
ANNOTEST: An Annotation-based Test Generation
Tool for Neural Network Programs

Mohammad Rezaalipour and Carlo A. Furia

Software Institute – USI Università della Svizzera italiana
Lugano, Switzerland

{rezaam, furiac}@usi.ch

Abstract—Even though neural network (NN) programs are
often written in Python, using general-purpose test-generation
tools for Python to test them is likely to be ineffective, as
these tools do not support the particular input constraints
that NN programs often require. To address this challenge, we
present ANNOTEST: an automated unit-test generation tool for
NN programs written in Python. ANNOTEST offers a simple
annotation language that is suitable to concisely express the
usual input constraints of NN programs; it then uses these
annotations to precisely generate valid inputs that are capable of
revealing bugs. This short paper describes how ANNOTEST works
in practice, and reports some experiments that demonstrate its
effectiveness as a bug-finding tool for NN programs. ANNOTEST
is available as open source.

Index Terms—Test Generation, Neural Networks, Debugging,
Python

I. INTRODUCTION

As neural network (NN) programs are increasingly deployed
in safety-critical systems, developing techniques to effectively
test them becomes paramount. Most of the research on NN
testing focused on exercising model-level properties like ro-
bustness and training performance [1], [2]. However, addi-
tional challenges come from the way in which NN programs
are usually written.

NN programs are often developed by domain experts, writ-
ten in dynamic programming languages such as Python, using
libraries and frameworks such as Keras or TensorFlow. There
is evidence that such NN programs are prone to suffer from
various defects [3], [4], including low-level bugs—such as
type errors and other kinds of runtime failures—that derive
from the dynamically typed nature of Python but would be
caught by the compiler in a statically-typed language. Python’s
dynamic type system is also a challenge for automated test-
case generation tools, which tend to be more novel and less
developed than for statically-typed languages like Java [5]–
[7]. The few Python test-generation tools that exist—such
as Pynguin [8]—are general-purpose, and hence may not be
effective to generate tests for NN programs.

As we demonstrate in Sec. II, using a general-purpose test-
case generation tool on a NN program is likely to generate
many invalid inputs, which trigger spurious crashes with-
out finding any actual bug. General-purpose tools implement
several approaches to mitigate the challenges of targeting

Work partially supported by SNF grant 200021-182060 (Hi-Fi).

a dynamically typed language like Python—for instance,
leveraging type hints [9]. However, NN programs manipulate
complex, precisely-constrained objects such as tensors and
vectors, which compounds the challenges of dealing with
a dynamically typed language and makes general-purpose
annotations such as type hints insufficient for precise test-input
generation.

To address these challenges, we present ANNOTEST: a unit-
test generation tool for NN programs written in Python.
ANNOTEST [10] relies on a simple, domain-specific annotation
language called AN, which one can use to precisely and
concisely express the complex input constraints of a NN
program’s functions to be tested. Given some annotations,
ANNOTEST automatically generates unit tests with high pre-
cision. As we discuss in Sec. IV, we were able to apply
ANNOTEST to several open-source NN programs, generating
tests revealing numerous bugs (including several of those
manually surveyed in [4]). A short demo of ANNOTEST is
available at https://youtu.be/3Y1sraVajIA.

II. USING ANNOTEST

In this section, we briefly demonstrate how to use ANNO-
TEST to generate unit tests that can expose bugs in neural-
network programs written in Python. We also discuss how
ANNOTEST is more effective than other, general-purpose test-
generation tools for Python when testing NN programs with
their particular constraints on inputs. To this end, we dis-
cuss using ANNOTEST in comparison with Pynguin [8] and
Deal [11]—the only general-purpose state-of-the-art auto-
mated test generation tools for Python available at the time
of writing. As we will demonstrate in the rest of the paper,
ANNOTEST is designed as complementary to these two tools:
while its annotations are applicable, in principle, to any Python
program, ANNOTEST is primarily a specialized tool for NN
programs; Pynguin and Deal are general-purpose tools suitable
for all sorts of Python programs.

Consider function model_discriminator from project
ADV (Keras Adversarial Models) [12] whose implementa-
tion is in Lst. 1. When Python 3’s interpreter evaluates
the expression on line 11, the execution crashes, because
hidden_dim / 2 returns a float but the constructor Dense

https://youtu.be/3Y1sraVajIA

only works correctly if its first argument is an int.1 This
bug was among those surveyed by Islam et al. [4], and
was eventually fixed with an explicit int conversion in a
later revision of the ADV project. We selected this example
because it is simple, yet realistic; using it makes for a clearer
presentation, but we stress that the challenges that we highlight
become much more problematic as soon as one target larger
and more complex examples (such as those that we discuss in
Sec. IV).

On the face of it, generating valid tests that exercise
function model_discriminator, and trigger the bug, should
be straightforward: the function’s implementation is short, con-
sists of straight-line code (no branching), and only takes four
arguments. Furthermore, every valid input would trigger the
bug, and valid input values for three out of four arguments are
provided as defaults. And yet, automatically generating several
valid inputs for this function turns out to be surprisingly hard
for general-purpose testing tools—as we now discuss in detail.

A. General-Purpose Testing Tools

1) Pynguin: Consider Pynguin [8], a general-purpose au-
tomated test generation tool for Python. Pynguin’s test-
generation strategy is based on a genetic algorithm that tries to
maximize branch coverage. For a simple, straight-line function
like model_discriminator, Pynguin only generates2 one test
input consisting of string "!b)p" as actual value for argument
input_shape. This input is invalid, since input_shape must
be a shape—basically, a tuple of nonnegative integers that
denote the dimensions of a multi-dimensional array.

It should be no surprise that Pynguin is ineffective on
this example: Python does not require function arguments
to be annotated with their intended types, and this crucial
piece of information is thus not available to the test-case
generation tool. Unfortunately, even if model_discriminator
were annotated using Python’s type hints—which Pynguin par-
tially supports—these are not expressive enough to precisely
encode the range of model_discriminator’s valid inputs.
The best we can do is annotating input_shape with type
Tuple[int, int], hidden_dim with type int, reg with type
Callable, and output_activation with type Literal. These
constraints are both too loose to identify valid inputs only, and
not fully compatible with Pynguin’s generation algorithm. As
a result, Pynguin generates two test inputs, both invalid: in
one, input_shape is the lone integer -1262; in another one,
it is the tuple (345, True); neither of them is a valid shape.

2) Deal: Encoding arbitrarily complex constraints is pos-
sible using a tool like Deal [11], which offers an expressive
language to encode function preconditions (as well as other
design-by-contract annotations).

Using Deal’s annotation language, we can precisely express
model_discriminator’s input constraints, which we can elicit

1The function has a similar bug on line 14; we focus on line 11’s bug,
which masks the bug on line 14.

2We ran Pynguin 0.33.0 (the latest version at the time of writing) with
its default configuration: DynaMOSA for test-suite generation and MUTA-
TION_ANALYSIS for assertion generation.

1 def model_discriminator(input_shape,
2 hidden_dim=1024,
3 reg=lambda: l1l2(1e-5, 1e-5),
4 output_activation="sigmoid"):
5 return Sequential([
6 Flatten(name="discriminator_flatten",
7 input_shape=input_shape),
8 Dense(hidden_dim, name="discriminator_h1",
9 W_regularizer=reg()),

10 LeakyReLU(0.2),
11 Dense(hidden_dim / 2, name="discriminator_h2", # bug
12 W_regularizer=reg()),
13 LeakyReLU(0.2),
14 Dense(hidden_dim / 4, name="discriminator_h3",
15 W_regularizer=reg()),
16 LeakyReLU(0.2),
17 Dense(1, name="discriminator_y", W_regularizer=reg()),
18 Activation(output_activation)], name="discriminator")

Listing 1. Function model_discriminator from project ADV (Keras
Adversarial Models).

1 @arg(input_shape): np_shapes(min_dims=2, max_dims=2, min=1, max=28)
2 @arg(hidden_dim): ints(min=1024, max=2048)

Listing 2. Annotations for function model_discriminator in Lst. 1. The
annotations’ syntax is slightly simplified for readability.

from examples of client code in other parts of project ADV
(as well as from the default values for some of the arguments).
In particular, input_shape should be a two-element tuple of
integers in the range 1–28,3 and hidden_dim should be a pos-
itive integer, typically in the range 1024–2048. For simplicity,
we can tentatively ignore the more complex constraints on
arguments reg and output_activation, and simply use the
default values of those two arguments.

Even though we can precisely express the constraints on
input_shape and hidden_dim, Deal still fails to generate
any valid inputs for model_discriminator. This is because
Deal’s input generation algorithm produces random inputs,
and then uses the constraints/preconditions to filter a posteriori
the random inputs. Thus, it’s exceedingly unlikely that a
random value (among all possible Python types) happens
to satisfy detailed constraints such as those required by
model_discriminator.

In hindsight, it is unsurprising that Pynguin and Deal—two
state-of-the-art general-purpose test-case generation tools for
Python—are ineffective on this deceptively simple example.
NN programs often consist of structurally simple, usually
short, functions with complex constraints on their numerous
input arguments [13]. In order to generate valid tests for these
programs, we need a specialized approach which supports both
1) concisely expressing the complex input constraints; and
2) using those constraints to drive the generation of possible
valid inputs. This is what ANNOTEST is designed for.

B. ANNOTEST

ANNOTEST is a unit-test generation tool specifically de-
signed to be effective on Python implementations of NN

3Precisely, the tuple’s components would be valid even if they were larger
than 28, but the 1–28 range is sufficient to generate a wide variety of valid
inputs that reflect typical usage.

2

programs. To this end, it offers AN: a simple annotation
language suitable to concisely express the typical constraints
on function inputs in such programs.

1) Annotations: Lst. 2 shows some AN annotations for
function model_discriminator, which precisely character-
ize valid input values for arguments input_shape and
hidden_dim, as we discussed them above. Users of ANNOTEST

can decide how much annotation effort to spend, depending
on which functions they want to focus on testing, and on how
thorough the testing should be.

Concretely, ANNOTEST’s distribution includes a module
an_language.py with concrete syntax for the AN annotation
language. To annotate a function, users of ANNOTEST import
this module, and then use the imported decorators just before
each function to be annotated, directly in the source code.

In this example, we did not annotate two arguments, and just
relied on their default values. If we wanted a more extensive
test generation process, we could provide sets of possible
suitable functions (argument reg) and library function names
(argument output_activation), and constrain ANNOTEST to
pick input values from these sets.

2) Test generation: Writing annotations is the only manual
part of using ANNOTEST. After adding function Lst. 2’s
annotations to the source code, we call ANNOTEST with
annotest <program_root>. The tool scans through the whole
program and generates tests for all annotated functions.

When an argument is left without AN annotations, ANNO-
TEST uses the argument’s default value. Thus, ANNOTEST

can only test a function if all its arguments have some
AN annotations or a default value. In the running example,
arguments reg and output_activation are not annotated;
thus, ANNOTEST always sets reg to l1l2(1e-05, 1e-05) and
output_activation to "sigmoid" (see Lst. 1).

ANNOTEST generates Hypothesis test templates [14] using
the format recognized by Python’s unittest testing frame-
work, which can be used to actually expand and run the tests.

In our running example, ANNOTEST generates test templates
nearly instantaneously; running them with unittest takes 0.3
seconds, and produces 14 distinct valid test inputs (one of
which triggers the bug at Lst. 1’s line 11).

III. DESIGN AND IMPLEMENTATION

ANNOTEST inputs an annotated NN program and outputs
Hypothesis test templates that encode all the information to
generate unit tests that satisfy the annotated constraints. This
section first describes the main features of the AN annotation
language (Sec. III-A), and then how ANNOTEST aggregates the
annotation information and uses it to generate tests.

A. The AN Annotation Language

Fig. 1 shows the main kinds of annotations supported
by ANNOTEST’s AN annotation language. The largest class
of constraints are type constraints: @arg(var) : TypeConstr
constrains argument var to values of a specific type and
range. These can be subsets of booleans, integers, and floating
points (bools, ints, floats), as well as compound types such

An → @arg(var) : TypeConstr | @require(BooleanExpr)

TypeConstr → froms(list) | bools() | ints(min=-Inf, max=+Inf)

| floats

 min=-Inf, max=+Inf, exclude_min=False,
exclude_max=False, exclude_NaN=True,
exclude_Inf=True

| tuples(TypeConstr

∗
)

| np_shapes(min_dims=1, max_dims=1, min=1, max=1)

| int_lists(min=-Inf, max=+Inf, min_len=0, max_len=10)

| np_arrays(np_type, shape=TypeConstr)

| dicts(keys=TypeConstr ,

values=TypeConstr , min_size=0, max_size=+Inf)

| anys(TypeConstr
+
) | objs(function)

Fig. 1. The main annotations supported by ANNOTEST.

as tuples and dictionaries (tuples, dicts). Type constraints
np_shapes, int_lists, and np_arrays specify lists and tuples
of numeric values (including those supported by the NumPy
library), which feature frequently in NN programs. Finally,
froms supplies a list of concrete values to sample from; anys
is the union of multiple type constraints; and objs introduces
custom generator functions to generate arbitrarily complex
objects.

Preconditions are constraints that involve multiple argu-
ments at once or need to be conditional.4 In AN, @require(p)
specifies a precondition p, where p is an arbitrary Python
Boolean expression involving the annotated function’s argu-
ments.

The AN language includes a few other annotations [10]
(which we do not discuss here for brevity), such as to skip
testing certain functions, to add a test timeout, and to use
constructors in test code.

B. Testable Functions

By default, ANNOTEST generates tests for all functions in a
NN program about which it has sufficient information—either
through user-provided annotations or through default values.

More precisely, an argument a of a function f is testable if
at least one of the following conditions holds: 1) f includes an
AN annotation that constrains a; 2) a has a default value (it is
an optional argument); 3) a is self, and the enclosing class C

has a constructor that is testable. 4) a is a non-keyword (*args)
or keyword (**kwargs) variable-number argument. Thus, if a

is testable, it means that ANNOTEST knows how to generate at
least one valid value for it: one that satisfies an annotation,
a default, one that can be constructed, or that can simply
be omitted. A function f is testable if all its arguments are
testable.

C. Strategies

For each testable argument, ANNOTEST generates a suitable
Hypothesis strategy: a custom object-generating function.

4Even though ANNOTEST’s preconditions are similar to Deal’s, the bulk
of NN annotations can be expressed using ANNOTEST’s type constraints and
other, simpler annotations that crucially support the efficient generation of
input values.

3

Several of AN’s type constraints match some of Hypoth-
esis’s built-in strategies. For instance, Hypothesis strategies
array_shapes and integers are suitable to easily encode
AN’s constraints np_shapes and ints used in Lst. 2’s running
example. ANNOTEST can also reuse the default values of
arguments using Hypothesis’s just strategy.

More complex type constraints do not have a one-to-
one matching Hypothesis strategy. In these cases, ANNOTEST

automatically combines available strategies or even generates
new strategies. For example, this is the case of constraint
int_lists, which ANNOTEST encodes into a generator func-
tion for integer lists with suitable characteristics.

Another interesting case are objs(gen) type annotations,
where gen is a user-defined function that should be used to
generate values. In this case, ANNOTEST embeds and adapts
gen’s implementation into Hypothesis code, so that it can be
used as a generation strategy for the corresponding argument.

D. Templates

For each testable function f, ANNOTEST combines the
strategies for each of f’s arguments—built as discussed in the
previous section—into a test template.

For a function f that is an instance method of some class C,
ANNOTEST generates a template that first instantiates object o
of class C using C’s constructor and the strategies recursively
assigned to the constructor’s argument. Then, it calls o.f(...)
passing the values obtained by the strategies of f’s other
arguments.

To encode @require annotations (preconditions), ANNO-
TEST uses Hypothesis’s assume function.

E. Executing the Tests

The final output of a run of ANNOTEST consists of several
Hypothesis test templates—one for each testable function in
the analyzed NN program. ANNOTEST uses unittest’s format
to encode the test templates. Thus, users invoke unittest

to pass ANNOTEST’s output to Hypothesis, which actively
generates concrete input values using the strategies, runs the
tested functions, and reports any test failure.

F. Implementation Limitations

ANNOTEST cannot test nested functions—functions that are
defined within other functions. This limitation, which also
applies to manually written tests, is simply due to the fact
that a nested function is invisible outside its host function;
hence, we cannot test the nested function unless we also test
the host function.

ANNOTEST’s implementation relies on the Python ast li-
brary to extract information from a project’s source code; thus,
ANNOTEST can only process code that is syntactically valid. If
a module fails a syntax check, ANNOTEST skips it and provides
a warning message.

IV. EXPERIMENTS

In order to evaluate ANNOTEST’s capabilities, effectiveness
at finding NN bugs, and usability, we used it on real-world NN

TABLE I
A summary of experiments with ANNOTEST on testing 19 open-source NN

programs. Each EXPERIMENT summarizes the results over two
fully-annotated complete projects and 19 partially-annotated project where
ANNOTEST reproduced known bugs [4]. Each row reports the total size of

the projects used in that experiment (in lines of code LOC), and the number
of unique crashing BUGS found by tests generated by ANNOTEST—split into
confirmed TRUE bugs, SPURIOUS bugs (triggered by invalid inputs), and the

corresponding PRECISION = TRUE/(TRUE + SPURIOUS).

EXPERIMENT LOC BUGS

TRUE SPURIOUS PRECISION

Complete projects 3917 50 6 89%
Reproduced bugs 14219 93 0 100%

programs in two experimental evaluations, which we presented
in detail in previous work [10], and summarize here.

A. Bug Finding

In the first experiment (Complete projects in Tab. I), we
took the latest revisions of projects ADV (the same mentioned
in Sec. II) and GANS [15] and annotated with AN their
functions and methods based on the information available in
their project repositories, as well as on some trial and errors.
These two projects are some of the largest and most popular
among those in [4]’s survey of NN program bugs. Using these
annotations, ANNOTEST generated 5655 test inputs, which trig-
gered 56 crashes. Only 6 of them correspond to invalid inputs
(i.e., they are spurious crashes), whereas the remaining 50
crashes expose actual bugs in the project.5 Overall, ANNOTEST

generated 5649 valid tests exposing 50 bugs and thoroughly
exercising the programs under test. Thus, ANNOTEST can
generate tests with good precision, and find bugs that require
very specific inputs.

In the second experiment (Reproduced bugs in Tab. I),
we went through a broader selection of 19 open-source NN
programs studied in [4]. We opportunistically annotated all
buggy functions reported by the survey [4], in order to trigger
ANNOTEST to reproduce those known bugs. Indeed, all tests
generated by ANNOTEST using these annotations were valid,
and exposed 93 unique bugs; out of them, 62 correspond to the
81 bugs reported in [4], and 31 are previously unknown bugs.
Thus, ANNOTEST can also be used selectively and nimbly on
parts of a project, and can achieve a high recall (77% = 62/81)
using Islam et al. as ground truth.6

B. Annotation Effort

Since ANNOTEST crucially relies on annotations, it’s impor-
tant to assess the annotation effort that it requires in practical
scenarios.

For experiment Complete projects in Tab. I, we wrote 2
annotations per function on average, 80% of functions had

5Since the projects are no longer maintained, we could not report the bugs
officially, but there is abundant circumstantial evidence to confirm that they
are genuine flaws.

6The density of bugs in the NN programs used in our experiments is
consistent with Islam et al. [4]’s manual analysis.

4

3 annotations or less, 96% of all annotations fit a single
line, and only 10% of all functions have more than 5 lines
of annotations. For experiment Reproduced bugs in Tab. I,
we wrote 6 annotations per function on average. It may be
counterintuitive that this second experiment required more
annotations per function than the first experiment—where
we deliberately tried to be as thorough as possible with the
annotations. The explanation is that less annotation reuse was
possible in experiment Reproduced bugs, which involved a
small number of different functions in each of the 19 analyzed
projects.

Qualitatively, writing AN annotations is usually not a com-
plex task for a programmer who is familiar with the functional-
ity of the program that is being annotated and tested. Roughly,
the first author spent around 10–15 minutes to annotate each
function on average, including the time to get familiar with
the projects; this average varies significantly from function
to function, and from project to project—some are trivially
derivative, other involve subtle constraints that are not obvious
at first glance. Nevertheless, after understanding a function’s
range of valid inputs, expressing it as AN annotations is usually
straightforward.

As evidence of AN’s conciseness, consider that the Hy-
pothesis test templates generated automatically by ANNOTEST

are, on average, 5.5 times bigger than the corresponding
AN annotations. Thus, even though one could directly write
Hypothesis test templates, ANNOTEST automates away a good
part of the tedious effort and lets users focus on under-
standing the requirements. ANNOTEST’s technique paper [10]
provides more data and a broader discussion about the cost-
effectiveness of using ANNOTEST through its annotations.

C. Test Coverage

ANNOTEST’s automatically generated tests can also achieve
high coverage, which compares favorably to tests written
manually by project maintainers. To demonstrate this, we con-
sidered project Vision, PyTorch’s machine vision library [16];
we had to select a different project, since the 19 projects from
the survey [4] that we used in the rest of the experiments
practically include no tests (the only exception is project ADV,
which includes a single integration test).

From project Vision, we selected three of its larger-than-
average modules; the developer-written tests for these modules
achieve an average coverage7 of 55% (not uniformly: 96%,
79%, and 16% branch coverage in each of the modules [10,
Sec. 4.1]). After annotating these three modules using the same
approach as the other experiments, ANNOTEST generated tests
that achieve an average branch coverage of 80%. (The results
are similar if we consider statement coverage instead.)

Regarding conciseness, the annotations we wrote for the
three modules of project Vision consist of 88 lines; for
comparison, the manually written tests for the same modules
span 597 lines of code.

7Measured using Python’s Coverage.py.

V. RELATED WORK

Testing is an essential task to ensure software quality [17].
For this reason, automated test generation has long been
a central topic of research in software engineering. Many
of the mature tools that are available target statically typed
languages. For instance, Randoop [5] and EvoSuite [6] are two
popular test-case generation tools for Java programs, respec-
tively based on random testing and evolutionary algorithms.
The typing annotations that are required by statically typed
languages such as Java provide valuable information for test-
case generation and other kinds of dynamic analysis.

In contrast, dynamically typed programming languages such
as Python do not require static typing annotations, which
makes developing test generation tools for them a novel chal-
lenge. As a result, fewer test-case generation tools are available
for Python than for statically typed languages. Pynguin [8] is
based on evolutionary algorithms, and supports type hints to
narrow down the space of test generation. As we discussed
in Sec. II, type hints are often insufficiently expressive to
constrain the complex argument types found in NN programs.
Deal [11] is a design-by-contract Python library that leverages
pre- and postconditions for test generation and static analysis.
As outlined in Sec. II, Deal’s expressive language can easily
encode argument constraints in NN programs; however, Deal’s
test-case generation is not driven by these constraints, and
hence it may be ineffective. Hypothesis [14] is a property-
based testing framework for Python programs, which we use
as the back-end of ANNOTEST. As we mentioned in Sec. IV,
using ANNOTEST’s domain-specific annotation language AN
instead of directly writing Hypothesis templates and strategies
has advantages in terms of conciseness, and better fits the
characteristics of NN programs.

Testing NN programs compounds the challenges of
dynamically-typed languages with the observation that these
programs and the bugs they usually contain are quite dif-
ferent in nature compared to those found in “traditional”
programs [3], [4]. ANNOTEST focuses on unit testing of NN
programs at the implementation level; the bulk of the recent
research on testing NN has focused, [1], [2], [18], [19].

VI. ANNOTEST: TOOL AVAILABILITY

The ANNOTEST tool is available as open source. The
simplest way to use it is by installing it from PyPI8 with
pip install annotest.

ANNOTEST’s main repository9 includes the tool’s source
code and instructions to use it. ANNOTEST’s current release
at the time of writing is version 0.1; this is a more recent
version than the one used for the experiments in the paper
that presented the ANNOTEST technique [10], which fixes
several minor bugs and introduces minor improvements to
its functionality.10 The present paper’s description refers to
ANNOTEST 0.1—although we remark that the differences with

8https://pypi.org/project/annotest/
9https://github.com/atom-sw/annotest
10The older ANNOTEST version used for [10]’s experiments is still available

in that paper’s replication package.

5

https://pypi.org/project/annotest/
https://github.com/atom-sw/annotest

the previous versions are really minor, in particular with
respect to its behavior on the experiments reported in Sec. IV.

A companion repository11 includes the source code of
62 bugs in open-source NN projects surveyed by Islam et
al. [4]—which we reproduced using ANNOTEST as described
in Sec. IV. We curated this repository to ensure that each
bug is easily reproducible using ANNOTEST—or with any
other Python source-code tool. In particular, each bug comes
with an installation script that creates a virtual environment
with all dependencies, our AN annotations, the bug-triggering
tests generated by ANNOTEST, and scripts to rerun the tests
or ANNOTEST on the program. Besides documenting several
realistic examples of using ANNOTEST, this repository can
support further work in this area, by providing a curated
collection of real-world reproducible NN bugs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described ANNOTEST: an automated test
generation tool for NN programs. We provided the motivation
behind ANNOTEST, outlined how to use it, and reported
experimental results indicating its effectiveness at finding bugs
in NN programs.

ANNOTEST is fundamentally oracle agnostic: it can use any
user-provided oracle to identify faults. The experiments we
conducted so far mostly use implicit crash oracles, or library
assertion failures; this is consistent with the focus on NN bugs,
where low-level failures and crashes are widespread [13]. As
future work, we may extend ANNOTEST with oracle-generation
capabilities. Given its current design, a natural choice would
be extending AN with syntax for postconditions, which can be
used as oracles of correctness. Another interesting direction
would be generating regression tests, similarly to what tools
such as Pynguin (or Java’s Evosuite [6]) already do.

REFERENCES

[1] S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing of
deep neural networks with adaptive neuron-selection strategy,” in Proc.
ISSTA, 2020, pp. 165–176.

[2] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empir. Softw. Eng., vol. 25, no. 6, pp. 5193–5254, 2020.

[3] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proc. ISSTA, 2018, pp. 129–140.

[4] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proc. ESEC/FSE, 2019, pp.
510–520.

[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. ICSE, 2007, pp. 75–84.

[6] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proc. ESEC/FSE, 2011, pp. 416–419.

[7] M. Kessel and C. Atkinson, “Diversity-driven unit test generation,”
Journal of Systems and Software, vol. 193, p. 111442, 2022.

[8] S. Lukasczyk, F. Kroiß, and G. Fraser, “Automated unit test generation
for Python,” in Proc. SSBSE, 2020, pp. 9–24.

[9] “Pep 484 – type hints,” https://www.python.org/dev/peps/pep-0484/.
[10] M. Rezaalipour and C. A. Furia, “An annotation-based approach for

finding bugs in neural network programs,” Journal of Systems and
Software, vol. 201, p. 111669, 2023.

[11] “Deal,” https://github.com/life4/deal.
[12] “Keras adversarial models,” https://github.com/bstriner/keras-adversari

al/.

11https://github.com/atom-sw/annotest-subjects

[13] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural
networks: Fix patterns and challenges,” in Proc. ICSE, 2020, pp. 1135–
1146.

[14] D. MacIver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis:
A new approach to property-based testing,” Journal of Open Source
Software, vol. 4, no. 43, p. 1891, 2019.

[15] “Keras & tensorflow implementation of progressive growing of gans for
improved quality, stability, and variation,” https://github.com/naykun/
TF_PG_GANS.

[16] “TorchVision: PyTorch’s Computer Vision library,” https://github.com/p
ytorch/vision.

[17] G. Candea and P. Godefroid, “Automated software test generation: Some
challenges, solutions, and recent advances,” in Computing and Software
Science - State of the Art and Perspectives, ser. Lecture Notes in
Computer Science, B. Steffen and G. J. Woeginger, Eds. Springer,
2019, vol. 10000, pp. 505–531.

[18] J. Chen, J. Wang, X. Ma, Y. Sun, J. Sun, P. Zhang, and P. Cheng,
“QuoTe: Quality-oriented testing for deep learning systems,” ACM
Trans. Softw. Eng. Methodol., 2023.

[19] S. Gu, J. Liu, Z. Hui, W. Liu, and Z. Chen, “MetaA: Multi-dimensional
evaluation of testing ability via adversarial examples in deep learning,”
in Proc. QRS, 2022, pp. 1004–1013.

6

https://www.python.org/dev/peps/pep-0484/
https://github.com/life4/deal
https://github.com/bstriner/keras-adversarial/
https://github.com/bstriner/keras-adversarial/
https://github.com/atom-sw/annotest-subjects
https://github.com/naykun/TF_PG_GANS
https://github.com/naykun/TF_PG_GANS
https://github.com/pytorch/vision
https://github.com/pytorch/vision

	Introduction
	Using [0.5]aNNoTest
	General-Purpose Testing Tools
	Pynguin
	Deal

	[0.5]aNNoTest
	Annotations
	Test generation

	Design and Implementation
	The [0.5]aN Annotation Language
	Testable Functions
	Strategies
	Templates
	Executing the Tests
	Implementation Limitations

	Experiments
	Bug Finding
	Annotation Effort
	Test Coverage

	Related Work
	[0.5]aNNoTest: Tool Availability
	Conclusions and Future Work
	References

