another challenge posed by inheritance is defining the semantics of model-based frame specifications (modify
model), given that models can change with inheritance. When a class B inherits from A it can: keep A’s model
attributes unchanged; add new model attributes (to introduce new dimensions to the abstract state); replace
some of A’s model attributes (to express existing dimensions in a different way); or drop some of A’s model
attributes (to get rid of dimensions that have become redundant). What is then, within B, the semantics of
the modify model clause of a method m inherited from A?

Since the clients of a method rely on the heap locations (object/attribute pairs) outside the frame to stay
unchanged, soundness implies that the set of heap locations specified by a frame specification can only remain
the same or shrink with inheritance. Correspondingly, AutoProof excludes from the frame of method m all
the model attributes newly introduced in B, except those that replace model attributes in A. Keyword replace

annotates such new model attributes that replace inherited attributes. For example, a method in LINKED_LIST

inherited from CONTAINER with frame specification modify model Current [bag] is allowed to modify sequence (since it
replaces bag in LIST) but not any other model attribute of LINKED_LIST.

3.7. Effective Boogie Encoding

The single biggest obstacle to completing the verification of EiffelBase2 has been poor verification perfor-
mance on large problems: making AutoProof scale required tuning several low-level details of the Boogie
translation, following a trial-and-error process. The result is, however, largely domain-independent, as it
provides general flexibility to handling class invariants and other kinds of annotations; in fact, AutoProof’s
performance improved after the tuning also in domains other than data-structure verification, such as algo-
rithmic challenges [TFNP15]. We summarize some finicky features of the translation that turned out to be
crucial for performance.

3.7.1. Invariant Reasoning

Class invariants tend to be the most complex part of specifications in EiffelBase2; thus, their translation
must avoid bogging down the prover with too much information at a time. One crucial point is when x.wrap
is called and all of x’s invariant clauses I1,. . ., In are checked; the naive encoding assert I1; . . .; assert In does
not work well for complex invariants: for j < k, Ik normally does not depend on Ij , and hence the previously
established fact that Ij holds just clutters the proof space. Instead, we adopt Dafny’s calculational proof
approach [LP13] and use nondeterministic branching to check each clause independently of the others.

At any program point where the scope includes a closed object x, the proof might need to make use
of its invariant. AutoProof’s default behavior (assume the invariants of all closed objects in scope) doesn’t
scale to EiffelBase2’s complex specifications. Instead, we leverage once again the decoupling between the
generic notion of consistency and the specifics of invariant definitions, and make the latter available to the
prover selectively, by asserting AutoProof’s built-in predicates: x.inv refers to x’s whole invariant; x.inv_only (k)
refers to x’s invariant clause named k; and x.inv_without (k) refers to x’s invariant without clause named k (for
example, see make’s body in Figure 1).

3.7.2. Opaque Functions

Opaque functions are pure functions whose axiomatic definitions can be selectively introduced only when
needed.9 A function f declared as opaque is normally uninterpreted; but using a built-in predicate def(f(args))
introduces f(args)’s definition into the proof environment. In EiffelBase2, we use opaque functions to handle
some invariant clauses which refer to model components that are inherited but never directly used in the
current class. For example, HASH_TABLE in Figure 2 inherits a “legacy” bag model from CONTAINER; since HASH_TABLE’s
methods do not reference bag, we declare an opaque function that wraps invariant clauses involving bag and
simply treat it as an uninterpreted predicate within HASH_TABLE.

9 A similar concept was independently developed for Dafny at around the same time [CLS14].
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Fig. 5. EiffelBase2 containers: arrows denote inheritance; abstract classes have a lighter background (white
for classes with immutable interfaces). (Helper classes are omitted from the diagram for readability.)

3.7.3. Modular Translation

AutoProof offers the choice of creating a Boogie file per class or per method to be verified. Besides the
annotated implementation of the verification module, the file only includes those Boogie theories and speci-
fications that are referenced in the module. We found that minimizing the Boogie input file can significantly
impact performance, avoiding fruitless instantiations of superfluous axioms.

4. The Verified Library

EiffelBase2 was initially designed to replace EiffelBase—Eiffel’s standard container library—by providing
similar functionalities, a better, more modern design, and assured reliability. It originated as a case study
in software development driven by strong interface specifications [PFM10]. Library versions predating our
verification effort have been used in introductory programming courses since 2011 (see also Section 4.3), and
have been distributed with the EiffelStudio compiler since 2012.

4.1. Setup

Pre-verification EiffelBase2 included complete implementations and strong public functional specifications.
Following the approach described in Section 3, we provided additional public specifications for dependent
invariants (ownership and collaboration schemes), as well as private specifications for verification (represen-
tation invariants, ghost state and updates, loop invariants, intermediate assertions, lemmas, and so on). This
effort took about 7 person-months, including extending AutoProof to support special annotations and the
efficient encoding of Section 3.7. The most time-consuming task—making the tool scale to large examples—
was a largely domain-independent, one-time effort; hence, using AutoProof in its present state to verify other
similar code bases should require significantly less effort.10

Verified EiffelBase2 consists of 46 classes offering an API with 135 public methods; its implementation
has over 8,000 lines of code and annotations in 79 abstract and 378 concrete methods. The bulk of the
classes belong to one of two hierarchies: containers (Figure 5) and iterators (Figure 6). Extensive usage of
inheritance (including multiple inheritance) makes for uniform abstract APIs and reusable implementations.

10 We also have some evidence that AutoProof’s usability for non-experts improved after extending it as described in this paper.
Students in our “Software Verification” course used AutoProof in 2013 (pre EiffelBase2 verification) and in 2014 (post EiffelBase2
verification); working on similar projects, the students in 2014 were able to complete the verification of more advanced features
and generally found the tool reasonably stable and responsive [FPT15].
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Fig. 6. EiffelBase2 iterators: arrows denote inheritance; abstract classes have a lighter background (white for
classes with immutable interfaces). (Helper classes are omitted from the diagram for readability.)

Completeness. All but two EiffelBase2 classes have complete and observable model-based specifications
according to the definitions given in Section 3.3. The two exceptions represent the two cases of “justified”
incompleteness also mentioned in the section: class RANDOM features non-deterministic semantics, while class
DISPENSER factors out the common functionality of stacks and queues, and thus cannot define precisely the
semantics of element insertion.

Specifications treat integers as mathematical integers to offer nicer abstractions to clients. Pre-verification
EiffelBase2 supports both object-oriented style (abstract classes) and functional style (closures or agents)
definitions of object equality and hashing operators; verified EiffelBase2 covers only the object-oriented style.
The library has no concurrency-related features: verification assumes sequential execution.

4.2. Verification Results

Given the annotations described below, AutoProof verifies all 378 method implementations automatically.

Bugs found. A byproduct of verification was exposing 3 subtle bugs in pre-verification EiffelBase2.

• Method copy_range in class MUTABLE_SEQUENCE failed when copying elements from a range into an overlapping
range with a smaller offset inside the same sequence.

• Method bounded_item in class RANDOM encountered a division by zero as a result of integer conversions between
integers of different bit-widths.

• A low-level array service class (wrapping native C arrays) used by EiffelBase2 considered equal any two
sub-ranges of the same array.

We attribute the low number of defects in EiffelBase2 to its rigorous, specification-driven development pro-
cess: designing from the start with complete model-based interface specifications forces developers to carefully
consider the abstractions underlying the implementation. An earlier version of EiffelBase2 has been tested
automatically against its interface specifications used as test oracles, which revealed 7 bugs [Pol14, Ch. 4]
corrected before starting the verification effort. These results confirm the intuition that lightweight formal
methods, such as contract-based design and testing, can go a long way towards detecting and preventing
software defects; however, full formal verification is still required to get rid of the most subtle few.
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Table 1. EiffelBase2 verification statistics: for every class, the number of abstract and concrete methods,
and the methods and well-formedness constraints that have to be verified; the total number of non-empty
non-comment lines of code, broken down into executable code and specifications; the latter are further
split into requirements and auxiliary annotations; the overhead spec

exec in both LOC (lines) and tokens; and
the verification time in seconds: total time per class, translation (to Boogie) time per class, and median
and maximum Boogie running times of the class’s methods.

Methods LOC Tok Time (sec)
class abs conc ver total exec spec req aux spec

exec
spec
exec total trans med max

CONTAINER 2 3 6 124 39 85 34 51 2.2 3.1 3.5 2.6 0.1 0.3
INPUT_STREAM 3 1 2 59 22 37 32 5 1.7 4.3 2.6 2.0 0.3 0.5
OUTPUT_STREAM 2 2 3 90 34 56 42 14 1.6 4.0 2.9 2.2 0.3 0.3
ITERATOR 12 4 6 241 106 135 106 29 1.3 3.6 3.8 2.6 0.2 0.3
SEQUENCE 4 9 14 182 69 113 102 11 1.6 2.5 4.8 3.0 0.1 0.3
SEQUENCE_ITERATOR 0 1 3 36 15 21 19 2 1.4 2.2 3.1 2.2 0.2 0.4
MUTABLE_SEQUENCE 3 5 8 191 83 108 74 34 1.3 3.5 7.6 3.0 0.2 2.9
IO_ITERATOR 1 1 2 58 15 43 33 10 2.9 4.9 3.1 2.2 0.4 0.5
MUTABLE_SEQUENCE_ITERATOR 1 0 1 41 19 22 11 11 1.2 1.5 2.9 2.2 0.7 0.7
ARRAY 0 16 21 275 149 126 107 19 0.8 1.6 12.5 3.4 0.2 2.1
INDEX_ITERATOR 0 13 14 91 64 27 18 9 0.4 0.3 5.0 2.9 0.1 0.2
ARRAY_ITERATOR 0 3 11 97 43 54 34 20 1.3 2.3 6.2 3.0 0.2 0.6
ARRAYED_LIST 0 20 27 389 196 193 127 66 1.0 1.9 19.5 4.5 0.2 4.3
ARRAYED_LIST_ITERATOR 0 10 18 144 81 63 34 29 0.8 1.2 9.9 3.4 0.3 1.0
ARRAY2 0 16 20 199 101 98 79 19 1.0 1.1 7.4 3.3 0.1 1.0
LIST 11 5 11 268 85 183 129 54 2.2 6.1 6.1 3.1 0.1 1.3
LIST_ITERATOR 7 0 1 118 32 86 86 0 2.7 10.2 3.0 2.3 0.7 0.7
CELL 0 1 3 23 12 11 8 3 0.9 1.1 2.7 2.1 0.1 0.3
LINKABLE 0 1 4 25 14 11 11 0 0.8 0.9 2.8 2.1 0.2 0.2
LINKED_LIST 0 23 30 558 271 287 125 162 1.1 2.1 22.3 4.2 0.3 3.3
LINKED_LIST_ITERATOR 0 28 29 402 205 197 84 113 1.0 2.0 13.6 3.9 0.2 1.4
DOUBLY_LINKABLE 0 5 10 136 37 99 85 14 2.7 3.8 4.2 2.6 0.1 0.8
DOUBLY_LINKED_LIST 0 23 30 641 291 350 147 203 1.2 2.3 31.3 4.3 0.3 10.7
DOUBLY_LINKED_LIST_ITERATOR 0 27 28 379 207 172 66 106 0.8 1.7 13.5 3.9 0.3 1.4
DISPENSER 6 0 3 68 27 41 40 1 1.5 2.9 3.0 2.4 0.1 0.4
STACK 1 0 4 25 12 13 12 1 1.1 2.1 3.2 2.3 0.2 0.3
LINKED_STACK 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.1 0.2 0.3
LINKED_STACK_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
QUEUE 1 0 4 25 12 13 12 1 1.1 2.0 3.2 2.3 0.2 0.3
LINKED_QUEUE 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.2 0.2 0.3
LINKED_QUEUE_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
LOCK 0 8 9 176 0 176 176 0 4.2 2.8 0.1 0.6
LOCKER 0 1 2 30 0 30 30 0 2.8 2.1 0.3 0.4
MAP 6 1 8 128 32 96 90 6 3.0 5.0 4.1 3.0 0.1 0.2
MAP_ITERATOR 2 0 4 81 19 62 44 18 3.3 7.4 3.5 2.6 0.2 0.3
TABLE 5 2 5 97 39 58 51 7 1.5 2.4 4.3 2.6 0.3 0.6
TABLE_ITERATOR 2 0 1 43 17 26 26 0 1.5 4.1 3.2 2.4 0.7 0.7
HASHABLE 1 0 1 35 9 26 21 5 2.5 1.9 0.5 0.5
HASH_LOCK 0 2 6 41 0 41 41 0 5.2 2.9 0.2 1.4
HASH_TABLE 0 26 31 695 236 459 208 251 1.9 3.6 61.4 6.5 0.4 8.7
HASH_TABLE_ITERATOR 0 23 29 572 198 374 104 270 1.9 4.1 46.9 5.8 0.8 6.3
SET 7 10 17 503 163 340 217 123 2.1 4.4 28.4 3.3 0.2 11.8
SET_ITERATOR 2 0 2 50 17 33 32 1 1.9 6.2 3.1 2.3 0.4 0.5
HASH_SET 0 10 13 146 59 87 43 44 1.5 1.9 11.1 4.1 0.4 1.1
HASH_SET_ITERATOR 0 17 18 216 91 125 42 83 1.4 2.8 18.8 4.5 0.6 2.7
RANDOM 0 11 12 100 78 22 21 1 0.3 0.3 3.4 2.6 0.1 0.1

Total 79 378 531 8440 3489 4951 2967 1984 1.4 2.7 434.7 140.9 0.2 11.8

4.2.1. Specification Succinctness

Table 1 details the size of EiffelBase2’s specifications: overall, 1.4 lines of annotations per line of executable
code. The same overhead in tokens—generally considered a more robust measure—is 2.7 tokens of annotation
per token of executable code. The overhead is not uniform across classes: abstract classes tend to accumulate a
lot of annotations which are then amortized over multiple implementations of the same abstract specification.

EiffelBase2’s overhead compares favorably to the state of the art in full functional verification of heap-
based data-structure implementations. Pek et al’s [PQM14] verified list implementations have overheads
of 0.6 (LOC) and 2.6 (tokens);11 given that their technique specifically targets inferring low-level annota-

11 We counted specifications used by multiple procedures only once.
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tions, EiffelBase2’s specifications are generally succinct. In fact, approaches without inference or complete
automation tend to require significantly more verbose annotations. Zee et al.’s [ZKR08] linked structures
have overheads of 2.3 (LOC) and 8.2 (tokens); their interactive proof scripts aggravate the annotation bur-
den. Java’s ArrayList verified with separation logic and VeriFast [Ver16] has overheads of 4.4 (LOC) and 10.1
(tokens).

4.2.2. Kinds of Specifications

Pek et al. [PQM14] suggest classifying specifications according to their level of abstraction with respect to
the underlying verification process. A natural classification for EiffelBase2 specifications is into requirements
(model attributes, method pre/post/frame specifications, class invariants, and ghost functions directly used
by them) and auxiliary annotations (loop invariants and variants, intermediate assertions, lemmas, and
ghost code not directly used in requirements). Requirements are higher level in that they must be provided
independent of the verification methodology, whereas auxiliary annotations are a pure burden which could be
reduced by inference. EiffelBase2 includes 3 lines of requirements for every 2 lines of auxiliary annotations.
In terms of API specification, clients have to deal with 6 invariant clauses per class and 4 pre/post/frame
clauses per method on average.

Auxiliary annotations can be further split into suggestions (inv, inv_only, and inv_without and opaque func-
tions, all described in Section 3.7) and structural annotations (all other auxiliary annotations). Suggestions
roughly correspond to Pek et al.’s “level-C annotations” [PQM14], in that they are hints to help Auto-
Proof verify more quickly. Out of all EiffelBase2 specifications, 12% are suggestions (mostly inv assertions);
among structural annotations, ghost code (11%) and loop invariants (7%) are the most significant kinds. The
3/2 requirements to auxiliary annotation ratio indicates that high-level specifications prevail in EiffelBase2.
The non-negligible fraction of auxiliary annotations motivates future work to automatically infer them (in
particular, suggestions) when possible.

4.2.3. Default Annotations

Default annotations help curb the annotation overhead. Default wrapping calls (Section 2.1) work for 83%
of method bodies, and default closed pre-/postconditions work for 95% of method specifications; we overrode
the default in the remaining cases. Implicit ghost attribute updates (Section 3.2) always work.

4.2.4. Verification Performance

In our experiments, AutoProof ran on a single core of a Windows 7 machine with a 3.5 GHz Intel i7-core
CPU and 16 GB of memory, using Boogie v. 2.2.30705.1126 and Z3 v. 4.3.2 as backends. To account for
noise, we ran each verification 30 times and report the mean of the values in the 95th percentile.12

The total verification time is under 8 minutes, during which AutoProof verified 531 method implementa-
tions and well-formedness conditions, including the 378 concrete methods listed in Table 1, 47 ghost methods
and lemmas, well-formedness of each class invariant, and 56 inherited methods that are covariant (Section 3.6)
and hence must be re-verified; on the other hand, nonvariant annotations avoid re-verification of 343 bodies,
which saved about 30% of the total verification time.

AutoProof’s behavior is not only well-performing on the whole EiffelBase2; it is also predictable: over 99%
of the methods verify in under 10 seconds; over 89% in under 1 second; the most complex method verifies in
under 12 seconds. These uniform, short verification times are a direct result of AutoProof’s flexible approach
to verification, and specifically of our effort to provide an effective Boogie encoding; for example, independent
checking of invariant clauses (Section 3.7) halves the verification time of some of the most complex methods.
Steady, predictable performance is key to making AutoProof a mature tool that is robustly applicable.

4.3. Client Reasoning

While the focus of this paper is describing how to specify and verify a library, EiffelBase2’s model-based
interface specifications should also support reasoning about its clients. Client-side verification encompasses

12 That is, we discard outliers that are above the 95% percentile—the value below which 95% of the recorded times are.



A Fully Verified Container Library 19

Table 2. Verifying client code using EiffelBase2 (content from [FPT15, Tab. 2]). Each program occupies
two consecutive rows: the first refers to the program before introducing the annotations for verification, the
second to the program after introducing all annotations. Each row lists the number of classes the program
consists of, and the number of methods in those classes (which may vary between before and after due to
refactoring); the total number of non-empty non-comment lines of code, broken down into executable code
and specifications; the latter are further split into requirements and auxiliary annotations; the overhead
spec
exec in both LOC (lines) and tokens; and the percentage of verified methods.

LOC Tok Methods
program classes methods total exec spec req aux spec

exec
spec
exec verified

before 4 9 184 164 20 20 0 0.1 0.2Board Game 1 after 4 8 266 165 101 55 46 0.6 1.2 100%
before 8 19 342 301 41 41 0 0.1 0.3Board Game 2 after 8 18 490 307 183 108 75 0.6 1.4 100%
before 15 38 578 491 87 87 0 0.2 0.2Board Game 3 after 15 45 1033 608 425 253 172 0.7 1.1 93%
before 13 145 1661 1219 442 442 0 0.4 0.5Traffic Library after 14 149 2297 1220 1077 811 266 0.9 1.3 78%

before 40 211 2765 2175 590 590 0 0.3 0.4Total after 41 220 4021 2300 1786 1227 559 0.8 1.2 84%

challenges that are somewhat different from those involved in verifying a library. In particular, client code may
have a design less conducive to verification because it lacks well-defined interfaces, so that even accurately
specifying the expected behavior turns out to be cumbersome. To demonstrate how EiffelBase2’s interface
specifications enable client reasoning, we verified parts of four programs that are clients of EiffelBase2.

In contrast to the library verification effort, which aimed at full functional correctness, our goal in this
client-verification experiment was to find out how much verification is achievable in a setting somewhat repre-
sentative of serious non-expert (library) users, namely 5 person-days spent on verification with only minimal
modifications to the preexisting client code—and no modifications at all to AutoProof—allowed. The rest of
this section summarizes this experience and highlights some open challenges; in a related publication [FPT15]
we reflect in greater detail on AutoProof’s usability to verify pre-existing client code.

4.3.1. Four Client Programs of EiffelBase2

As part of the exercise sessions of ETH’s Introduction to Programming course for first-year computer science
majors, students had to develop three applications (board games with increasingly richer features inspired
by Monopoly) and extend one library (modeling a transportation system) with new features. Here is a brief
description of the four programs (the three applications and the library).

Board Game 1: Players roll dice to advance on a board of fixed size. A player’s state consists of a name
and a position on the board.

Board Game 2: Extending Board Game 1, players collect money according to the positions on the board
they visit. Consequently, a player’s state also includes an amount of collected money. Each cell on the
board belongs to one of three categories (win money, lose money, no money change), represented by
classes related by inheritance.

Board Game 3: Extending Board Game 2, board cells support more complex behavior such as properties
that can be built by one player and that force other visiting players to pay rent.

Traffic Library: Modeling entities of an urban public transportation network, such as lines, stops, and
carriers. Traffic’s classes make extensive usage of mutually-dependent invariants to define consistency
between the content of their data structures.

As one can appreciate even from these curt descriptions, all four programs use structures, such as arrays,
lists, streams, tables, and random number generators, which are provided by EiffelBase2. We took the master
solutions of the four programming assignments, written by instructors in the past using pre-verification
EiffelBase2 (see Section 4.1); we refer to the master solutions as “before” programs—as in “before verification”.
The before programs are complete executable implementations annotated with some (usually incomplete)
model-based interface specification in the form of preconditions, postconditions, and class invariants.
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4.3.2. Verifying Client Code

Our goal was verifying the before programs against their interface specifications and verified EiffelBase2,
which subsumes proving correctness of the interactions between EiffelBase2 and the programs (for example,
iterator safety). This required adding annotations for verification, including frame specifications, specifica-
tions of private methods, and ghost code. We tried, as much as possible, to retain the interface specifications
and the implementations given in the before programs. When this was not possible—because the before pro-
grams were written without verification in mind—we limited ourselves to minimal changes that did not affect
the programs’ overall interface, structure, or input/output behavior. The result of this effort are the “after”
programs, which can be verified with AutoProof. Table 2 gives some statistics about size, specification, and
verification of the four programs both in their before and in their after versions.

Annotations and unsupported features. We added annotations mainly to: strengthen interface speci-
fication to support modular reasoning; provide frame specifications; specify object dependencies according
to the ownership and semantic collaboration schemes (Section 3); reason about loops using invariants and
variants; provide intermediate goals to AutoProof. Two features of the Eiffel language, not fully supported by
AutoProof, required some extra legwork: to reason about strings, we annotated with model-based contracts
a custom, simplified version of system class STRING; to reason about once methods (Eiffel’s twist on static
methods), we made their stateful semantics explicit by introducing additional attributes.

Client verification results. Obviously, the success of verification depended on the complexity of the
programs and specifications. The after programs total 41 classes and 4,086 lines of code. Within 5 person-
days we produced 1,321 lines of annotations as well as minor modifications to the code. Verification of 84%
of 220 methods succeeded; the exceptions were in large classes that use up to 7 complex data structures
simultaneously, where accumulated specification complexity bogs down AutoProof; verifying these complex
parts would require restructuring the code to improve its modularity. Relative to the budget that we allowed
ourselves for this experiment, the results are overall satisfactory and suggest that EiffelBase 2’s interfaces
naturally enable client verification.

Board Game 1 and 2: Verification was completely successful with reasonable effort and only minimal
changes to the implementation.13
Providing loop invariants was the most time consuming task; as usual the loop invariants had not only
to be correct but also to be amenable to automated reasoning without bogging down the prover. To
reason about complex class invariants we relied on the same technique of only introducing invariants in
the proof context by request that we added to AutoProof for EiffelBase2’s verification (see Section 3.7.1).
This made it possible to handle complex class invariants involving multiple objects and classes, but also
required more custom annotations to select which facts are relevant to each proof context.

Board Game 3: Verification was successful for most but not all (93%) of the methods, and required more
widespread changes to the implementation compared to Board Game 1 and 2.
We could not satisfactorily specify the framing specification of some features involving multiple objects
in class PROPERTY. This class models the buildings that occupy the location of a board’s cell and the
related notion that they are a player’s property—other players have to pay when they visit it. Specifying
the relations between the three entities (location, building, and players) is not possible at the level of
PROPERTY’s predecessor class, which models a simpler kind of cell that has no notion of property. Specifying
the relations at the level of class PROPERTY itself is also not possible fully, because it contradicts part of the
specification inherited from PROPERTY’s predecessor. Ultimately, the design of PROPERTY is not fully consistent,
and this prevented us from completely verifying it without reworking its implementation.
Another aspect that required some special care was the verification of constructors; we introduced code
to handle the initialization of ghost attributes related to ownership and collaboration in a suitable way.

Traffic Library: Verification was often successful (78% of the methods), but sometimes failed to scale due
to Traffic’s highly-coupled design.
Traffic’s design is an exercise in object-oriented modeling with little concern for modular verification. A
core class in the library includes as attributes several data structures holding all entities in the trans-
portation network, and expresses their mutual consistency with a large, complex class invariant. As a

13 The verified after code of Board Game 1 and 2 is available at http://tiny.cc/autoproof-repo.

http://tiny.cc/autoproof-repo
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result, even if the methods in Traffic are not substantially larger than the methods in Board Game 3,
verification tends to be slower and to require quite a bit of explicit ghost-code manipulation to reason
about the quantified invariants in several dependent data structures.
Floating point arithmetic is one feature used in Traffic (to compute distances between stops) that Au-
toProof does not fully support: AutoProof translates floating point types to Boogie’s real type, which
represents mathematical reals and is not fully supported by Boogie anyway at the time of writing [AF16].
Hence, we weakened the postconditions of Traffic’s methods involving floating point arithmetic to match
AutoProof’s limited reasoning capabilities in this domain.

4.4. Challenges

After presenting EiffelBase2’s verification results, we are well poised to understand the features of a realistic,
general-purpose library that presented novel challenges to verification

Section 2 outlined the challenges behind safe iterators, which can read and modify container content
with multiple iterators active on the same structure, and mutable hash keys. EiffelBase2’s iterators are safe
in that client code verified against their specification won’t access containers using invalid iterators. Hash
containers provide safe mutable keys with succinct abstract specifications whose usage is also safe.

4.4.1. General-Purpose APIs

To be general-purpose, EiffelBase2 offers feature-rich public interfaces, which amplify verification complexity.
For example, lists support searching, inserting and removing elements, and merging container’s content, at
arbitrary positions, replacing and removing elements by value, reversing in place. Sets provide operations
for subset, join, meet, (symmetric) difference, and disjointness check. All EiffelBase2’s containers also offer
copy constructors and object comparison—standard features in object-oriented design but far from trivial
to prove correct and routinely evaded in verification.

4.4.2. Object-Oriented Design

Abstract classes provide uniform, general interfaces to clients, and to this end are extensively used in Eiffel-
Base2, but also complicate verification in different ways. First, the generality of abstract specifications may
determine a wider gap between specification and implementation than if we defined specifications to indi-
vidually fit each concrete implementation. For example, ITERATOR.forth’s precondition all s ∈ subjects : s.closed
involves a quantification that could be avoided by replacing it with the equivalent target.closed. However, the
quantified precondition is inherited from INPUT_STREAM, where target is not yet defined. Second, model attributes
may be refined with inheritance, which requires extra invariant clauses to connect the new and the inherited
specifications (see the discussion about seq_refines_bag in Section 3.2).

4.4.3. Realistic Implementations

Implementations in EiffelBase2 offer realistic performance, in line with standard container libraries in terms of
running time and memory usage, which adds algorithmic verification complexity atop structural verification
complexity. For example, ARRAYED_LIST’s implementation uses, like C++ STL’s Vector, a ring buffer to offer
efficient insertions and deletions at both list ends. Ring buffers were a verification challenge in a recent
competition [FPS12]; EiffelBase2’s ring buffers are even more complicated as they have to support insertions
and deletions inside a list, which requires a circular copy. Another example is HASH_TABLE, which implements
transparent resizing of the bucket array to maintain a near-optimal load factor—one more feature of realistic
libraries that is normally ignored in verification work.

5. Related Work

Thanks to their well-defined interface behavior and tricky implementations, data structures are a common
source of complex examples where verification systems prove their mettle. We discuss verification techniques
that have been applied to significant data-structure implementations, and highlight differences with our work
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in scope or technical aspects; the presentation roughly proceeds towards approaches that are closer to ours.
For brevity, we do not consider unsound approaches, such as those based on finitization or testing.

5.1. Verification of Data-structure Clients

Properly engineered data-structure components export well-defined abstract interfaces, which makes the
problem of verifying safety of client code somewhat simpler than verifying the components’ implementations
themselves against their specification: clients normally access data structures through a limited number of
iteration patterns, whose semantics can be formalized and reasoned upon.

Gregor and Schupp [GS06] perform static checking (based on symbolic execution) of C++’s Standard
Template Library (STL) containers. The basic idea is dealing with STL’s idiomatic iterator features as
if they were language extensions, whose semantics is hard-coded as symbolic execution constraints. This
approach supports reasoning about validity of iterators (e.g., if a list is modified, its active iterators become
invalid) but does not capture full functional correctness; the focus is on error finding, demonstrated on STL’s
test suite.

Blanc et al. [BGK07] also target C++ STL client code, using predicate abstraction and model checking.
They axiomatize the interface behavior of STL containers, and build an operational model (using arrays to
represent data) that can be model checked against client code. The axiomatization does not cover functional
correctness but safety properties such as memory safety; properties that involve universal quantification may
determine spurious counterexamples.

Dross et al. [DFM11] describe a detailed axiomatization of lists, sets, and tables in the Why functional
language, as well as an operational semantics in the Coq interactive prover [Pau11]; using Coq, they prove
that the Why axiomatization is consistent with the Coq formalization. The axiomatization is designed to
be amenable to automated reasoning using SMT solvers; hence it is applicable to proving properties of code
using containers written in Ada 2012—even though the paper does not report about concrete case studies.

Dillig et al. [DDA11] use a sound abstract interpretation to handle expressive specifications of STL
containers in client code. After annotating the containers’ interfaces, they verify memory safety of real C++

applications such as Inkscape, and functional correctness of 15 small examples such as copying a vector and
reversing a mapping.

5.2. Verification of Individual Data Structures

Implementing and verifying individual data structures is a quite different exercise than targeting general-
purpose data-structure collections. Individual implementations tend to focus on aspects that are amenable
to reasoning using the tool or methodology at hand, and that demonstrate the most fundamental aspects
of a verification challenge; but they abstract away other details, which often are crucial in a realistic and
general-purpose implementation such as EiffelBase2.

Cok [Cok06], and Jacobs et al. [JPS06] introduce preliminary ideas about specifying and checking itera-
tors, respectively in Java and Spec#.

Lahiri and Qadeer [LQ08] focus on SMT-friendly logic fragments suitable to express constraints involving
quantification on interpreted sets. They demonstrate their technique on various algorithms operating on
linked lists; since it’s edging on undecidability, it is unlikely that their technique generalizes to more complex
data structures and properties.

The gallery of examples verified using Why3 [Why16] includes individual challenging data structures such
as sparse arrays, binary heaps, array-based circular queues, hash tables (with both open and closed hashing),
AVL and snapshotable trees, as well as algorithms operating on arrays, lists, and red-black trees. The Why3
language is a functional language (a dialect of ML) specifically designed for verification at a high level of
abstraction and with a focus on algorithmic challenges. The Pangolin functional programming language has a
similar focus; Régis-Gianas and Pottier [RP08] used the Pangolin verification system to prove the correctness
of purely functional implementations of balanced binary search trees and double-ended queues.

VeriFast [Ver16] is a separation-logic tool for Java and C, which has been used to verify iterators and
stacks in Java, and generic containers, concurrent linked sets, and lock-free queues in C. The examples are
written specifically for verification, and normally cover full functional correctness. Separation logic tools such
as VeriFast may require a heavier annotation burden that includes low-level directives to “bundle/open” and
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“unbundle/close” abstract predicate definitions in crucial parts of a proof. To provide automation at a higher
level, Piskac et al. [PWZ14] combine separation logic with decidable first-order fragments to verify programs
in a C-like fragment with native support for specification constructs. They demonstrate their GRASShoper
verifier on flat linked data-structure examples; it currently cannot handle nested structures or arrays.

Interactive provers have also been applied to the verification of individual data structures. Gamboa [Gam09]
discusses some data structures verified in ACL2; the tool’s functional language provides high-level representa-
tions. Mehnert et al. [MSBS12] present the first full functional verification of snapshotable trees (a heap-based
data structure with complex update patterns) using the Coq interactive prover and annotations in separation
logic. Using a similar approach (but also manual proofs on paper), Jensen et al. [JBS11] verify linked lists
with views. Bruns [Bru11], and Gladisch and Tyszberowicz [GT13] use the KeY system to verify various
implementations of linked lists and red-black trees. Their solution [GT13] addresses some challenges of veri-
fication: using specification queries instead of ghost state, and improving the level of automation (KeY offers
a combination of interactive and automated back-end provers).

Dafny is an auto-active verifier and language specifically designed for functional correctness proofs.
Dafny’s examples [Daf16] include individual implementations of challenging data structures: binary trees,
lazy, sparse, and extensible arrays, recursively defined lists, (priority) queues, stacks, snapshotable trees,
cached containers, streams and tree streams, list iterators. Leino and Moskal [LM10b] describe the chal-
lenges behind verifying some of these structures. Like other languages designed specifically for verification,
Dafny is flexible and expressive enough to abstractly capture essential aspects of different implementation
and specification styles—if at the expense of simple client reasoning; for instance, one of the Dafny exam-
ples [Daf16] consists of linked lists with predicates in separation logic style, which Dafny doesn’t natively
support but can encode. On the flip side, several aspects are abstracted away that are crucial in realistic
implementations.

5.3. Verification of Data-structure Collections

We now move towards verification efforts that deploy the same techniques on multiple data structures at
once.

5.3.1. Functional Programming Languages

Functional languages provide a higher level of abstraction than heap-based (object-oriented) ones, and their
powerful type systems can naturally capture nontrivial correctness properties. Therefore, verifying data
structures implemented in functional languages poses challenges largely different from those of the imple-
mentations we target in this paper.

Refinement approaches. Refinement techniques provide a very different approach to creating verified data
structures implementations: design and verify a high-level model of the structures, and then refine it into
a provably correct executable implementation. Hawkins et al. [HAF+11] do this from high-level relational
specifications of data-structure behavior. In order to have implementations with predictable performance,
they provide written implementations of basic data structures by wrapping components of C++’s STL;
the refinement algorithm combines these elementary components into more complicated structures that
satisfy the specifications by construction. Lochbihler [Loc13] first constructs interactive proofs of high-level
functional data-structure definitions in Isabelle; and then refines them into executable code. The experiments
focus on exploring different provably correct refinements of sets and maps.

Functional verification. Xi and Pfenning [XP99] introduce indexed types, whose constraints can capture
functional correctness requirements (e.g., sortedness) of recursively defined data structures. Indexed types
are limited in the kinds of functional correctness properties they can express, and require a high annotation
overhead since no general type inference algorithm has been suggested. To provide for more automation
and expressiveness, the Liquid Haskell project introduces recursive and polymorphic type refinements, two
mechanisms that can naturally capture functional correctness invariant properties of data structures defined
in functional fashion. Vazou et al. [VSJ14] apply these techniques to verify termination, memory safety,
and selected functional properties of over 10,000 lines of Haskell code from realistic libraries. Kawaguchi
et al. [KRJ09] apply similar techniques to verify ML implementations of lists, vectors, maps, and trees. As
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they target quantifier-free constraints, Liquid Haskell’s techniques are completely automatic: whenever they
are applicable, type inference algorithms supply all the intermediate type annotations (including invariants).
On the other hand, these techniques are inapplicable to heap-based data structures; and insisting on full
decidability entails that some complex properties cannot be expressed and reasoned upon.

5.3.2. Heap-based Programming Languages

If we consider realistic data-structure implementations in heap-based programming languages, a large number
of works have applied fully automated techniques to verify simple properties such as memory safety or limited
functional properties. In contrast, targeting full functional correctness requires to give up full automation or
to provide additional annotations. This section describes both kinds of works.

Fully automatic verification of simple properties. The Code Contracts static checker (formerly,
Clousot) is based on abstract interpretation; it has been applied to .NET’s standard libraries, which in-
clude generic collections, to check the absence of errors such as out-of-bounds array accesses, null derefer-
ences, buffer overruns, and division by zero [LL11], as well as simple properties of arrays [CCL11]. Both
works [LL11, CCL11] target precise automatic inference and safety checks, not verification of functional
correctness.

Shape analysis aims at reachability properties of objects in the heap. Such shape properties are often
accessory to proving full functional correctness; for example, a well-formed linked list must be acyclic. Beyer
et al. [BHT06, BHTZ10] perform shape analysis using model-checking techniques based on refinement of
predicate abstractions. Sagiv et al. [SRW02] introduce an abstract interpretation-based technique for precise
shape analysis. Yang et al. [YLB+08], and Calcagno et al. [CDOY11] use separation logic techniques to
reason automatically about shape properties. Gulwani et al. [GMT08], and Itzhaky et al. [IBR+14] extend
shape analysis techniques to support bounded quantification over abstract predicates; this way, they can
verify some functional properties of linked structures (for example, that a sorting algorithm returns a sorted
list) on top of reachability. Within the limits of the properties they can express, all these analysis techniques
are applicable to realistic data-structure implementations in real programming languages.

Decidable expressive data-structure abstractions. Approaches that gradually extend expressive first-
order theories without encroaching into undecidable territory can provide effective abstractions to reason
about functional properties fully automatically. A series of works by Kuncak et al. [KPS10, KPSW10,
WMK11, JK11, SSK11, WMK12] have focused on decidable theories of sets and bags, which capture essential
traits of the interface behavior of data structures, but cannot express exactly the semantics of more complex
operations (especially in heap-based languages that may access elements in any order). Chin et al. [CDNQ12]
combine shape and functional properties by means of separation logic predicates capturing abstractions such
as sets and bags. They demonstrate their work on linked data structures (singly and doubly linked lists, AVL
and red-black trees, and priority queues); some of their examples do not cover full functional correctness,
and their technique “cannot handle map, sequence, or nonlinear properties”.

Interactive verification. Nanevski et al. [NMS+08] extend Coq’s type system with monadic types that
incorporate Hoare-style pre/postcondition specifications of effectful behavior. Such types can encode the
semantics of heap-modifying programs within a purely functional language. They demonstrate their technique
by verifying association lists, hash tables, and splay trees, as well as map-like iterators. Some aspects of their
implementations are still at variance with how general-purpose data structures are implemented in practice;
thanks to the functional framework, they belong to an abstraction level that can be considered higher than
EiffelBase2’s. Verification uses the Coq interactive prover, with significant overhead in terms of required proof
scripts. Continuing the same line of work, Chlipala et al. [CMM+09] improve on this aspect by providing
partial automation. They focus on reasoning in higher-order separation logic about sharing and aliasing of
programs featuring a mix of functional (e.g., higher-order functions) and effectful (e.g., pointer structures)
constructs. They demonstrate their approach on association lists, linked lists, stacks, queues, hash tables,
and trees. A distinctive perk of this approach (in both works [NMS+08, CMM+09]) is that it can verify the
correctness of the verification condition generation process itself—something hardly ever considered in other
verification approaches—leading to fully trusted implementations.
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Auto-active verification tries to provide a high degree of automation, but without sacrificing the expres-
siveness needed for full functional correctness. In this line of work, Zee et al. [ZKR08] document a landmark
result in verifying full functional correctness of a significant collection of complex data structures. Their
Jahob system provides a high degree of automation by combining provers for various decidable fragments;
however, discharging the most complex verification conditions still requires interactive proofs, which make
their annotation overhead much higher than ours. Another major difference with our work is that Zee et
al. do not always consider general-purpose implementations (for example, hash tables only offer reference-
based key comparison, which is too limiting in practice), nor do they target a unitarily designed library. Pek
et al.’s natural proofs [PQM14] do not require proof scripts and drastically reduce the annotation burden
by inferring auxiliary (low-level) annotations; the resulting annotation overhead is slightly lower than ours
(Section 4.2). Their technique is based on expressive separation logic specifications of C programs and works
on top of VCC. They demonstrate their VCDryad tool on complex data structures including singly and
doubly linked lists, and various kinds of trees; some implementations are taken from real C programs (glib
and OpenBSD). Compared to EiffelBase2, their examples consist of a self-contained individual program for
each functionality, and hence do not represent aspects of container libraries with uniform interfaces that
contribute to verification complexity. Another difference with our work is that Pek et al. do not always
prove full functional correctness; reversal and sorting of linked lists, for example, only verify that the sets of
elements are not altered but ignore their order.

In Section 4.4, we discussed the challenges specific to verifying a general purpose data-structure library
such as EiffelBase2; addressing those challenges is one of the main contribution of our work and how it
improves over the state of the art we discussed in this section.

6. Lessons Learned and Conclusions

We offer as conclusions the main insights into verifying realistic software and building practical verification
tools that emerged from our work.

Auto-active verification demands predictability. Usable auto-active verification requires predictable,
moderate response time to keep users engaged in successive iterations of the feedback loop. We found timeouts
a major impediment, wasting time and providing completely uninformative feedback; others report similar
experiences [CLS14]. The primary source of timeouts were futile instantiations of quantified axioms; the
solution involved profiling the SMT solver’s behavior and designing effective triggers. This effort paid off
as it made AutoProof’s performance quite stable. However, constructing efficient axiomatizations for SMT
solvers remains somewhat of a black art; automating this task is an attractive direction for future research.

Realistic verification calls for flexible tools. Verifying EiffelBase2 required a combination of effective
predefined schemas (to avoid verbose, repetitive annotations of myriad run-of-the-mill cases) and full control
(to tackle the challenging, idiosyncratic cases); as a result, AutoProof includes a lot of control knobs with
useful defaults. This determines a different trade off than tools (such as Dafny and VeriFast) implementing
bare-bones pristine methodologies, which are easier to learn but offer less support to advanced users that go
the distance.

Verification promotes good design. It’s unsurprising that well-designed software is easier to verify;
the flip-side is that developing software with verification in mind is conducive to good design. Verification
commands avoiding any unnecessary complexity—a rigor which can pay off manyfold by leading to better
reusability and maintainability.

It remains that the vision of “developers of data structure libraries [delivering] formally specified and fully
verified implementations” [ZKR08] is still ahead of us. An important step towards achieving this vision, our
work explored the major hurdles that lie in the often neglected “last mile” of verification—from challeng-
ing benchmarks to fully-specified general-purpose realistic programs—and described practical solutions to
overcome them.
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