
Triggerless Happy
Intermediate Verification with a First-Order Prover

YuTing Chen and Carlo A. Furia

Chalmers University of Technology, Sweden
yutingc@chalmers.se bugcounting.net

Abstract. SMT solvers have become de rigueur in deductive verification to au-
tomatically prove the validity of verification conditions. While these solvers pro-
vide an effective support for theories—such as arithmetic—that feature strongly
in program verification, they tend to be more limited in dealing with first-order
quantification, for which they have to rely on special annotations—known as trig-
gers—to guide the instantiation of quantifiers. Writing effective triggers is neces-
sary to achieve satisfactory performance with SMT solvers, but remains a tricky
endeavor—beyond the purview of non-highly trained experts.
In this paper, we experiment with the idea of using first-order provers instead of
SMT solvers to prove the validity of verification conditions. First-order provers
offer a native support for unrestricted quantification, but have been traditionally
limited in theory reasoning. By leveraging some recent extensions to narrow this
gap in the Vampire first-order prover, we describe a first-order encoding of ver-
ification conditions of programs written in the Boogie intermediate verification
language. Experiments with a prototype implementation on a variety of Boogie
programs suggest that first-order provers can help achieve more flexible and ro-
bust performance in program verification, while avoiding the pitfalls of having to
manually guide instantiations by means of triggers.

1 The Trouble with Triggers

Deductive verification reduces the problem of assessing the correctness of a program
to checking the validity of logic formulas known as verification conditions (VCs). VCs
normally include both first-order quantification and theory-specific fragments: quanti-
fiers naturally express specification properties of the program under verification—such
as its heap-based memory model, or an inductive definition of “sortedness”; logic the-
ories, on the other hand, are needed to reason efficiently about basic data types—most
notably, integers. Having both kinds of logic in the same formulas aggravates the al-
ready challenging problem of automated reasoning.

SMT solvers are the tools of choice to check the validity of VCs, and in this role
they are part of nearly every verification toolchain. Such solvers expressly target com-
binations of decidable logic theories (the “T” in SMT is for “theory”) on which they
achieve a high degree of automation; in contrast, they tend to struggle with handling the
complex usages of quantification that are often necessary for expressing VCs but render
logic undecidable. The practical solution that has been adopted in most SMT solvers is
to use triggers [7]—heuristics that guide the instantiation of quantifiers. Triggers are

bugcounting.net

specific to the axioms that define the predicates used in a formal specification; as such,
they are additional annotations that must be provided for verification. Writing triggers
that achieve good, predictable performance remains a highly specialized skill—a bit of
a black art that only few researchers are fluent in.1

In contrast to SMT solvers, first-order theorem provers support, as the name sug-
gests, first-order quantification natively and without particular restrictions. First-order
provers have not been often used in program verification for a number of reasons, in-
cluding the more spectacular performance improvements of SAT/SMT solvers, and the
lack of out-of-the-box support for theory-specific reasoning. More recently, however,
these limitations have started to mollify, and the best first-order provers have become
flexible tools with some effective support for arithmetic and other commonly used theo-
ries. Encouraged by these improvements, in this paper we probe the feasibility of using
first-order provers in lieu of SMT solvers to check the validity of VCs for the deductive
verification of programs.

To make our contributions applicable to the verification of a variety of programming
languages, we target the popular intermediate verification language Boogie—which we
outline in the motivating examples of Sec. 2. Boogie is both a language and a tool: Boo-
gie the language combines an expressive typed logic and a simple imperative procedural
programming language, and Boogie the tool generates VCs from Boogie programs in a
form suitable for SMT solvers; the Boogie language also includes syntax for triggers,
which are passed on to the back-end solver to help handle quantifications.

We developed a technique and a tool called BLT (Boogie less triggers), which inputs
Boogie programs and generates VCs in a subset of the TPTP (Thousands of Problems
for Theorem Provers) format [23] that is suitable for first-order provers. In Sec. 3 we
describe the salient features of the first-order encoding, and the key challenges we ad-
dressed to produce VCs that are tractable. To this extent, we specifically took advantage
of some recent features of TPTP supported by the Vampire prover [13,12] to encode
imperative code effectively. Based on experiments involving 126 Boogie programs, in
Sec. 4 we demonstrate how BLT can achieve better stability and flexibility in a variety
of situations that depend on triggers when analyzed using the SMT solver Z3 (Boogie’s
default back-end solver).

The main advantage of using a first-order prover is that complex quantifications are
handled by the prover without requiring trigger annotations—thus helping increase the
degree of automation, and reduce the expertise required to use verification technology
proficiently. In Sec. 6 we discuss some outstanding challenges of improving the flexi-
bility of deductive verification that we intend to address to extend the present paper’s
work in this direction.

In the paper, “Boogie” refers to the behavior of the Boogie tool with its standard
back-end Z3, whereas “BLT” refers to the behavior of the BLT tool, which also inputs
Boogie programs but feeds VCs to the Vampire first-order prover. To simplify the pre-
sentation, we often attribute to Boogie qualities that more properly belong to Boogie
used in combination with Z3—namely, the effect of triggers.

Tool availability. The tool BLT and the examples used in the paper are available as
open source at: https://emptylambda.github.io/BLT/.

1 Sec. 5 outlines the relatively few works that deal with trigger selection explicitly.

2

https://emptylambda.github.io/BLT/

type ref;
const nil : ref;
const next : [ref] ref;

function dist(from, to : ref) returns (int);
axiom (∀ from, to : ref • 〈dist(from, to)〉
(from = to =⇒ dist(from, to) = 0) ∧
(from 6= to =⇒ dist(from, next[to])

= dist(from, to)+ 1));

procedure length(head : ref) returns (len : int)
ensures len = dist(head, nil); {
var cur : ref;
cur, len := head, 0;
while (cur 6= nil)
free invariant head 6= cur;
invariant len = dist(head, cur);

{ cur, len := next[cur], len+ 1; }
}

(a) Length of a linked list.

const a : [int] int;

axiom (∀ i : int • // a is sorted
0≤ i =⇒ a[i]< a[i+ 1]);

function hash(int) returns (int);
axiom (∀ x, y : int •

x> y =⇒ hash(x)> y);

procedure ah(k : int) returns (h : int)
requires k≥ 0;
ensures h> a[k];

{ h := hash(a[k+ 1]); }

(b) Reasoning about hash functions.

Fig. 1: (a): trigger 〈dist(from, to)〉 in the axiomatic definition of function dist is
required to prove that the loop invariant in procedure length holds initially. (b): ax-
iomatic definitions of sortedness and of hashing are ineffective in proofs even if they
are semantically sufficient to verify procedure ah.

2 Motivating Examples

This section discusses examples of programs where the outcome of verification using
Boogie (with Z3 as back-end solver) crucially depends on triggers; BLT, which gener-
ates VCs for the Vampire first-order prover, is not affected by triggers, and thus behaves
in a more predictable and robust way on such examples. Sec. 4 discusses a more exten-
sive experimental evaluation.

Matching triggers. Boogie dispatches VCs to an SMT solver, which may need help
to decide how to instantiate universally quantified variables while searching for a proof.
A trigger (also called matching pattern) is a directive to the SMT solver on how to in-
stantiate quantifiers to create new terms based on the terms that are already in the proof
space. A trigger 〈f(x)〉, associated with a universally quantified variable x, instructs the
SMT solver to instantiate x with the value E whenever the ground term f(E) is in the
proof state. Picking suitable triggers is not trivial, as it risks introducing problems in
opposite directions: triggers that are too permissive generate otiose terms that may slow
down a proof, or even set off an infinite loop of term generation; triggers that are too
specific miss terms that are necessary for a proof, and thus ultimately reduce the level
of proof automation. To make things even more complicated, SMT solvers introduce
their own default triggers when no user-supplied triggers are available, which renders
the whole business of understanding and selecting triggers a mighty tricky one.

Linked lists. In the example of Fig. 1a, inspired by one of Boogie’s online exam-
ples 2, next is a map from nodes of type ref to their successors in a chain of linked
nodes—a straightforward model of a heap-allocated linked list. Function dist defines
that the distance between two nodes from and to is the number of hops following next

from one node to the other. Procedure length computes such distance with a simple
2 http://www.rise4fun.com/Boogie/5I

3

http://www.rise4fun.com/Boogie/5I

loop that starts from a given node head and follows next until it reaches a nil node—
indicating the end of the list. If the list is acyclic—an assumption we encode with the
invariant head6=cur (declared as free, and thus assumed without checking it)—length

satisfies its specification that it returns the value dist(head,nil). Still, without trigger
〈dist(from, to)〉, Boogie fails to verify the procedure; precisely, it cannot prove that
the loop invariant holds initially—that is, that 0 = dist(head, head)—even if this is
a mere application of the base case in dist’s axiomatic definition.

For a successful correctness proof, Boogie requires either that the axiom defining
dist be split into two axioms—one for the base case and one for the inductive case—
or that the trigger 〈dist(from, to)〉 be added to dist’s definition. Even this simple
example indicates that predicting the behavior of quantifier instantiation, and the need
for triggers, imposes an additional burden to users, and renders the verification process
less robust. In contrast, BLT verifies the very same example without any user-provided
suggestions about how to instantiate quantifiers, and without depending on the axioms
being in a specific form.

Hash functions and sortedness. Using quantified formulas with SMT solvers often
leads to brittle behavior: changes to a formula that do not affect its semantics may make
it significantly less effective in proofs. Take the example of Fig. 1b, where map a mod-
els an unbounded integer array whose elements are sorted in strictly increasing order.
Function hash has the property that the hash of an integer x is greater than any integer
smaller than x. By combining these two properties, it should be possible to verify proce-
dure ah, which inputs a nonnegative integer k and returns the hash of a[k+ 1]—which
has to be greater than a[k]. Boogie, however, fails verification of ah’s postcondition.

In an attempt to help the SMT solver, we may try to add triggers to the axioms in
the example. However, we cannot add triggers to the axiom about hash: in order to be
sufficiently discriminating [7,2], a trigger must mention all quantified variables (x and y

in this case), cannot use theory-specific interpreted symbols (such as 〈x > y〉), because
matching does not know about function symbols interpreted by some theory, and cannot
mention variables by themselves (such as 〈x, y〉), because a variable by itself would
match any ground term. Since y only appears by itself or in arithmetic predicates, no
valid user-provided trigger involving y can be written. What about adding triggers to
the axiom that declares a sorted? Here the only sensible trigger is a[i], which however
results in a matching loop: an infinite chain of instantiations that quickly saturate the
proof space.

As observed elsewhere [18,17] and part of the folklore, an equivalent definition of
sortedness that works much better with SMT solvers uses two quantified variables:

∀ i, j : int • 0≤ i ∧ i< j =⇒ a[i]< a[j] (1)

Boogie can verify ah if we use the definition of sortedness in (1) instead of the one
in Fig. 1b. Somewhat surprisingly, Boogie can also verify ah if we use the same def-
inition as in Fig. 1b but we add it as a precondition to ah rather than as an axiom. In
contrast, BLT easily verifies any of these semantically equivalent variants: while first-
order theorem provers are not immune from generating infinite fruitless instantiations,
their behavior does not incur the brittleness that derives from depending on suitable
triggers—that are neither too permissive nor too constraining.

4

3 Encoding Boogie in TPTP

In order to use first-order provers to verify Boogie programs, we define a semantic-
preserving translation T of the Boogie language into TPTP—the standard input format
of first-order theorem provers.

As a result of continuous evolution, TPTP has become a sizable language that ag-
gregates several different logic fragments, going well beyond classic first-order predi-
cate calculus. We loosely use the name TPTP to refer to the specific subset targeted by
our translation, which mainly consists of a monomorphic many-sorted first-order logic,
augmented with the so-called FOOL fragment: a first-class Boolean sort and polymor-
phic arrays. Our translation is informed by the recent support for FOOL [13] added to
the Vampire automated theorem prover, so that we can use it in our experiments as an
effective back-end to verify Boogie programs.

Boogie combines a typed logic and a simple imperative programming language;
Sec. 3.1 discusses the translation of the former, and Sec. 3.2 the translation of the latter.
We outline the essential features of Boogie and TPTP as we describe the translation T .

3.1 Declarative constructs

Types. Boogie’s primitive types include int (mathematical integers) and bool (Bool-
eans), which naturally translate to TPTP’s integer type $int and Boolean type $o. Vam-
pire reasons about terms of type $int using an incomplete first-order axiomatization of
Presburger arithmetic, sufficient to handle common usages in program analysis.

A Boogie user-defined type declaration type t introduces an uninterpreted type t,
expressed in TPTP by a type entity t of type $tType, which represents the type of all
primitive uninterpreted types.

A Boogie map type [t1,...,tn] u corresponds to a mapping t1 × · · · × tn → u,
which translates to a curried array type T (t1)→ · · · → T (tn)→ T (u) in TPTP:

T
(
[t1, . . . , tn] u

)
=

{
$array(T (tn), T (u)) n = 1

T
(
[t1]([t2, . . . ,tn]u)

)
n > 1

We currently do not support other Boogie types—notably, reals, bitvectors, and
polymorphic types and type constructors.

Declarations. TPTP declarations are expressions of the form `(I,K,D), where `
denotes a specific subset of TPTP, I is an identifier of the declaration, K is the kind
of declaration (type, axiom, or conjecture), and D is the actual declaration. Here
we simply write tptp for ` and omit the identifier I—which is not used anyway.
Then, a constant declaration const c : t in Boogie translates to the TPTP declara-
tion tptp(type, c :T (t)). An axiom axiom ax in Boogie translates to a TPTP axiom
tptp(axiom,T (ax)). Sec. 3.2 describes other kinds of declarations, used to translate
imperative constructs.

5

Functions. Mathematical functions are part of both Boogie and TPTP; thus the
translation is straightforward: function declarations translate to function declarations

T
(
function f(a1 : t1, . . . , an : tn) returns (u)

)
= tptp(type, f :(T (t1) ◦ · · · ◦ T (tn)) 7→ T (u)) (2)

and function definitions are axiomatized.
Expressions. Boolean connectives translate one-to-one from Boogie to TPTP. The

integer operators + and − translate to built-in binary functions $sum and $difference;
similarly, integer comparison uses built-in functions such as $less and $greatereq,
with obvious meaning. The equality and non-equality symbols have the same meaning
in Boogie and in TPTP: x = y iff x and y have the same type and the same value.

Boogie map expressions translate to nested applications of TPTP’s $select and
$store, which behave according to the axiomatization of FOOL [13]:

T
(
m[e1, . . . ,en]

)
=

{
$select(T (m),T (en)) n = 1

T
(
(m[e1])[e2, . . . ,en]

)
n > 1

T
(
m[e1, . . . ,en:= e]

)
=

{
$store(T (m),T (en),T (e)) n = 1

T
(
m[e1:= (m[e1])[e2, . . . ,en:=e]

)
n > 1

where m is an entity of type [t1,...,tn] u.
Quantifiers. Quantified logic variables must have identifiers starting with an upper-

case letter in TPTP, and thus T may rename logic variables. As we repeatedly men-
tioned, triggers (associated with quantifiers) have no use in TPTP and thus the transla-
tion drops them.

3.2 Imperative constructs

Variables. Program variables encode state, which is modified by computations. In the
logic representation, a Boogie program variable var v : t translates to the TPTP decla-
ration tptp(type, v :T (t)), which corresponds to a free logic variable of given type.
Indeed, constants and program variables have the same TPTP representation, with VCs
encoding the effects of computations in a purely declarative way.

Procedures. Boogie’s imperative constructs define procedures, each consisting of a
signature, a specification, and an implementation, as shown in Fig. 2a. Each procedure
determines a set of VCs that encode the correctness of the procedures’s implementation
against its specification.

Fig. 2b shows the TPTP translation T (p) of p, which consists of three parts:

1. The input/output arguments of p, which are encoded as if they were global program
variables; since each procedure is translated independent of the others, there is no
risk of interference.

2. The precondition of p (requires R), which is encoded as an axiom.

6

3. The actual VCs of p, which are encoded as a TPTP conjecture expressing that the
implementation B determines a sequence of states that end in a state satisfying p’s
postcondition (ensures E).
In the rest of this section, we define the predicate transformer τ(S, Q), which be-
haves like a weakest precondition calculation [11] of predicate Q through Boogie
statement S.

If a theorem prover can prove the conjecture from the given axioms, the implementation
of p is (partially) correct against its specification.3 Fig. 3b shows the complete transla-
tion of the example in Fig. 1b, including functions, axioms, arrays, and assignments.

// signature

procedure p(a1 : t1,. . .,an : tn)

returns (b : u)

// specification :
requires R modifies M ensures E

// implementation :
{ B }

(a) Generic Boogie procedure p.

% p’s arguments as variables :
T
(
var a1 : t1, . . ., an : tn, b : u

)
% precondition (requires) :

tptp(axiom, T (R))
% verification conditions :

tptp(conjecture, τ(B, T (E)))

(b) Encoding of p’s VCs in TPTP.

Fig. 2: General structure for the translation of a Boogie procedure.

Sequential composition. The encoding of statements is naturally compositional:

τ(S ; T, Q) = τ(S, τ(T, Q))

Assignments. The encoding of assignments uses the let-in construct:

τ
(
v := e, Q

)
= $let(T (v) , T (e),Q)

which roughly corresponds to introducing a fresh variable v’, defining its value accord-
ing to T (e), and replacing every free occurrence of T (v) in Q by v’.

The encoding of nondeterministic assignments (“havoc”) uses the derived scheme
τ(havoc v, Q) = τ(v := v’, Q), where v’ is a locally fresh variable—introduced by
the translation—of the same type as v without other constraints on its value.

Passive statements. The encoding of assertions and assumptions follows the stan-
dard weakest precondition rules:

τ
(
assert b, Q

)
= T (b) ∧ Q

τ
(
assume b, Q

)
= T (b) =⇒Q

Procedure calls. A call call r := p(e1,. . .,en) to procedure p in Fig. 2a desug-
ars the call using standard modular verification semantics, where the callee’s effects
within the caller are limited to what the callee’s specification declares:

τ
(
call r := p(e1, . . . ,en), Q

)
= τ

(
assert R(e1, . . . ,en); havoc r, M; assume E(e1, . . . ,en,r), Q

)
3 The typechecker establishes the correctness of a procedure’s modifies clause, so that the

prover can just rely on it. This is possible because Boogie’s variables cannot be aliased.

7

Loops. Encoding a loop τ
(
while (b) invariant J { L }, Q

)
involves three log-

ically conjoined conditions:

1. Initiation checks that the invariant holds upon entering the loop: T (J).
2. Consecution checks that the invariant is maintained by the loop:
τ(havoc θ(L); assume b ∧ J; L, T (J)) where θ(L) are the targets of the loop
body—variables that may be modified by L; these are just the variables that appear
as targets of assignments, as arguments of havoc statements, or in the modifies

clauses of procedures called in L.
3. Closing checks that the invariant establishes Q (the loop’s postcondition):
τ(havoc θ(L); assume ¬b ∧ J, Q).

The tool BLT generates a TPTP conjecture for each of these conditions, which are
proved independently; thus, in case of failed verification, we know which VC failed
verification. Fig. 3a shows the VC corresponding to closing of procedure length’s loop
from Fig. 1a.

Abrupt termination. Statements such as goto and return make imperative code less
structured, and complicate the encoding of VCs. We currently do not support goto and
break, whereas we handle return statements: for every simple path π on the control-
flow graph of the procedure p being translated that goes from p’s entry to a return

statement, we generate the additional VC τ(π̃, T (E))—where E is p’s postcondition
and π̃ is the sequence of statements on π, suitably modified to account for conditional
branches and loops. For brevity we omit the uninteresting details.

% fresh variables cur_ and len_

tptp(type, cur_ : ref).
tptp(type, len_ : $int).
% VC checking "closing" of the loop
tptp(conjecture, $let(

% initial assignments

cur , head; len , 0,
% generic number of loop iterations

$let([cur, len] , [cur_, len_],
% assume exit condition
(~(cur 6= nil) ∧
% assume invariant
(len = dist(head, cur)) ∧ (head 6= cur)))
% assert postcondition
=⇒ (len = dist(head, nil)))).

(a) TPTP translation of one VC of Fig. 1a.

% array a
tptp(type, a : $array($int, $int)).
% a is sorted

tptp(axiom, ∀[I : $int] : ($lesseq(0, I) =⇒
$less($select(a, I), $select(a, $sum(I, 1))))).
% function hash

tptp(type, hash : $int 7→ $int).
% property of hash

tptp(axiom, ∀[X : $int, Y : $int] :
($greater(X, Y) =⇒ $greater(hash(X), Y))).
% input argument k, return argument h

tptp(type, k : $int). tptp(type, h : $int).
% precondition (requires)

tptp(axiom, $lesseq(0, k)).
% VC

tptp(conjecture, $let(

h , hash($select(a, $sum(k, 1))),
$greater(h, $select(a, k)))).

(b) TPTP translation of Fig. 1b.

Fig. 3: Excerpts of BLT’s TPTP encoding of the examples in Fig. 1.

Conditionals. TPTP includes the conditional expression $ite(b, then, else)—
which evaluates to then if b evaluates to true, and to else otherwise. Using $ite and
first-order Booleans, we could encode the VC for a Boogie conditional statement as:

τ
(
if (b) then { Th } else { El }, Q

)
= $ite(T (b),τ(Th, Q),τ(El, Q)) (3)

As noted elsewhere [16], (3) tends to be inefficient because it duplicates formula Q, so
that the generated VC is worst-case exponential in the size of the input program.

8

Instead of following [9,16]’s approach, based on passivization, we leverage another
feature of FOOL, namely tuples, to build a VC whose size does not blow up. A code
block is purely active if every statement it contains is an assignment or a conditional
whose branches are purely active. Given a purely active code block B, lhs(B) denotes
the variables assigned to anywhere in B. Given a purely active conditional statement,
we encode it using TPTP tuples and conditional expressions as:

τ
(
if (b) then { Th } else { El }, Q

)
=

$let([lhs(Th)]⊕ [lhs(El)] , $ite(T (b),τ(Th, [lhs(Th)]),τ(El, [lhs(El)])),Q)

(4)

Operator⊕ denotes a kind of tuple concatenation where variables that appear in both tu-
ples only appear once in the concatenation; for example [x,y,z]⊕ [x,w,z] = [x,y,z,w].
In the right-hand side of (4), τ applies to the assignments in the then and else branches
of the conditional and, recursively, to nested conditionals. Expressions of the form
τ(B, [lhs(B)]) indicate the formal application of the predicate transformer τ on a tuple
of variables instead of a proper predicate;4 the semantics of let-in with tuples is such
that every variable that is not explicitly assigned a value in the let part stays the same:
$let([x1, . . . ,xn] , [],e) is equivalent to $let([x1, . . . ,xn] , [x1, . . . ,xn],e).

Finally, let us outline how to transform any conditional into purely active code.
Since structured imperative Boogie code can be desugared into assignments (includ-
ing the nondeterministic assignment havoc), passive statements, and conditionals, we
only need to explain how to handle passive statements. The idea is to introduce a fresh
Boolean variable α for every passive statement assume b: set α to true before the con-
ditional; replace assume b byα := b; and add assume α after the conditional. Since α
is fresh, it can be tested after the conditional in any order; since it is initialized to true it
does not interfere with the other branch (where the assumption or assertion does not ap-
pear). The same approach works for assert passive statements. Overall, this encoding
generates VCs of size linear in the size of the input program.

4 Implementation and Experiments

Implementation. We implemented the translation described in Sec. 3 as a command-
line tool BLT. BLT is written in Haskell and reuses parts of Boogaloo’s front-end [21] to
parse and typecheck Boogie code. The translation is implemented as the composition
of a collection of functions, each taking care of the encoding of one Boogie language
features; this facilitates extensions and modifications in response to language and trans-
lation changes.

BLT inputs a Boogie file, generates its VCs in TPTP, feeds them to Vampire, and
reports back the overall outcome. An option is available to choose between the tuple-
based (4) and the duplication-based (3) encoding of conditionals; some experiments,
which we describe later, compared the performance of these two encodings.

4 Since τ is applied recursively as usual, consecutive assignments to the same variable translate
to nested let-ins (see sequential composition and assignments rules).

9

4.1 Experimental subjects

The experiments target Boogie programs in groups demonstrating different traits of the
TPTP encoding of VCs and of BLT:

Group E consists of examples selected to demonstrate the impact of using triggers,
and thus BLT’s capability of handling quantifiers without triggers.

Group A is a selection of algorithmic problems (such as searching and sorting), which
demonstrates to what extent BLT measures up to Boogie on problems in the latter’s
natural domain.

Group T is a selection of programs from Boogie’s test suite,5 which demonstrate BLT’s
applicability to a variety of features of the Boogie language.

Group S consists of few Boogie programs with a fixed structure and increasingly
larger size, used to assess BLT’s scalability and the efficiency of its generated VCs.

We wrote the programs in group E based on examples in the Boogie tutorial and in
papers discussing trigger design [17,2,18,22]. We took the programs in group A from
our previous work [10], with small changes to fit BLT’s currently supported Boogie fea-
tures. We retained in group T all test programs that only use language features currently
fully supported by BLT, and do not target options or features of the Boogie tool—such
as assertion inference or special type encoding—other than vanilla deductive modular
verification. We constructed the programs in group S by repeating conditional assign-
ments according to different, repetitive patterns (for example as a sequence of condi-
tional increments to the same variable); the resulting programs allow us to empirically
evaluate the size of the VCs generated by BLT, and to what extent Vampire can handle
them efficiently. Tab. 4 shows some statistics about the size of the programs in each
group, as well as that of the VCs generated by Boogie in SMT-LIB6 and by BLT in
TPTP. BLT’s repository (https://emptylambda.github.io/BLT/) includes all Boogie
programs used in the experiments.

4.2 Experimental setup

All the experiments ran on a Ubuntu 14.04 LTS GNU/Linux box with Intel 8-core i7-
4790 CPU at 3.6 GHz and 16 GB of RAM, with the following tools: Boogie 2.3.0.61016,
Z3 4.3.2, and Vampire 4.0.

Each experiment targets one Boogie program and runs four verification attempts:
(i) Boogie runs on b (Xt); (ii) Boogie runs on b with all prover annotations (in partic-
ular, triggers) removed (X0); (iii) BLT runs7 on b, encoding conditionals using tuples
(X); (iv) BLT runs on b, encoding conditionals using duplication (Xd). We always used
Boogie with the /noinfer option, which disables inference of loop invariants; since
BLT does not have any inference capabilities, this ensures that we are only comparing

5 https://github.com/boogie-org/boogie/tree/master/Test
6 The size of the SMT-LIB encoding gives an idea of the size of the generated VCs, but in the

experiments we used Boogie in its default mode where it feeds VCs directly through Z3’s API.
7 Remember that BLT always ignores triggers and other prover annotations in the Boogie input.

10

https://emptylambda.github.io/BLT/
https://github.com/boogie-org/boogie/tree/master/Test

BOOGIE (LOC) SMT-LIB (KBYTES) TPTP T. (KBYTES) TPTP D. (KBYTES)
GROUP # VCS m µ M Σ m µ M Σ m µ M Σ m µ M Σ

E 9 19 13 20 49 181 2 3 7 26 1 2 8 15 1 2 8 16
A 10 42 17 44 152 439 3 14 80 144 2 17 102 166 2 17 104 172
T 56 279 6 29 137 1614 1 8 93 423 0 3 44 140 0 2 33 136
S 51 51 6 295 5122 15039 1 31 647 1574 0 68 1832 3493 0 28·103 7·105 14·105

Table 4: Data for the Boogie programs used in the experiments and their translation
to TPTP: for each GROUP, how many Boogie programs (#) the group includes, how
many verification conditions (VCS) the programs determine in total (in BLT’s encod-
ing); the minimum m, mean µ, maximum M , and total Σ length of the programs in
non-comment non-blank lines of code (BOOGIE (LOC)); the minimum m, mean µ,
maximum M , and total Σ size in kbytes of the SMT-LIB encoding of the VCs built by
Boogie (SMT-LIB), of the TPTP encoding of the VCs built by BLT using tuples (TPTP
T.) and using duplication (TPTP D.).

BOOGIE (WITH Z3) BLT T. (WITH VAMPIRE) BLT D. (WITH VAMPIRE)
GROUP VCS Xt X0 m µ M Σ X m µ M Σ Xd µ Σ

E 19 16 14 0.7 0.7 0.7 6.2 19 0.0 0.1 0.2 0.6 16 0.1 0.6
A 42 42 42 0.7 0.7 0.7 6.9 26 0.2 290.5 540.6 2904.7 24 258.1 2581.2
T 279 137 137 0.7 0.7 0.7 37.6 108 0.0 13.9 301.3 776.0 105 13.3 746.2
S 51 51 51 0.7 0.7 1.3 34.8 37 0.0 105.8 300.7 5393.8 48 20.7 1053.8

Table 5: A summary of the experimental comparison between Boogie and BLT: for
each GROUP, how many verification conditions (VCS) are to be proved; the number of
VCs verified by Boogie with user-defined triggers (Xt) and without triggers or other
prover-specific annotations (X0), and its the minimum m, mean µ, maximum M , and
total Σ verification time (without triggers); the number of VCs verified by BLT, and the
minimum m, mean µ, maximum M , and its total Σ verification time of the VCs with
tuple-based encoding (X) and with duplication-based encoding (Xd).

their performance of VC generation and checking. We used different timeouts per ver-
ification condition in each group—E: 30s; A: 180s; T : 30s; S: 300s—while capping
the memory to the available free RAM; BLT may use up to 30s to generate VCs in each
problem, although this time is measurable only in group S’s scalability experiments.

Except to specify timeouts and the input format, we always ran Vampire with default
options; in particular, we did not experiment with its numerous proof search strategies:
while users familiar with Vampire’s internals may be able to tweak them to get better
performance in some examples, we want to focus on assessing the predictability of
behavior when we use the first-order prover as a black box—in contrast to through
lower-level annotations and directives.

4.3 Experimental results

Tab. 5 shows the number of successful verification attempts in each case, as well as
statistics on the wall-clock running time. The most direct comparison is between X0

and X, which shows how BLT compares to Boogie without the help of triggers.

11

The experiments in group E highlight five cases where Boogie’s effectiveness cru-
cially depends on triggers; thus, BLT outperforms Boogie since it can prove all 19 VCs
independent of triggers or other quirks of the encoding. The experiments in group A
indicate that there remains a considerable effectiveness gap between Boogie and BLT
when it comes to algorithmic reasoning, which is mainly due to first-order provers’
still limited capabilities of reasoning about arithmetic and other theories that feature
strongly in program correctness; the gap of performance (that is, running time) is in-
stead mainly due to the fact that Vampire continues a proof attempt until reaching the
given timeout, whereas Z3 normally terminates quickly. The experiments in group T
indicate that BLT provides a reasonably good coverage of the Boogie language, but is
sometimes imperfect in reasoning about some features. Note that several of the pro-
grams in T are supposed to fail verification, and we observed that BLT’s behavior is
consistent on these—that is, it does not produce spurious proofs.8

Scalability. Let us look more closely into the experiments in group S, which assess
the scalability of BLT, and compare its two encodings—tuple-based (4) and duplication-
based (3)—of conditionals. Boogie scales effortlessly on these examples, so we focus
on BLT’s performance.

First, note that the two encodings yield similar performance in the program groups
other than S, which do not include long sequences of conditional statements. More
precisely, group S includes four families of programs; programs in each family have
identical structure and different size, determined by a size parameter that grows linearly.
Family Sv performs simple assignments on a growing number of variables; family Sa
performs a growing number of assignments on a fixed number of variables; families Si
and Sn perform conditional assignments following different patterns—sequential and
nested conditionals.

0 10 20

103

106

109

n

V
C

si
ze

(b
yt

es
)

tuples
dupl.

0 5 10 15
10−2

100

102

n

ve
ri

fic
at

io
n

tim
e

(s
ec

on
ds

)

tuples
dupl.

Fig. 6: Scalability of BLT on the programs of group Si. Left: how the size of the
VCs grows with the input size parameter n, in the tuple-based encoding (4) and in
the duplication-based encoding (3). Right: how the verification time of the TPTP VCs
grows with the input size parameter n, again in each encoding.

8 While the total number of VCs verified by Boogie in group T (137) is the same with (Xt) and
without (X0) prover-specific annotations, the two sets are different: 13 VCs verify without
annotations but do not verify with annotations because they correspond to tests that should fail
with the annotations; another 13 VCs verify with annotations but not without them.

12

BLT scales as well as Boogie when we increase the number of variables or assign-
ments (Sv and Sa): the verification time with both tools is essentially insensitive to
input size and under one second per input program. In contrast, BLT’s performance de-
grades significantly when we increase the number of conditionals, so that group S’s
numbers in Tab. 5 are dominated by the experiments in Si and Sn. Fig. 6 illustrates the
different behavior of the two encodings in Si (the results in Sn are qualitatively similar).
As expected (Fig. 6, left), the tuple-based encoding scales with the input program size,
whereas the duplication-based encoding blows up exponentially—and in fact the largest
example in this group can only be generated with the tuple-based encoding within 30
seconds. The verification time (Fig. 6, right) shows a somewhat more unexpected pic-
ture: Vampire can digest very large input files, and is generally faster on the wasteful
duplication-based encoding; in contrast, reasoning about tuples requires much memory
and is quite slow in these conditions. Extrapolating the trends in Fig. 6, it seems that
the verification time of tuple-based VCs may eventually reach a plateau—even though
is currently too large in absolute value to be practical.

We plan to experiment with different encodings of conditional statements to inves-
tigate ways of assuaging the current scalability limitations of BLT. It is however encour-
aging that BLT’s performance on the smaller, yet more logically complex, examples in
the other groups is often satisfactory.

5 Related Work

Triggers were first proposed by Greg Nelson in his influential PhD work [20]. Sim-
plify [7] was the first SMT solver implementing those ideas; today, most widely used
SMT solvers—including Z3 [6] and CVC4 [3]—support trigger annotations and include
trigger-selection heuristics for when the input does not include such annotations.

As we repeatedly argued in this paper, triggers are indispensable as they increase
the flexibility of SMT solvers—especially for program proving—but also introduce
an additional annotation burden, and reduce the predictability and stability of prov-
ers. A key challenge in developing program provers based on SMT solvers is design-
ing suitable triggers, but few publications deal explicitly with the problem of trigger
selection—which thus remains a skill prohibitively difficult to master. Among these
works, Spec# generates special triggers to support list comprehensions in specifica-
tions [17]; the Dafny verifier includes flexible strategies to generate triggers that avoid
matching loops while also supporting calculations of ground facts from recursive defi-
nitions [2]; recently, Dafny has been extended with a mechanism that helps users design
triggers in their verified programs [18]. The behavior of triggers has also been analyzed
in the context of the VCC [5] and Why3 [8] verifiers.

First-order theorem provers approach the problem of checking validity using tech-
niques, such as saturation, quite different from those of SMT solvers. As a result, they
fully support complex usage of quantifiers, but they tend to struggle dealing with the-
ories that are not practical to axiomatize—which has restricted their usage for pro-
gram verification, where theory reasoning is indispensable for dealing with basic types.
The results of the present paper rely on recent developments of the Vampire theorem

13

prover [15], which have significantly extended the support for theory reasoning with a
first-class Boolean sort and polymorphic arrays [13].

Others have used the Boogie language as input to tools other than the Boogie veri-
fier, to extend the capabilities of verifiers using Boogie as intermediate representation.
HOL-Boogie [4] uses a higher-order interactive prover to discharge Boogie’s verifica-
tion conditions; Boogaloo [21] and Symbooglix [19] support the symbolic execution of
Boogie programs; Boogie2Why [1] translates Boogie into Why3, to take advantage of
the latter’s multi-prover support.

6 Discussion and Future Work

The experimental results detailed in Sec. 4 show the feasibility of using a first-order
prover for program verification. The gap between BLT and Boogie is still conspicuous—
both in applicability and in performance—but we must also bear in mind that most pro-
grams used in the experimental evaluation have been written expressly to demonstrate
Boogie’s capabilities, and thus it is unsurprising that Boogie works best on them. In
Sec. 2, however, we have highlighted situations where Boogie’s behavior becomes brit-
tle and dependent on low-level annotations such as triggers; it is in these cases that a
different approach, such as the one pursued by BLT, can have an edge—if not yet in
overall performance at least in predictability and usability at a higher level.

BLT remains quite limited in scalability and theory reasoning compared to approach-
es using SMT solvers. Progress in both areas depends on improvements to the Boogie-
to-TPTP encoding, as well as to the back-end prover Vampire. Only recently has Vam-
pire been extended with support [13,14] for some of the TPTP features that the encoding
described in Sec. 3 depends on; hence, BLT will immediately benefit from improve-
ments in this area—in particular in the memory-efficiency of rules for tuple reasoning.
As future work, we plan to fine-tune the TPTP encoding for performance; the experi-
ments of Sec. 4 suggest focusing on finding a scalable encoding of conditionals. There
is also room for improving the encoding based on static analysis of the source Boo-
gie code—a technique that is used in different modules of the Boogie tool but not in
any way by the current BLT prototype. Finally, we will extend the TPTP encoding to
cover the features of the Boogie language currently unsupported—most notably, type
polymorphism and gotos.

This paper’s research fits into a broader effort of integrating different verification
techniques and tools to complement each other’s shortcoming. Our results suggest that
it is feasible to rely on first-order provers to discharge verification conditions in cases
where the more commonly used SMT solvers are limited by incompleteness and exhibit
brittle behavior, so as to make verification ultimately more flexible and with a higher
degree of automation.

Acknowledgments. We thank Evgenii Kotelnikov for helping us understand the lat-
est features of Vampire’s support for FOOL.

14

References

1. M. Ameri and C. A. Furia. Why just Boogie? Translating between intermediate verification
languages. In iFM, volume 9681 of LNCS, pages 1–17. Springer, 2016.

2. N. Amin, K. R. M. Leino, and T. Rompf. Computing with an SMT solver. In TAP, volume
8570 of LNCS, pages 20–35. Springer, 2014.

3. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In CAV, volume 6806 of LNCS, pages 171–177. Springer, 2011.

4. S. Böhme, K. R. M. Leino, and B. Wolff. HOL-Boogie – an interactive prover for the Boogie
program-verifier. In TPHOLs, volume 5170 of LNCS, pages 150–166. Springer, 2008.

5. S. Böhme and M. Moskal. Heaps and data structures: A challenge for automated provers. In
CADE, LNCS, pages 177–191. Springer, 2011.

6. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume 4963 of
LNCS, pages 337–340. Springer, 2008.

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J.
ACM, 52:365–473, 2005.

8. C. Dross, S. Conchon, J. Kanig, and A. Paskevich. Reasoning with triggers. In SMT, EPiC
Series, pages 22–31. EasyChair, 2012.

9. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: generating compact verification
conditions. In POPL, pages 193–205. ACM, 2001.

10. C. A. Furia, B. Meyer, and S. Velder. Loop invariants: Analysis, classification, and examples.
ACM Comp. Sur., 46(3), 2014.

11. D. Gries. The science of programming. Springer, 1981.
12. C. Kaliszyk, G. Sutcliffe, and F. Rabe. TH1: the TPTP typed higher-order form with rank-1

polymorphism. In PAAR at IJCAR, volume 1635 of CEUR Workshop Proceedings, pages
41–55. CEUR-WS.org, 2016.

13. E. Kotelnikov, L. Kovács, G. Reger, and A. Voronkov. The Vampire and the FOOL. In
SIGPLAN CPP, pages 37–48. ACM, 2016.

14. E. Kotelnikov, L. Kovács, M. Suda, and A. Voronkov. A clausal normal form translation for
FOOL. In GCAI, volume 41 of EPiC, pages 53–71. EasyChair, 2016.

15. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV, volume
8044 of LNCS, pages 1–35. Springer, 2013.

16. K. R. M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005.
17. K. R. M. Leino and R. Monahan. Reasoning about comprehensions with first-order SMT

solvers. In SAC, pages 615–622. ACM, 2009.
18. K. R. M. Leino and C. Pit-Claudel. Trigger selection strategies to stabilize program verifiers.

In CAV, LNCS, pages 361–381. Springer, 2016.
19. D. Liew, C. Cadar, and A. F. Donaldson. Symbooglix: A symbolic execution engine for

Boogie programs. In ICST, pages 45–56. IEEE Computer Society, 2016.
20. C. G. Nelson. Techniques for program verification. PhD thesis, Xerox PARC, 1981. CSL-

81-10.
21. N. Polikarpova, C. A. Furia, and S. West. To run what no one has run before: Executing an

intermediate verification language. In RV, LNCS, pages 251–268. Springer, 2013.
22. P. Rümmer. E-matching with free variables. In LPAR-18, volume 7180 of LNCS, pages

359–374. Springer, 2012.
23. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,

43(4):337–362, 2009.

15

CEUR-WS.org

	Triggerless Happy

