
Automated Repair of Resource Leaks
in Android Applications

Bhargav Nagaraja Bhatta, Carlo A. Furiaa

aSoftware Institute, USI Università della Svizzera italiana, Lugano, Switzerland

Abstract

Resource leaks—a program does not release resources it previously acquired—are a
common kind of bug in Android applications. Even with the help of existing tech-
niques to automatically detect leaks, writing a leak-free program remains tricky. One
of the reasons is Android’s event-driven programming model, which complicates the
understanding of an application’s overall control flow.

In this paper, we present PLUMBDROID: a technique to automatically detect and fix
resource leaks in Android applications. PLUMBDROID builds a succinct abstraction of
an app’s control flow, and uses it to find execution traces that may leak a resource. The
information built during detection also enables automatically building a fix—consisting
of release operations performed at appropriate locations—that removes the leak and
does not otherwise affect the application’s usage of the resource.

An empirical evaluation on resource leaks from the DROIDLEAKS curated collection
demonstrates that PLUMBDROID’s approach is scalable, precise, and produces correct
fixes for a variety of resource leak bugs: PLUMBDROID automatically found and re-
paired 50 leaks that affect 9 widely used resources of the Android system, including all
those collected by DROIDLEAKS for those resources; on average, it took just 2 minutes
to detect and repair a leak. PLUMBDROID also compares favorably to Relda2/RelFix—
the only other fully automated approach to repair Android resource leaks—since it can
often detect more leaks with higher precision and producing smaller fixes. These re-
sults indicate that PLUMBDROID can provide valuable support to enhance the quality of
Android applications in practice.

1. Introduction

The programming model of the Android operating system makes its mobile appli-
cations (“apps”) prone to bugs that are due to incorrect usage of shared resources. An
app’s implementation typically runs from several entry points, which are activated by
callbacks of the Android system in response to events triggered by the mobile device’s
user (for example, switching apps) or other changes in the environment (for example,

Email address: bhattb@usi.ch (Bhargav Nagaraja Bhatt)
URL: bugcounting.net (Carlo A. Furia)

Preprint submitted to Elsevier June 30, 2022

losing network connectivity). Correctly managing shared resources is tricky in such an
event-driven environment, since an app’s overall execution flow is not apparent from
the control-flow structure of its source code. This explains why resource leaks—bugs
that occur when a shared resource is not correctly released or released too late—are one
of the most common kind of performance bugs in Android apps [44, 30, 38], where
they often result in buggy behavior that ultimately degrades an app’s responsiveness
and usability.

Motivated by their prevalence and negative impact, research in the last few years
(which we summarize in Section 5) has developed numerous techniques to detect re-
source leaks using dynamic analysis [44, 13], static analysis [53, 55, 28], or a combina-
tion of both [12]. Automated detection is very useful to help developers in debugging,
but the very same characteristics of Android programming that make apps prone to
having resource leaks also complicate the job of coming up with leak repairs that are
correct in all conditions.

To address these difficulties, we present a technique to detect and fix resource leaks
in Android apps completely automatically. Our technique, called PLUMBDROID and
described in Section 3, is based on static analysis and can build fixes that are correct
(they eradicate the detected leaks for a certain resource) and “safe” (they do not intro-
duce conflicts with the rest of the app’s usage of the resource, and follow Android’s
recommendations for resource management [4]).

PLUMBDROID’s analysis is scalable because it is based on a succinct abstraction of
an app’s control-flow graph called resource-flow graph. Paths on an app’s resource-
flow graph correspond to all its possible usage of resources. Avoiding leaks entails
matching each acquisition of a resource with a corresponding release operation. PLUMB-
DROID supports the most general case of reentrant resources (which can be acquired
multiple times, typically implemented with reference counting in Android): absence of
leaks is a context-free property [46]; and leak detection amounts to checking whether
every path on the resource-flow graph belongs to the context-free language of leak-free
sequences. PLUMBDROID’s leak model is more general than most other leak detection
techniques’—which are typically limited to non-reentrant resources (see Table 8).

The information provided by our leak detection algorithm also supports the auto-
matic generation of fixes that remove leaks. PLUMBDROID builds fixes that are correct
by construction; a final validation step reruns the leak detection algorithm augmented
with the property that the new release operations introduced by the fix do not interfere
with the existing resource usages. Fixes that pass validation are thus correct and “safe”
in this sense.

We implemented our technique PLUMBDROID in a tool, also called PLUMBDROID,
that works on Android bytecode. PLUMBDROID can be configured to work on any
Android resource API; we equipped it with the information about acquire and release
operations of 9 widely used Android resources (including Camera and WifiManager),
so that it can automatically repair leaks of those resources.

The current implementation of PLUMBDROID is not equipped with any aliasing anal-
ysis technique; therefore, it may incur a large number of false positives when applied to
apps that use resources under lots of different aliases. We found that different Android
resources have distinct usage patterns: some, such as database cursors, are frequently
used under many aliases; others, such as the camera or the Wi-Fi adapter, are not.

2

PLUMBDROID’s current implementation is geared towards analyzing the latter kind of
resources, which we call non-aliasing resources and are the main target of our experi-
ments with PLUMBDROID.

We evaluated PLUMBDROID’s performance empirically on leaks of 9 non-aliasing
resources in 17 Android apps from the curated collection DroidLeaks [29]. These ex-
periments, described in Section 4, confirm that PLUMBDROID is a scalable automated
leak repair technique (around 2 minutes on average to find and repair a leak) that con-
sistently produces correct and safe fixes for a variety of Android resources (including
all 26 leaks in DROIDLEAKS affecting the 9 analyzed resources).

We also experimentally compared PLUMBDROID with Relda2/RelFix [55, 28]—the
only other fully automated approach to repair Android resource leaks that has been
developed so far—by running the former on the same apps used in the latter’s eval-
uation. The comparison, also described in Section 4, indicates that, on non-aliasing
resources, PLUMBDROID detects more true leaks (79 vs. 53) with a higher average pre-
cision (89% vs. 55%) than Relda2/RelFix, and produces fixes that are one order of
magnitude smaller.

PLUMBDROID’s novelty and effectiveness lie in how it combines and fine-tunes
existing analysis techniques to the usual characteristics of Android resource usage.
1. PLUMBDROID’s fine-grained, yet succinct, abstract model of resource usage supports
a sound static analysis with high precision; 2. PLUMBDROID’s fix generation process
follows Android’s guidelines about the program locations where each resource should
be released; 3. PLUMBDROID’s validation step further guarantees that the fixes that it
automatically generates are suitable and correct.

In summary, this paper makes the following contributions:

• It introduces PLUMBDROID: a fully automated technique based on static analysis
for the detection and repair of Android resource leaks.

• It evaluates the performance of PLUMBDROID on apps in DROIDLEAKS, showing
that it achieves high precision and recall, and scalable performance.

• It experimentally compares PLUMBDROID to the other approach Relda2/RelFix
on the same apps used in the latter’s evaluation, showing that it generally achieves
higher precision and recall.

• For reproducibility, the implementation of PLUMBDROID, as well as the details of
its experimental evaluation (including the produced fixes), are publicly available
in a replication package:

https://github.com/bhargavbh/PlumbDROID (Cite as [25])

2. An Example of PLUMBDROID in Action

IRCCloud is a popular Android app that provides a modern IRC chat client on
mobile devices. Figure 1 shows a (simplified) excerpt of class ImageViewerActivity
in IRCCloud’s implementation.

3

https://github.com/bhargavbh/PlumbDROID

1 public class ImageViewerActivity extends Activity {

2

3 private MediaPlayer player;

4

5 private void onCreate(BundleSavedInstance) {

6 // acquire resource MediaPlayer

7 player = new MediaPlayer();

8 final SurfaceView v = (SufaceView) findViewById(...);

9 }

10

11 public void onPause() {

12 v.setVisibilty(View.INVISIBLE);

13 super.onPause();

14 // ’player’ not released: leak!

15 }

16

17 }

Figure 1: An excerpt of class ImageViewerActivity in Android app IRCCloud, showing a
resource leak that PLUMBDROID can fix automatically.

As its name suggests, this class implements the activity—a kind of task in Android
parlance—triggered when the user wants to view an image that she downloaded from
some chat room. When the activity starts (method onCreate), the class acquires per-
mission to use the system’s media player by creating an object of class MediaPlayer

on line 7. Other parts of the activity’s implementation (not shown here) use player to
interact with the media player as needed.

When the user performs certain actions—for example, she flips the phone’s screen—
the Android system executes the activity’s method onPause, so that the app has a
chance to appropriately react to such changes in the environment. Unfortunately, the
implementation of onPause in Figure 1 does not release the media player, even though
the app will be unable to use it while paused [40]. Instead, it just acquires a new handle
to the resource when it resumes. This causes a resource leak: the acquired resource
MediaPlayer is not appropriately released. Concretely, if the user flips the phone back
and forth—thus generating a long sequence of unnecessary new acquires—the leak will
result in wasting system resources and possibly in an overall performance loss.

Such resource leaks can be tricky for programmers to avoid. Even in this sim-
ple example, it is not immediately obvious that onPause may execute after onCreate,
since this requires a clear picture of Android’s reactive control flow. Furthermore, a
developer may incorrectly assume that calling the implementation of onPause in An-
droid’s base class Activity (with super.onPause()) takes care of releasing the held
resources. However, Activity.onPause cannot know about the resources that have
been specifically allocated by the app’s implementation; in particular, it does not re-
lease MediaPlayer() instance player.

PLUMBDROID can automatically analyze the implementation of IRCCloud looking
for leaks such as the one highlighted in Figure 1. PLUMBDROID generates an abstraction

4

Android app

RFG1 RFG2

RFG3

Android app

ak ak rk

rk

ABSTRACTION ANALYSIS FIXING

VALIDATION

Figure 2: How PLUMBDROID works: First, PLUMBDROID builds a finite-state ABSTRACTION

of the Android app under analysis, which captures acquire and release operations of an API’s
resources. The abstraction models each function of the application with a resource-flow graph
(RFG)—a special kind of control-flow graph—and combines resource-flow graphs to model
inter-procedural behavior. In the ANALYSIS step, PLUMBDROID searches the graph abstraction
for resource leaks: paths where a resource k is acquired (ak) but not eventually released. In
the FIXING step, PLUMBDROID injects the missing release operations rk where needed along the
leaking path. In the final VALIDATION step, PLUMBDROID abstracts and analyzes the code after
fixing, so as to ensure that the fix does not introduce unintended interactions that cause new
resource-usage related problems.

of the whole app’s control-flow that considers all possible user interactions that may
result in leaks. For each detected leak, PLUMBDROID builds a fix by adding suitable
release statements.

For Figure 1’s example, PLUMBDROID builds a succinct fix at line 14 consisting of
the conditional release operation if (player != null) player.release(). PLUMB-
DROID also checks that the fix is correct (it removes the leak) and “safe” (it only releases
the resource after the app no longer uses it). Systematically running PLUMBDROID on
Android apps can detect and fix many such resource leaks completely automatically.

3. How PLUMBDROID Works

Figure 2 gives a high-level overview of how PLUMBDROID works. Each run of
PLUMBDROID analyzes an app for leaks of resources from a specific Android API—
consisting of acquire and release operations—modeled as described in Section 3.1.

The key abstraction used by PLUMBDROID is the resource-flow graph: a kind of
control-flow graph that captures the information about possible sequences of acquire
and release operations. Section 3.2.1 describes how PLUMBDROID builds the resource-
flow graph for each procedure individually.

A resource leak is an execution path where some acquire operation is not eventually
followed by a matching release operation. In general, absence of leaks (leak freedom)
is a context-free property [46] since there are resources—such as wait locks—that may

5

be acquired and released multiple times (they are reentrant).1 Therefore, finding a re-
source leak is equivalent to analyzing context-free patterns on the resource-flow graph.
PLUMBDROID’s detection of resource leaks at the intra-procedural level is based on this
equivalence, which Section 3.2.2 describes in detail.

Android apps architecture. An Android application consists of a collection of
standard components that have to follow a particular programming model [9]. Each
component type—such as activities, services, and content providers—has an associ-
ated callback graph, which constrains the order in which user-defined procedures are
executed. As shown by the example of Figure 3, the states of a callback graph are
macro-state of the app (such as Starting, Running, and Closed), connected by edges
associated with callback functions (such as onStart, onPause, and onStop). An app’s
implementation defines procedures that implement the appropriate callback functions
of each component (as in the excerpt of Figure 1).

Following this programming model, the overall control-flow of an Android app
is not explicit from the app’s implementation. Rather, the Android system triggers
callbacks according to the transitions that are taken at run time (which, in turn, depend
on the events that occur). PLUMBDROID deals with this implicit execution flow in two
steps. First (Section 3.3.1), it defines an explicit inter-procedural analysis: it assumes
that the inter-procedural execution order is known, and combines the intra-procedural
analysis of different procedures to detect leaks across procedure boundaries. Second
(Section 3.3.2), it unrolls the callback graph to enumerate sequences of callbacks that
may occur when the app is running, and applies the explicit inter-procedural analysis
to these sequences.

Fix generation. PLUMBDROID’s analysis stage extracts detailed information that is
useful not only to detect leaks but also to generate fixes that avoid the leaks. As we will
describe in Section 3.4, PLUMBDROID builds fixes by adding a release of every leaked
resource as early as possible along each leaking execution path.

PLUMBDROID’s fixes are correct by construction: they release previously acquired
resources in a way that guarantees that the previously detected leaks no longer occur.
However, it might still happen that a fix releases a resource that is used later by the
app—thus introducing a use-after-release error. In order to rule this out, PLUMBDROID

also runs a final validation step which reruns the leak analysis on the patched pro-
gram. If validation fails, it means that the fix should not be deployed as is; instead,
the programmer should modify it in a way that makes it consistent with the rest of the
app’s behavior. Our experiments with PLUMBDROID (in particular in Section 4.2.1) in-
dicate that validation is nearly always successful; even it fails, it is usually clear how
to reconcile the fix with the app’s behavior.

.

3.1. Resources

A PLUMBDROID analysis targets a specific Android API, which we model as a re-
source list L representing acquire and release operations of the API as a list of pairs

1For resources that do not allow nesting of acquire and release, leak freedom is a regular property—which
PLUMBDROID supports as a simpler case.

6

Starting

Closed

Running

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

onPause()

onResume()

Figure 3: Simplified callback graph of an Android component.

(a1, r1) (a2, r2) A pair (ak, rk) denotes an operation ak that acquires a certain re-
source together with another operation rk that releases the same resource acquired by
ak. The same operation may appear in multiple pairs, corresponding to all legal ways
of acquiring and then releasing it. For simplicity, we sometimes use L to refer to the
whole API that L represents. For example, resource MediaPlayer can be acquired and
released with (new, release)—used in Figure 1.

3.2. Intra-Procedural Analysis
In the intra-procedural analysis, PLUMBDROID builds a resource-flow graph for ev-

ery procedure in the app under analysis. In the example of Figure 1, it builds one such
graph for every callback function, and for all methods called within those functions.

3.2.1. Resource-Flow Graphs
PLUMBDROID’s analysis works on a modified kind of control-flow graph called

resource-flow graph (RFG). The control-flow graphs of real-world apps are large and
complex, but only a small subset of their blocks typically involve accessing resources.
Resource-flow graphs abstract the control flow by only retaining information that is
relevant for detecting resource leaks.2

A procedure’s resource-flow graph R abstracts the procedure’s control-flow graph
C in two steps. First, it builds a resource path graph p for every basic block in C—as
described by Algorithm 1. Then, it builds the resource-flow graph R by connecting the
resource path graphs according to the control-flow structure—as described by Algo-
rithm 2.

Resource path graph. A basic block corresponds to a sequence of statements
without internal branching. Algorithm 1 builds the resource path graph p for any basic
block b. It creates a node n in p for each statement s in b that is relevant to how L’s
resources are used: a resource is acquired or released, or execution terminates with
a return (which may introduce a leak). Nodes in the resource path graph also keep
track of when any other operation is performed, because this information is needed for
inter-procedural analysis (as we detail in Section 3.3); in other words, intra-procedural

2Energy-flow graphs—used by other leak detection techniques for Android [12, 55]—are similar to
resource-flow graphs in that they also abstract control-flow graphs by retaining the essential information
for leak detection.

7

Input: control-flow basic block b, resource list L
Output: resource path graph p

1 p← ∅ // initialize p to empty graph
2 foreach statement s in block b do
3 if s invokes a resource acquire operation a in L
4 n← new AcquireNode(a)
5 elseif s invokes a resource release operation r in L
6 n← new ReleaseNode(r)
7 elseif s invokes any other operation o
8 n← new TransferNode(o)
9 elseif s is a return statement

10 n← new ExitNode
11 else
12 n← NULL
13 if n ̸= NULL
14 append node n to path graph p’s tail
15 // if b contains no resource-relevant statements
16 if p = ∅
17 p← new TrivialNode // return a trivial node

Algorithm 1: Algorithm Path that builds the resource path graph p modeling
control-flow basic block b.

Input: control-flow graph C, resource list L
Output: resource-flow graph R

1 foreach block b in control-flow graph C do
2 // p(b) is the path graph corresponding to b ∈ C
3 p(b)← Path(b, L) // call to Algorithm 1
4 R← { entry node s }
5 c0 ← the entry block of C
6 add an edge from s to p(c0)’s entry
7 foreach block b1 in control-flow graph C do
8 foreach block b2 in b1’s successors in C do
9 add an edge from p(b1)’s exit to p(b2)’s entry

10 foreach ExitNode e in p(b1) do
11 add an edge from e’s predecessors to f
12 (the exit node of R)

Algorithm 2: Algorithm RFG that builds a resource-flow graph R modeling
control-flow graph C.

analysis is sufficient whenever a procedure doesn’t have any transfer nodes. Graph p
connects the nodes in the same sequential order as statements in b. When a block b
does not include any operations that are relevant for resource usage, its resource path

8

graph p consists of a single trivial node, whose only role is to preserve the overall
control-flow structure in the resource-flow graph. Since b is a basic block—that is, it
has no branching—p is always a path graph—that is a linear sequence of nodes, each
connected to its unique successor, starting from an entry node and ending in an exit
node.

Resource-flow graph. Algorithm 2 builds the resource-flow graph R of control-
flow graph C—corresponding to a single procedure. First, it computes a path graph
p(b) for every (basic) block b in C. Then, it connects the various path graphs following
the control-flow graph’s edge structure: it initializes R with an entry node s and con-
nects it to the entry node of p(c0)—the path graph of C’e entry block; for every edge
b1 → b2 connecting block b1 to block b2 in C, it connects the exit node of p(b1) to
the entry node of p(b2). Since every executable block b ∈ C is connected to C’s entry
block c0, and c0’s path graph is connected to R’s entry node s, R is a connected graph
that includes one path subgraph for every executable block in the control-flow graph
C. Also, R has a single entry node s and a single exit node f .

Given that R’s structure matches C’s, if there is a path in C that leaks some of L’s
resources, there is also a path in R that exposes the same leak, and vice versa. Thus,
we use the expression “R has leaks/is free from leaks in L” to mean “the procedure
modeled by C has leaks/is free from leaks of resources in the API modeled by L”.

Figure 4 shows the (simplified) resource-flow graphs of methods onCreate and
onPause from Figure 1’s example. Since each method consists of a single basic block,
the resource-flow graphs are path graphs (without branching).

3.2.2. Context-Free Emptiness: Overview
Given a resource-flow graph R—abstracting a procedure P of the app under anal-

ysis—and a resource list L, P is free from leaks of resources in L if and only if ev-
ery execution trace in R consistently acquires and releases resources in L. We ex-
press this check as a formal-language inclusion problem—à la automata-based model-
checking [48]—as follows (see Figure 5 for a graphical illustration):

1. We define a resource automaton AL that accepts sequences of operations in L
that are free from leaks. Since leak freedom is a (deterministic) context-free
property, the resource automaton is a (deterministic) pushdown automaton.3

(Resource automata are described in Section 3.2.3.)

2. We define the complement automaton AL of AL, which accepts precisely all
sequences of operations in L that leak. Since AL is a deterministic push-down
automaton, AL is too a deterministic push-down automaton.

(Complement automata are described in Section 3.2.4.)

3. We define a flow automaton AR that captures all possible paths through the nodes
of resource-flow graph R. Since AR is built directly from R, it is a (determinis-
tic) finite-state automaton.

3We could equivalently use context-free grammars.

9

newAcquireNode

findViewById()TransferNode

setVisibility() TransferNode

super.onPause() TransferNode player.release() ReleaseNode

s

f

s

f

onCreate’s RFG onPause’s RFG

PLUMBDROID’s fix introduces node:

Figure 4: Some abstractions built by PLUMBDROID to analyze the example of Figure 1.
The intra-procedural analysis described in Section 3.2 builds a resource-flow graph (RFG)
for each procedure onCreate and onPause independently. As described in Section 3.3,
the inter-procedural analysis considers, among others, the sequence of callback functions
onCreate(); onStart(); onResume(); onPause(); since onStart() and onResume() do
nothing in this example, this corresponds to connecting onCreate’s exit to onPause’s entry. The
inter-procedural analysis thus finds a leaking path (in orange), where acquire operation new is
not matched by any release operation. Fixing (Section 3.4) modifies the app by adding a suitable
release operation player.release() (in green), which completely removes the leak.

AL: leak-freeAL: leaking

AR: procedure’s resource usages

AX :
leaking usages

Figure 5: A graphical display of PLUMBDROID’s intra-procedural leak detection. The resource au-
tomaton AL captures all leak-free sequences; its complement AL captures all leaking sequences.
The flow automaton AR captures all sequences of resource usages that may happen when the
procedure under analysis runs. The intersection automaton AX captures the intersection of the
violet and orange areas (outlined in dotted white), which marks the procedure’s resource usage
sequences that are leaking. If this area is empty, we conclude that the procedure is leak free.

(Flow automata are described in Section 3.2.5.)

4. We define the intersection automaton AX = AL × AR that accepts all possible
paths in R that introduce a leak in resource L.

(Intersection automata are described in Section 3.2.6.)

5. We check if the intersection automaton accepts no inputs (the “empty language”).

10

s,⊥ : ⊥ f,⊥ : ⊥

acquire, ∗ : acquire ∗

release, acquire : ϵ

(a) Deterministic pushdown automaton ALW

accepting the language of leak-free sequences
of acquire and release operations of resource
WifiLock. A transition x, y : Z reads input x
when y is on top of the stack, and replaces y with
string Z. ∗ is a shorthand for any symbol, ϵ is the
empty string, and ⊥ is the empty stack symbol.
The short arrow in the leftmost state denotes that
it is an initial state; the double line in the right-
most state denotes that it is a final state.

s

f

new

release

start

stop

(b) Deterministic finite-state automaton ALM

accepting the language of leak-free sequences of
operations of resource MediaPlayer. The short
arrow in the top state denotes that it is an initial
state; the double line in the bottom state denotes
that it is a final state.

Figure 6: Resource automata for reentrant resource WifiLock and non-reentrant resource
MediaPlayer.

s

f

e

s

new

f

s

new

release

start

stop

f f

s

f

e

s

new

f

ARALM
AX = ALM

×AR

Figure 7: The intersection automaton AX (right) combines the complement automaton ALM

(left) of the MediaPlayer’s resource automaton ALM from Figure 6b and the flow automaton
AR (middle) of method onCreate() from Figure 1.

If this is the case, it means that R cannot leak; otherwise, we found a leaking
trace.

(Emptiness checking is described in Section 3.2.7.)

The following subsections present these steps in detail.

11

3.2.3. Resource Automata
Given a resource list L = {(a1, r1) (a2, r2) . . . (an, rn)}, the resource automaton

AL is a deterministic pushdown automaton4 that accepts all strings that begin with a
start character s, end with a final character f , and include all sequences of the charac-
ters a1, r1, a2, r2, . . . , an, rn that encode all leak-free sequences of acquire and release
operations.

More precisely, AL is a deterministic pushdown automaton if the resource modeled
by L is a reentrant, and hence it can be acquired multiple times. If the resource mod-
eled by L is not reentrant, AL is an ordinary finite state automaton (a simpler subclass
of pushdown automata). In the remainder of this section, we recall the definitions of
deterministic pushdown automata and finite-state automata, and we show the exam-
ple of resource automaton of a reentrant resource, as well as one of a non-reentrant
resource.

Pushdown automata. Pushdown automata [46] are finite-state automata equipped
with an unbounded memory that is manipulated as a stack. For leak detection, we only
need deterministic pushdown automata, where the input symbol uniquely determines
the transition to be taken in each state.

Definition 1 (Deterministic pushdown automaton). A deterministic pushdown automa-
ton A is a tuple ⟨Σ, Q, I,Γ, δ, F ⟩, where: 1. Σ is the input alphabet; 2. Q is the
set of control states; 3. I ⊆ Q and F ⊆ Q are the sets of initial and final states;
4. Γ is the stack alphabet, which includes a special “empty stack” symbol ⊥; 5. and
δ : Q×Σ×Γ→ Q×Γ∗ is the transition function. An automaton’s computation starts
in an initial state with an empty stack ⊥. When the automaton is in state q1 with stack
top symbol γ and input σ, if δ(q1, σ, γ) = (q2, G) is defined, it moves to state q2 and
replaces symbol γ on the stack with string G. L(A) ⊆ Σ∗ denotes the set of all input
strings s accepted by A, that is such that A can go from one of its initial states to one
of its final states by inputting s.

Reentrant resources. Consider a reentrant resource with resource list
L = {(a1, r1) (a2, r2) . . . (an, rn)}. The resource automaton AL is a deterministic
pushdown automaton that operates as follows. When AL inputs an acquire operation
ak, it pushes it on to the stack; when it inputs a release operation rk, if the symbol
on top of the stack is some ak such that (ak, rk) ∈ L, it pops ak—meaning that the
release matches the most recent acquire: since all operations in L correspond to the
same resource, any release has to refer to the latest acquire. Finally, AL accepts the
input if it ends up with an empty stack.

Example 1 (Resource automaton for WifiLock). Let’s illustrate this construction in
detail for the case of resource WifiLock with LW = {(acquire, release)} that is
reentrant (see Table 1). Pushdown automaton ALW

in Figure 6a accepts all strings
over alphabet ΣLW = {s, f, acquire, release} of the form sB f where B is a string
B ∈ {acquire, release}∗ is any balanced sequence of acquire and release—that
is, a leak-free sequence.

4Precisely, a visibly pushdown automaton (a subclass of deterministic pushdown automata [1]) would be
sufficient.

12

Finite-state automata. Finite-state automata can be seen as a special case of push-
down automata without stack.

Definition 2 (Finite-state automaton). A finite-state automaton A is a five-element
tuple ⟨Σ, Q, I, δ, F ⟩, where: 1. Σ is the input alphabet; 2. Q is the set of control states;
3. I ⊆ Q and F ⊆ Q are the sets of initial and final states; 4. and δ ⊆ Q × Σ × Q
is the transition relation. An automaton’s computation starts in an initial state. When
the automaton is in state q1 with input σ, if q2 ∈ δ(q1, σ), it may move to state q2.
L(A) ⊆ Σ∗ denotes the set of all input strings s accepted by A, that is such that A can
go from one of its initial states to one of its final states by inputting s.

A finite-state automaton is deterministic when its transition relation δ is actually a
function: the input uniquely determines the next state.

Non-reentrant resources. Consider a non-reentrant resource with resource list
L = {(a1, r1) (a2, r2) . . . (an, rn)}. The resource automaton AL is a finite-state au-
tomaton that operates as follows. When AL inputs an acquire operation ak, it moves to
a new fresh state that is not final; the only valid transitions out of this state correspond
to release operations rk such that (ak, rk) ∈ L. Thus, AL accepts the input only if
every acquire operation is immediately followed by a matching release operation.

Example 2 (Resource automaton for MediaPlayer). Resource MediaPlayer (used in
the example of Section 2) is instead not reentrant (see Table 1), and offers operations
LM = {(new, release) (start, stop)}. The finite-state automaton ALM

in Figure 6b
accepts all strings over alphabet ΣLM = {s, f, new, release, start, stop} of the form
s (new release | start stop)∗ f , where each acquire operation is immediately fol-
lowed by the matching release operation—that is, all leak-free sequences.

3.2.4. Complement Automata
Deterministic pushdown automata are a strict subclass of (nondeterministic) push-

down automata [1]. Unlike general pushdown automata, deterministic pushdown au-
tomata are closed under complement. That is, given any deterministic pushdown au-
tomaton A, we can always build the complement A: a deterministic pushdown au-
tomaton that accepts precisely the inputs that A rejects and vice versa. For brevity, we
do not repeat the classic construction of complement automata [46] The key idea is to
switch final and non-final states, so that every computation that ends in a final state in
A will be rejected in A and vice versa. Since finite-state automata are a subclass of
deterministic pushdown automata, they are closed under complement too.

For our purposes, we need a slightly different complement automaton: one that
accepts all sequences that begin with s, end with f , and include any leaking sequence
of acquire and release in between these markers. For example, the automaton on the
left in Figure 7 is the complement of MediaPlayer’s resource automaton in Figure 6b
that PLUMBDROID builds: it only accepts sequences that terminate with an f when there
is a pending acquired resource before it’s released.

3.2.5. Flow Automata
Given a resource-flow graph R = ⟨V,E⟩, the flow automaton AR is a deterministic

finite-state automaton that accepts precisely the language L(R) of all paths π through
R such that π starts in R’s entry node s and ends in R’s exit node f .

13

More precisely, the flow automaton AR is a tuple ⟨ΣR, QR, IR, δR, FR⟩, where:
1. ΣR = ΣL are all acquire and release operations, plus symbols s and f ; 2. QR = V ∪
{e} are all nodes of R plus a fresh exit node e; 3. IR = {s} is the unique entry node
of R, and FR = {e} is the new unique exit node; 4. the transition relation δR derives
from R’s edges: for every edge m→ n in R, n ∈ δR(m, type(m)) is a transition from
state m to state n that reads input symbol type(m) corresponding to the type of node
m (start, acquire, or release); plus a transition from R’s exit node to the new exit node
e reading f .

Without loss of generality, we can assume that AR is deterministic, since finite-state
automata are closed under determinization [46]. That is, even if the construction above
gives a nondeterministic finite-state automaton AR, we can always build an equivalent
deterministic variant of it that accepts precisely the same inputs.

The middle automaton in Figure 7 is the flow automaton AR of onCreate in Fig-
ure 1’s running example: it is isomorphic to onCreate’s resource-flow graph (left
in Figure 4) except for an additional final node e that follows f .

3.2.6. Intersection Automata
Given (the complement of) a resource automaton AL and flow automaton AR, the

intersection automaton AX = AL × AR is a deterministic pushdown automaton that
accepts precisely the intersection language L(AL)∩L(AR), that is the inputs accepted
by both the complement automaton AL and the flow automaton AR. Therefore, AX

precisely captures all sequences of acquire and release operations that may occur in
R (that is, they are in L(AR)) and that leak some resource in L (that is, they are in
L(AL) = L(AL) and thus are rejected by AL).

More precisely, the intersection automaton AX is a deterministic pushdown au-
tomaton ⟨ΣX , QX , IX ,ΓX , δX , FX⟩, where: 1. ΣX = ΣL is the usual alphabet of
all acquire and release operations, plus symbols s and f ; 2. QX = QR × QL is the
Cartesian product of AR’s and AL’s states; 3. IX = (i1, i2), where i1 ∈ IR is an
initial state of AR and i2 ∈ IL is an initial state of AL; 4. FX = (f1, f2), where
f1 ∈ FR is a final state of AR and f2 ∈ FL is a final state of AL; 5. ΓX = ΓL

is the stack alphabet of AL; 6. for every transition p2 ∈ δR(p1, σ) in AR and every
transition (q2, G) = δL(q1, σ, γ) in AL that input the same symbol σ, AX includes
transition ((p2, q2), G) = δX((p1, q1), σ, γ) that manipulates the stack as in AL’s tran-
sition. Since both AR and AL are deterministic, so is AX .

The rightmost automaton in Figure 7 is the intersection automaton of Figure 1’s
running example. Since the flow automaton AR is just a single path, it is identical to
its intersection with ALM

, which accepts the single leaking path.

3.2.7. Emptiness Checking
In the last step of its intra-procedural leak detection, PLUMBDROID has built the

intersection automaton AX : a deterministic pushdown automaton that accepts all se-
quences of operations on resources L that may occur in the piece of code P corre-
sponding to R and that leak some resource. In other words, R is free from leaks in L
if and only if the intersection automaton AX accepts the empty language—that is, no
inputs at all.

14

It is another classic result of automata theory that checking whether any pushdown
automaton accepts the empty language (that is, it accepts no inputs) is decidable in
polynomial time [1].

PLUMBDROID applies this classic decision procedure to determine whether AX ac-
cepts the empty language. If it does, then procedure P is leak free; otherwise, we found
a trace of P that leaks.

3.3. Inter-Procedural Analysis

PLUMBDROID lifts the intra-procedural analysis to a whole app by analyzing all
possible calls between procedures. The analysis of a given sequence of procedure
calls combines the results of intra-procedural analysis as described in Section 3.3.1.
Since in Android system callbacks determine the overall execution order of an app,
Section 3.3.2 explains how PLUMBDROID unrolls the callback graph to enumerate pos-
sible sequences of procedure calls—which are analyzed as if they were an explicit call
sequence.

Input: call graph C = ⟨V,E⟩, automaton AL

Output: H = {Hp | V ∋ p is not called by any procedure}
1 N ← topological sort of C
2 foreach n ∈ N do
3 // for each procedure n
4 if n is not calling any other procedure
5 // leaking paths in
6 // intra-procedural analysis of n
7 // Rn is the RFG of procedure n

8 Hn ← LeakingPaths(Rn, AL, L)

9 elseif n calls procedures m1,m2, . . .
10 R′

n ← Rn

11 foreach m ∈ {m1,m2, . . .} do
12 // R′

n is Rn with call-to-m nodes
13 // replaced by Hm

14 R′
n ← R′

n[TransferNode(m) 7→ Hm]

15 // leaking paths in
16 // intra-procedural analysis of R′

n

17 Hn ← LeakingPaths(R′
n, A

L, L)

Algorithm 3: Algorithm AllCalls which computes inter-procedural resource-flow
paths accepted by “leaking” pushdown automaton AL. Function LeakingPaths
performs the intra-procedural detection of leaking paths described in Section 3.2.2.

3.3.1. Explicit Call Sequences
As it is customary, PLUMBDROID models calls between procedures with a call graph

C: every node v in C is one of the procedures that make the app under analysis; and an

15

edge u → v in C means that u calls v directly. In our analysis, a call graph may have
multiple entry nodes, since Android applications have multiple entry points.

PLUMBDROID follows Algorithm 3 to perform inter-procedural analysis based on
the call graph. First of all, we use topological sort (line 1) to rank C’s nodes in an order
that is consistent with the call order encoded by C’s edges: if a node P has lower rank
than a node Q it means that P does not call Q. Topological sort is applicable only if
C is acyclic, that is there are no circular calls between procedures. If it detects a cycle,
PLUMBDROID’s implementation issues a warning and then breaks the cycle somewhere.
As we discuss in Section 3.6 and Section 4, the restriction to acyclic call graphs seems
minor in practice since all apps we analyzed had acyclic call graphs.

Once nodes in C are ranked according to their call dependencies, Algorithm 3
processes each of them starting from those corresponding to procedures that do not call
any other procedures (line 4). The resource-flow graph of such procedures doesn’t have
any transfer nodes, and hence it can be completely analyzed using intra-procedural
analysis.

Function LeakingPaths performs the intra-procedural leak detection technique of
Section 3.2.2 and returns any leaking paths in the procedure. The leaking path, if it
exists, is used as a summary of the procedure.

Procedures that are free from leaks have an empty path as summary; therefore,
they are neutral for inter-procedural analysis. In contrast, procedures that may leak
have some non-empty path as summary, which can be combined with the summary of
other procedures they call to find out whether the combination of caller and callee is
free from leaks. This is done in lines 9–17 of Algorithm 3: the resource-flow graph
of a procedure n that calls another procedure m includes some transfer nodes to m;
we replace those nodes with the summary of m (which was computed before thanks to
the topological sorting), and perform an analysis of the call-free resource-flow graph
with summaries. The output of Algorithm 3 are complete summaries for the whole app
starting from the entry points.

3.3.2. Implicit Call Sequences
Callbacks in every component used by an Android app have to follow an execution

order given by the component’s callback graph: a finite-state diagram with callback
functions defined on the edges (see Figure 3 for a simplified example). Apps provide
implementations of such callback functions, which PLUMBDROID can analyze for leaks.
When an edge’s transition is taken, all callback functions defined on the edge are called
in the order in which they appear.

The documentation of every resource defines callback functions where the resource
ought to be released. PLUMBDROID enumerates all paths that first go from the callback
graph’s entry to the nodes from where the release callback functions can be called, and
then continue looping until states are traversed up to D times—where D is a config-
urable parameter of PLUMBDROID called “unrolling depth” (see Section 4.2.5 to see its
impact in practice). Each unrolled path determines a sequence of procedures P1;P2; . . .
used in the callback functions in that order. PLUMBDROID looks for leaks in these call
sequences by analyzing them as if they were explicit calls in that sequence—using the
approach of Section 3.3.1.

16

For example, Figure 1’s resource MediaPlayer should be released in callback func-
tion onPause. For a component with the callback graph of Figure 3, and unrolling depth
D = 2, PLUMBDROID enumerates the path Starting → Running → Running →
Closed , corresponding to callback sequence onCreate(); onStart(); onResume();

onPause(); onResume(); onPause(); If the media player is acquired and not
later released in these call’s implementations, PLUMBDROID will detect a leak. Since
callback functions onStart and onResume are not implemented in Figure 1’s simple
example, Figure 4 displays the initial part of this sequence of callbacks by connecting
in a sequence the resource-flow graphs of onCreate and onPause.

3.4. Fix Generation

Fix templates. Once PLUMBDROID detects a resource leak, fixing it amounts to
injecting missing release operations at suitable locations in the app’s implementation.
PLUMBDROID builds fixes using the conditional template:
if (resource != null && held) resource.r(), where resource is a reference to
the resource object, r is the release operation (defined in the resource’s API), and held
is a condition that holds if and only if the resource is actually not yet released. Calls
to release operations must be conditional because PLUMBDROID’s analysis is an over-
approximation (see Section 3.6) and, in particular, a may leak analysis [42]: it is pos-
sible that a leak occurs only in certain conditions, but the fix must be correct in all
conditions. Condition held depends on the resource’s API: for example, wake locks
have a method isHeld() that perfectly serves this purpose; in other cases, the null
check is enough (and hence held is just true). Therefore, PLUMBDROID includes a
definition of held for every resource type, which it uses to instantiate the template.

Another complication in building a fix arises when a reference to the resource to
be released is not visible in the callback where the fix should be added. In these cases,
PLUMBDROID’s fix will also introduce a fresh variable in the same component where
the leaked resource is acquired, and make it point to the resource object. This ensures
that a reference to the resource to be released is visible at the fix location.

Fix injection. A fix’s resource release statement may be injected into the appli-
cation at different locations. A simple, conservative choice would be the component’s
final callback function (onDestroy for activity components). Such a choice would be
simple and functionally correct but very inefficient, since the app would hold the re-
source for much longer than it actually needs it.

Instead, PLUMBDROID uses the information computed during leak analysis to find
a suitable release location. As we discussed in Section 3.3.2, the overall output of
PLUMBDROID’s leak analysis is an execution path that is leaking a certain resource.
The path traverses a sequence C1;C2; . . . ;Cn of callback functions determined by the
component’s callback graph, and is constructed by PLUMBDROID in a way that it ends
with a call Cn to the callback function where the resource may be released (according
to the resource’s API documentation). Therefore, PLUMBDROID adds the fix statement
in callback Cn just after the last usage of the resource in the callback (if there is any).

In the running example of Figure 1, PLUMBDROID inserts the call to release in
callback onPause, which is as early as possible in the sequence of callbacks—as shown
in the rightmost node of Figure 4.

17

3.5. Validation
Since leak analysis is sound (see Section 3.6), PLUMBDROID’s fixes are correct by

construction in the sense that they will remove the leak that is being repaired. However,
since the resource release statement that fixes the leak is inserted in the first suitable
callback (as described in Section 3.4), it is possible that it interferes in unintended ways
with other usages of the resource.

In order to determine whether its fixes may have introduced inconsistencies of this
kind, PLUMBDROID performs a final validation step, which runs a modified analysis
that checks absence of new leaks as well as absence of use-after-release errors. This
analysis reuses the techniques of Section 3.2 and Section 3.3 with the only twist that
the pushdown automaton characterizing the property to be checked is now extended to
also capture absence of use-after-release errors.

PLUMBDROID’s fixes release resources in the recommended callback function, but
the app’s developer may have ignored this recommendation and written code that still
uses the resource in callbacks that occur later in the component’s lifecycle. Such sce-
narios are the usual origin of failed validation: PLUMBDROID would fix the leak but it
would also introduce a use-after-release error by releasing the resource too early.

Continuing Figure 1’s example of resource MediaPlayer, suppose that the imple-
mentation does call the release operation but only in activity onStop. PLUMBDROID

would still report a leak, since it does not find a release in onPause—which is where
MediaPlayer should be released according to its API documentation. Accordingly,
PLUMBDROID’s fix for this leak would add release in onPause as described in Sec-
tion 2. Validation of the leak would, however, fail because the programmer-written
release in onStop introduces a double-release of the same resource, which validation
detects.

If validation fails, PLUMBDROID still outputs the invalid fix, which can be useful
as a suggestion to the developer—who remains responsible for modifying it in a way
that doesn’t conflict with the rest of the app’s behavior. In particular, the experiments
of Section 4.2.1 confirm the intuition that validation fails when PLUMBDROID releases
resources in the callback function recommended by the official resource documenta-
tion but the rest of the app’s behavior conflicts with this recommendation. Therefore,
the developer has the options of adjusting the fix or refactoring the app to follow the
recommended guidelines.

In the running example of MediaPlayer, the programmer may either ignore PLUMB-
DROID’s suggestion and keep releasing the resource in onStop (against the resource’s
recommendations), or accept it and remove the late call of release that becomes no
longer necessary.

Validation is an optional step in PLUMBDROID. This is because it is not needed if
we can assume that the app under repair follows Android’s recommendation for when
(in which callbacks) a resource should be used and released. As we will empirically
demonstrate in Section 4, validation is indeed usually not needed—but it remains avail-
able as an option in all cases where an additional level of assurance is required.

3.6. Features and Limitations
Let us summarize PLUMBDROID’s design features and the limitations of its current

implementation. Section 4 will empirically confirm these features and assess the prac-

18

tical impact of the limitations.

3.6.1. Soundness
A leak detection technique is sound [42] if, whenever it finds no leaks for a certain

resource, it really means that no such leaks are possible in the app under analysis.
PLUMBDROID’s intra-procedural analysis is sound: it performs an exhaustive search

of all possible paths, and thus it will report a leak if there is one. The inter-procedural
analysis, however, has two possible sources of unsoundness. (a) Since it performs a
fixed-depth unrolling of paths in the callback graph (Section 3.3.2), it may miss leaks
that only occur along longer paths. (b) Since it ranks procedures according to their call
order (Section 3.3.1), and such an order is not uniquely defined if the call graph has
cycles, it may miss leaks that only occur in other procedure execution orders.

Both sources of unsoundness are unlikely to be a significant limitation in prac-
tice [32]. A leak usually does not depend on the absolute number of times a resource is
acquired or released, but only on whether acquires and releases are balanced. As long
as we unroll each loop a sufficient number of times, unsoundness source (a) should not
affect the analysis in practice. Furthermore, leak detection is monotonic with respect to
the unrolling depth D: as D increases, PLUMBDROID may find more leaks by exploring
more paths, but a leak detected with some D will also always be detected with a larger
D′ > D.

As for the second source of unsoundness, the Android development model, where
the overall control flow is determined by implicit callbacks, makes it unlikely that
user-defined procedures have circular dependencies. More precisely, PLUMBDROID’s
soundness is only affected by cycles in paths with acquire and release—not in plain
application logic—and hence unsoundness source (b) is also unlikely to occur.

The experiments of Section 4 will confirm that PLUMBDROID is sound in practice
by demonstrating that a wide range of Android applications trigger neither source of
unsoundness.

3.6.2. Precision
A leak detection technique is precise [42] if it never reports false alarms (also called

false positives): whenever it detects a leak, that leak really occurs in some executions of
the app under analysis. In the context of leak repair, many false alarms would generate
many spurious fixes, which do not introduce bugs (since the analysis is sound) but are
useless and possibly slow down the app.

PLUMBDROID’s analysis is, as is common for dataflow analyses, flow-sensitive but
path-insensitive. This means that it over-approximates the paths that an app may take
without taking into account the feasibility of those paths. As a very simple example,
consider a program that only consists of statement if (false) res.a(), where res

is a reference to a resource and a is an acquire operation. This program is leak free,
since the lone acquire will never execute. However, PLUMBDROID would report a leak
because it conservatively assumes that every branch is feasible.

Aliasing occurs when different references to the same resource may be available
in the same app. Since PLUMBDROID does not perform alias analysis, this is another
source of precision loss: a resource with two aliases x and y that is acquired using x

19

and released using y will be considered leaking by PLUMBDROID, which thinks x and y

are different resources.
In practice, these two sources of imprecision are limitations to PLUMBDROID’s ap-

plicability. When aliasing is not present, the experiments of Section 4 indicate that the
path-insensitive over-approximation built by PLUMBDROID is very precise in practice.
Whether aliasing is present mostly depends on the kind of resource that is analyzed.
As we discuss in Section 4.1.1, it is easy to identify resources whose usage is unlikely
to introduce aliasing. PLUMBDROID is currently geared towards detecting and repairing
leaks of such resources.

A comprehensive empirical study of performance bugs in mobile apps [38] found
that about 36% of the analyzed Android resource leaks were related to non-aliasing
resources, such as WiFi and Camera, whose operations are energy intensive. The same
study also reported that the leaks that affect these resources tend to have a much longer
life than the memory-related leaks, as it takes developers longer, on average, to detect
and fix the former over the latter. These data indicate that non-aliasing resource leaks
are a significant fraction of the most common resource-related issues in Android apps,
can have a negative impact on performance, and can be challenging to detect and fix.
These observations motivate PLUMBDROID’s focus on non-aliasing resources.

3.7. Implementation

We implemented PLUMBDROID in Python on top of ANDROGUARD [8] and APK-
TOOL [10].

PLUMBDROID uses ANDROGUARD—a framework to analyze Android apps—mainly
to build the control-flow graphs of methods (which are the basis of our resource-flow
graphs) and to process manifest files (extracting information about the components
that make up an app). Using ANDROGUARD ensures that the control-flow graphs cap-
ture all behavior allowed by Java/Android (including, for example, exceptional control
flow) in a simple form in terms of a few basic operations.

APKTOOL—a tool for reverse engineering of Android apps—supports patch gen-
eration: PLUMBDROID uses it to decompile an app, modify it with the missing release
operations, and recompile the patched app back to executable format. PLUMBDROID’s
analysis and patching work on Smali code—a human-readable format for the binary
bytecode format DEX, which is obtained by decompiling from and compiling to the
APK format.

4. Experimental Evaluation

The overall goal of our experimental evaluation is to investigate whether PLUMB-
DROID is a practically viable approach for detecting and repairing resource leaks in
Android applications. We consider the following research questions.

RQ1: Does PLUMBDROID generate fixes that are correct and “safe”?

RQ2: How do PLUMBDROID’s fixes compare to those written by developers?

RQ3: Is PLUMBDROID scalable to real-world Android apps?

20

OPERATIONS RELEASED

RESOURCE ak rk CALLBACK REENTRANT?

AudioRecorder new release onPause, onStop N

BluetoothAdapter
enable disable onStop

N
startDiscovery cancelDiscovery onPause

Camera

lock unlock

onPause Nopen release

startPreview stopPreview

LocationListener requestUpdates removeUpdates onPause N

MediaPlayer
new release

onPause, onStop N
start stop

Vibrator vibrate cancel onDestroy N

WakeLock acquire release onPause Y

WifiLock acquire release onPause Y

WifiManager enable disable onDestroy N

Table 1: Android resources analyzed with PLUMBDROID. For each RESOURCE, the table re-
ports the acquire ak and release rk OPERATIONS it supports (according to the resource’s API
documentation [3]), the CALLBACK function on... where the resource should be RELEASED

(according to the Android developer guides [4]), and whether the resource is REENTRANT (Yes
implies that absence of leaks is a context-free property and No implies that it is a regular prop-
erty).

RQ4: How does PLUMBDROID compare with other automated repair tools for Android
resource leaks?

RQ5: How does PLUMBDROID’s behavior depend on the unrolling depth parameter,
which controls its analysis’s level of detail?

4.1. Experimental Setup
This section describes how we selected the apps used in the experimental evaluation

of PLUMBDROID, how we ran the experiments, and how we collected and assessed the
experiments’ results to answer the research questions.

4.1.1. Subjects: RQ1, RQ2, RQ3, RQ5
Our experiments to assess correctness and scalability target apps in DROIDLEAKS [29]—

a curated collection of resource leak bugs in real-world Android applications. DROI-
DLEAKS collects a total of 292 leaks from 32 widely used open-source Android apps.
For each leak, DROIDLEAKS includes both the buggy (leaking) version of an app and a
leak-free version obtained by manually fixing the leak.

Leaks in DROIDLEAKS affect 22 resources. The majority of them (13) are Android-
specific resources (such as Camera or WifiLock), while the others are standard Java

21

APP KLOC RESOURCE LEAKS

APG 42.0 MediaPlayer 1
BarcodeScanner 10.6 Camera 1
CallMeter 13.5 WakeLock 3

ChatSecure 37.2 BluetoothAdapter 0
Vibrator 1

ConnectBot 17.6 WakeLock 0
CSipSimple 49.0 WakeLock 2

IRCCloud 35.3 MediaPlayer 0
WifiLock 1

K-9 Mail 78.5 WakeLock 2
OpenGPSTracker 12.3 LocationListener 1
OsmDroid 18.4 LocationListener 2
ownCloud 31.6 WifiLock 2
QuranForAndroid 21.7 MediaPlayer 1
SipDroid 24.5 Camera 4
SureSpot 41.0 MediaPLayer 2
Ushahidi 35.7 LocationListener 1
VLC 18.1 WakeLock 2
Xabber 38.2 AudioRecorder 2

AVERAGE 30.9
TOTAL 525.2 26

Table 2: DROIDLEAKS apps analyzed with PLUMBDROID. For each APP, the table reports its size
KLOC in thousands of lines of code. For each RESOURCE used by the app, the table then reports
the number of LEAKS of that resource and app included in DROIDLEAKS. The two bottom rows
report the AVERAGE (mean) and TOTAL for all apps.

22

APIs (such as InputStream or BufferReader). PLUMBDROID’s analysis is based on the
Android programming model, and every Android-specific resource expresses its usage
policy in terms of the callback functions where a resource can be acquired or released—
an information that is not available for standard Java API’s resources. Therefore, our
evaluation only targets leaks affecting Android-specific resources.

As we discussed in Section 3.6, PLUMBDROID is oblivious of possible aliases be-
tween references to the same resource object. If such aliasing happens within the
same app’s implementation, it may significantly decrease PLUMBDROID’s precision.
We found that each Android resource can naturally be classified into aliasing and non-
aliasing according to whether typical usage of that resource in an app may introduce
multiple references that alias one another.5 Usually, a non-aliasing resource is one that
is accessed in strict mutual exclusion, and hence such that obtaining a handle is a rel-
atively expensive operation; Camera, MediaPlayer, and AudioRecorder are examples
of non-aliasing resources. In contrast, aliasing resources tend to support a high de-
gree of concurrent access, and hence it is common to instantiate fresh handles for each
usage; a database Cursor is a typical example of such resources, as creating a new cur-
sor is inexpensive, and database systems support fine-grained concurrent access. Out
of all 13 Android resources involved in leaks in DROIDLEAKS, 9 are non-aliasing; our
experiments ran PLUMBDROID on all apps in DROIDLEAKS that use these resources.6

Table 1 summarizes the characteristics of the 9 resources we selected for our ex-
periments according to the above criteria. Then, Table 2 lists all apps in DROIDLEAKS

that use some of these resources, their size, and how many leaks of each resource
DROIDLEAKS includes with fixes. Thus, the first part of our experiments will target
16 Android apps with a total size of about half a million lines of code; DROIDLEAKS

collects 26 leaks in these apps affecting the 9 non-aliasing resources we consider.

4.1.2. Subjects: RQ4, RQ5
At the time of writing, RelFix [28] is the only fully automated tool for the detec-

tion and repair of Android resource leaks, which can be quantitatively compared to
PLUMBDROID. Since RelFix uses Relda2 [55] to detect leaks, and Relda2’s experimen-
tal evaluation is broader than RelFix’s, we also compare PLUMBDROID’s leak detection
capabilities to Relda2’s.

As we discuss in Section 5.3, other tools exist that detect other kinds of leaks;
since they are not directly applicable to the same kinds of resources that PLUMBDROID

analyzes, we only compare them to PLUMBDROID in a qualitative way in Section 5.
The experimental evaluations of RelFix and Relda2, as reported in their publica-

tions [28, 55], targeted 27 Android apps that are not part of DROIDLEAKS. Unfortu-
nately, neither detailed experimental results (such as the app versions that were targeted
or the actual produced fixes) nor the RelFix and Relda2 tools are publicly available.7

5Note that the classifications of resources into aliasing/non-aliasing and reentrant/non-reentrant are or-
thogonal: PLUMBDROID fully supports reentrant resources, but achieves a high precision only when analyzing
non-aliasing resources.

6We also tried PLUMBDROID on the 4 (= 13−9) aliasing resources in DROIDLEAKS; Section 4.3 discusses
the outcome of these secondary experiments..

7The authors of [55, 28] could not follow up on our requests to share the tools or details of their experi-

23

Therefore, a detailed, direct experimental comparison is not possible. However, we
could still run PLUMBDROID on the same apps analyzed with RelFix and Relda2, and
compare our results to those reported by [28, 55] in terms of number of fixes and pre-
cision.

Out of the 27 apps used in RelFix and Relda2’s experimental evaluations, 22 use
some of the 9 non-aliasing resources that PLUMBDROID targets (see Table 1). More
precisely, Relda2’s evaluation in [55] only targets resources that are non-aliasing, thus
we consider all of their experiments in our comparison. RelFix’s evaluation in [28]
targets 4 non-aliasing and 4 aliasing resources; we only consider the former for our
comparison with PLUMBDROID. In order to include apps as close as possible to those
actually analyzed by [28, 55], we downloaded the apk release of each app that was
closest in time to the publication time of [28, 55]. This excluded 2 apps whose older
releases we could not retrieve. In all, this process identified 20 apps: 16 used in the
evaluation of Relda2 (listed in Table 4) and 4 used in the evaluation of RelFix (listed in
Table 5), for a total of 260 000 lines of code and using 7 of the 9 non-aliasing resources.

Relda2 supports both a flow-insensitive and a flow-sensitive detection algorithm.
According to [55], the flow-insensitive approach is faster but much less precise. Since
PLUMBDROID’s analysis is also flow-sensitive, we only compare it to Relda2’s flow-
sensitive analysis (option op2 in [55]), which is also the one used by RelFix.

4.1.3. Experimental Protocol
In our experiments, each run of PLUMBDROID targets one app and repairs leaks of

a specific resource.8 The run’s output is a number of leaks and, for each of them, a fix.
After each run, we manually inspected the fixes produced by PLUMBDROID, con-

firmed that they are syntactically limited to a small number of release operations, and
checked that the app with the fixes still runs normally. Unfortunately, the apps do not
include tests that we could have used as additional evidence that the fixes did not intro-
duce any regression. However, PLUMBDROID’s soundness guarantees that the fixes are
correct by construction; and its validation phase further ascertains that the fixes do not
introduce use-after-release errors.

In all experiments with DROIDLEAKS, we also tried to match, as much as possible,
the leaks detected and repaired by PLUMBDROID to those reported in DROIDLEAKS.
This was not always possible: some apps’ are only available in obfuscated form, which
limits what one can conclusively determine by inspecting the bytecode. In addition,
DROIDLEAKS’s collection is not meant to be exhaustive: therefore, it is to be expected
that PLUMBDROID finds leaks that are not included in DROIDLEAKS. In the experiments
with the apps analyzed by RelFix and Relda2, we did not have any “ground truth” to
compare them to, but we still performed manual checks and testing.

More precisely, we followed these steps to manually inspect and validate all leak
detected by PLUMBDROID: 1. We consider the leaking path on the resource-flow graph
reported by PLUMBDROID and determine whether it is feasible. If this is not the case

mental evaluation.
8PLUMBDROID can analyze leaks for multiple resources in the same run, but we do not use this features in

the experiments in order to have a fine-grained breakdown of PLUMBDROID’s performance.

24

(for example, two elements of the path condition are contradictory), then we classify
the leak as a false positive. 2. If the leaking path is feasible, we consider the path’s
matching sequence of callbacks, and use that as a guide to write a test that tries to cover
the path on the real program—and thus confirms that the leak is a true positive. For
short paths, the path condition usually contains enough information to come up with
a test after some trial-and-error. 3. In more complex cases (especially paths involving
UI interactions), we use Android Studio’s Monkey Testing framework [5] to generate
several random input sequences that thoroughly exercise the app; then, we monitor the
app running on those inputs, and select any execution paths that matched the leaking
path on the resource-flow graph. 4. Finally, we re-compile the app after injecting the fix
produced by PLUMBDROID, and run the patched app on the tests generated as described
above, as well as on a few other random inputs and also trying the app interactively,
checking that the leak is no longer triggered and there are no other changes in behavior
(in particular, no negative impact on performance). In all cases, we were conservative
in assessing which leaks and fixes are correct, marking as “confirmed” only cases where
the collected evidence that a leak may occur and its fix safely repairs it is conclusive.

The main parameter regulating PLUMBDROID’s behavior is the unrolling depth D.
We ran experiments with D ranging from 1 to 6, to demonstrate empirically that the
default value D = 3 is necessary and sufficient to achieve soundness (i.e., no leaks are
missed).

Hardware/software setup. All the experiments ran on a MacBook Pro equipped
with a 6-core Intel Core i9 processor and 16 GB of RAM, running macOS 10.15.3,
Android 8.0.2 with API level 26, Python 3.6, ANDROGUARD 3.3.5, APKTOOL 2.4.0.

4.2. Experimental Results

This section summarizes the results of our experiments with PLUMBDROID, and
discusses how the results answer the research questions.

4.2.1. RQ1: Correctness
Column FIXED in Table 3 reports the number of DROIDLEAKS leaks that PLUMB-

DROID detected and fixed with a correct fix (i.e., a fix that prevents leaking); column
INVALID reports how many of these fixes failed validation (were “unsafe”). PLUMB-
DROID was very effective at detecting leaks in non-aliasing resources. In particular, it
detected and fixed all 26 leaks reported by DROIDLEAKS and included in our experi-
ments (see Table 2), building a correct fix for each of them. In addition, it detected and
fixed another 24 leaks in the same apps.

Precision. Empirically evaluating precision is tricky because we lack a complete
baseline. By design, DROIDLEAKS is not an exhaustive collection of leaks. There-
fore, when PLUMBDROID reports and fixes a leak it could be: (a) a real leak included
in DROIDLEAKS; (b) a real leak not included in DROIDLEAKS; (c) a spurious leak.
By inspecting the leak reports and the apps (as discussed in Section 4.1.3) we man-
aged to confirm that 44 leaks (88%) reported by PLUMBDROID are in categories (a) (26
leaks or 52%, matching all leaks included in DROIDLEAKS) or (b) (18 leaks or 36%)
above—and thus are real leaks (true positives). Unfortunately, the remaining 6 leaks
(12%) reported by PLUMBDROID were found in apps whose bytecode is only available

25

RFG CC TIME (s)

APP |V | |E| M/M ′ RESOURCE ABSTRACTION ANALYSIS FIXING VALIDATION TOTAL FIXED ? INVALID

APG 4 968 7 442 0.47 MediaPlayer 32.7 273.4 0.2 55.5 361.8 1 0 0

BarcodeScanner 1 189 2 462 0.35 Camera 6.8 69.2 0.3 21.8 98.1 3 0 0

CallMeter 1 840 3 216 0.35 WakeLock 11.2 100.7 0.6 35.1 147.6 4 0 0

ChatSecure 5 430 8 686 0.48
BluetoothAdapter

23.0
316.6 0.1 114.6 454.3 2 0 0

Vibrator 273.7 0.5 93.3 390.2 2 0 0

ConnectBot 1 956 3 814 0.23 WakeLock 12.1 107.0 0.2 32.7 152.0 2 0 0

CSipSimple 5 712 9 154 0.42 WakeLock 38.0 433.8 0.1 111.4 583.3 4 2 0

IRCCloud 4 782 9 755 0.43
MediaPlayer

25.1
239.8 0.5 80.5 345.9 3 0 0

WifiLock 295.3 0.3 58.0 380.8 2 0 0

K-9 Mail 8 831 16 390 0.29 WakeLock 64.1 475.7 0.4 165.8 706.0 2 0 0

OpenGPSTracker 1 418 2 791 0.29 LocationListener 7.1 107.4 0.4 33.7 148.6 2 0 0

OsmDroid 2 222 3 545 0.36 LocationListener 12.9 161.9 0.4 32.9 208.1 4 2 0

ownCloud 4 444 8 980 0.6 WifiLock 20.7 238.6 0.5 47.8 307.6 4 2 0

QuranForAndroid 2 898 4 545 0.43 MediaPlayer 14.9 177.5 0.2 63.8 256.4 2 0 0

SipDroid 3 178 4 583 0.38 Camera 14.1 176.6 0.5 39.7 230.9 4 0 0

SureSpot 3 575 7 240 0.37 MediaPLayer 33.0 246.4 0.4 54.1 333.9 3 0 3

Ushahidi 5 073 10 417 0.43 LocationListener 24.4 201.9 0.3 58.5 285.1 2 0 2

VLC 2 689 4 199 0.55 WakeLock 14.4 119.5 0.5 34.4 168.8 2 0 0

Xabber 4 194 8 478 0.31 AudioRecorder 25.4 256.9 0.3 76.6 359.2 2 0 0

AVERAGE 3 788 6 805 0.4 23.4 231.2 0.3 65.2 320.2

TOTAL 64 399 115 697 6.74 444.6 4392.8 5.9 1238.8 6084.8 50 6 5

Table 3: Results of running PLUMBDROID on apps in DROIDLEAKS. For every APP, the table
reports the number of nodes |V | and edges |E| of its resource-flow graph RFG, and the ratio
M/M ′ between the RFG’s cyclomatic complexity M and the cyclomatic complexity M ′ of the
whole app’s control-flow graph. For every RESOURCE used by the app, the table then reports
PLUMBDROID’s running time to perform each of the steps of Figure 2 (ABSTRACTION, ANALY-
SIS, FIXING, and VALIDATION); as well as the TOTAL running time; since the abstraction is built
once per app, time ABSTRACTION is the same for all resources used by an app. Finally, the table
reports the number of leaks of each resource detected and FIXED by PLUMBDROID; how many of
these fixed leaks we could not conclusively classify as real leaks (?); and the number of the fixes
that PLUMBDROID classified as INVALID (that is, they failed validation). The two bottom rows
report the AVERAGE (mean, per app or per app-resource) and TOTAL in all experiments.

in obfuscated form, which means we cannot be certain they are not spurious; these
unconfirmed cases are counted in column “?” in Table 3. Even in the worst case in
which all of these are spurious, PLUMBDROID’s precision would remain high (88%).
The actual precision is likely higher: in all cases where we could analyze the code,

26

we found a real leak; unconfirmed cases probably just require more evidence such as
access to unobfuscated bytecode. Anyway, note that any spurious fixes would still be
safe to apply—albeit unnecessary—because they do not introduce bugs: since all re-
lease operations added by PlumbDroid are conditional (Section 3.4), a fix “repairing”
a spuriously detected leak simply introduces release operations that is neve executed in
actual program executions.

Correctness and safety. All fixes built by PLUMBDROID are correct in the sense that
they release resources so as to avoid a leak; manual inspection, carried out as described
in Section 4.1.3, confirmed this in all cases—with some remaining uncertainty only for
obfuscated apps.

PLUMBDROID’s validation step assesses “safety”: whether a fix does not introduce a
use-after-release error. All but 5 fixes built by PLUMBDROID for non-aliasing resources
are safe. The 5 unsafe fixes are:

(i) Three identical fixes (releasing the same resource in the same location) repairing
three distinct leaks of resource MediaPlayer in app SureSpot.

According to the Android reference manual [6], this resource can be released
either in the onPause or in the onStop callback. PLUMBDROID releases resources
as early as possible by default, and hence it built a fix releasing the MediaPlayer

in onPause. The developers of SureSpot, however, assumed that the resource is
only released later (in onStop), and hence PLUMBDROID’s fix introduced a use-
after-release error that failed validation.

To deal with such situations—resources that may be released in different call-
backs—we then could introduce a configuration option to decide whether to re-
lease resources early or late. An app developer could therefore configure our
analyzer in a way that suits their design decisions. In particular, configuring
PLUMBDROID with option late in these cases would generate fixes that pass vali-
dation.

(ii) Two identical fixes (releasing the same resource in the same location) repairing
two distinct leaks of resource LocationListener in app Ushahidi.

The fix generated by PLUMBDROID failed validation because the app’s developers
assumed that the resource is only released in callback onDestroy. This assump-
tion conflicts with Android’s recommendations to release the resources in earlier
callbacks.

In this case, the best course of action would be amending the app’s usage policy
of the resource so as to comply with Android’s guidelines. PLUMBDROID’s fix
would pass validation after this modification.

Note that PLUMBDROID does not output fixes that do not pass the validation step;
therefore, there is no risk that such unsafe fixes are accidentally deployed.

PLUMBDROID detected and fixed 50 leaks in DROIDLEAKS producing
correct-by-construction fixes. PLUMBDROID’s detection is very precise on the

resources it supports.

27

1 public class NetworkConnection {

2

3 public void disconnect() {

4 if (client != null) {

5 state = STATE_DISCONNECTING;

6 client.disconnect();

7 } else {

8 state = STATE_DISCONNECTED;

9 }

10 if (idleTimer != null) {

11 idleTimer.cancel();

12 idleTimer = null;

13 }

14 if (wifiLock.isHeld()) wifiLock.release();

15 }

16

17 }

18

Figure 8: An excerpt of class NetworkConnection in Android app IRCCloud, showing the
disconnect() method with a resource leak (code in black, executed in callback onPause()),
and how the leak was patched by the app developers in commit 113555e9ae (code in orange).
PLUMBDROID generates a patch for this leak that exactly matches the developer-written one
shown here.

4.2.2. RQ2: Comparison with Developer Fixes
The manual inspection and validation protocol (Section 4.1.3) that we followed to

confirm the correctness of all leaks and fixes reported by PLUMBDROID already strongly
suggests that the results of PLUMBDROID’s analysis are usually of high quality. To bet-
ter understand whether PLUMBDROID’s fixes are comparable to those written by de-
velopers, we further scrutinized the fixes produced by PLUMBDROID for leaks in apps
IRCCloud and Ushahidi. We selected these two apps as they are among the largest in
the DROIDLEAKS collection, they are open source, and their public code repositories
are well organized and feature a long-running development history. Furthermore, as
shown in Table 3, PLUMBDROID detected and fixed 5 leaks in IRCCloud; and detected
2 leaks in Ushahidi, for which it could only produce fixes that fail the validation step.
Thus, there is a mix of cases where PLUMBDROID is completely successful and cases
where PLUMBDROID’s validation fail—which mitigates the risk of biasing the analysis
in PLUMBDROID’s favor.

Based on these results, we went through the bug reports and commit history of the
two apps, looking for developer-written fixes of the 7 leaks that PLUMBDROID detected
and fixed. Indeed, we found that developers eventually found and fixed all these leaks,9

9See IRCCloud’s commits: 113555e9ae, 35e0a587e3, 0cd91bc5ca, d7a441e3a6, 113555e9ae; and
Ushahidi’s commits: 9d0aa75b84, 337b48f5f2.

28

https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/irccloud/android/commit/35e0a587e3e9ed376b36355dfbccdeed049aae85
https://github.com/irccloud/android/commit/0cd91bc5ca350671bcf6ae84d634d097a3602d8c
https://github.com/irccloud/android/commit/d7a441e3a675cac30cffdfdfa94e5a6dd486b169
https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/ushahidi/Ushahidi_Android/commit/9d0aa75b84d74566727b91f5d7dcb85caff34d33
https://github.com/ushahidi/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357

1 public class NetworkConnection {

2

3 public void removeHandler(Handler handler) {

4 handlers.remove(handler);

5 if (handlers.isEmpty()) {

6 if (shutdownTimer == null) {

7 // ...

8 disconnect();

9 }

10 if (idleTimer != null

11 && state != STATE_CONNECTED) {

12 idleTimer.cancel();

13 idleTimer = null;

14 failCount = 0;

15 if (wifiLock.isHeld()) wifiLock.release();

16 reconnect_timestamp = 0;

17 state = STATE_DISCONNECTED;

18 }

19 }

20 }

21

22 }

23

(a) The app developers fixed the leak in commit 35e0a587e3
by adding a conditional release at line 15 (code in orange).

1 public class NetworkConnection {

2

3 public void removeHandler(Handler handler) {

4 handlers.remove(handler);

5 if (handlers.isEmpty()) {

6 if (shutdownTimer == null) {

7 // ...

8 disconnect();

9 }

10 if (idleTimer != null

11 && state != STATE_CONNECTED) {

12 idleTimer.cancel();

13 idleTimer = null;

14 failCount = 0;

15

16 reconnect_timestamp = 0;

17 state = STATE_DISCONNECTED;

18 if (wifiLock.isHeld()) wifiLock.release();

19 }

20 }

21 }

22

23 }

24

(b) PLUMBDROID fixed the leak by adding a conditional release at
line 18 (code in green). PLUMBDROID only detects this leak with
unrolling depth D ≥ 2, as it affects re-entrant resource WifiLock.

Figure 9: An excerpt of class NetworkConnection in Android app IRCCloud, showing the
removeHandler() method with a resource leak (code in black, executed in callback onPause()),
and how it was fixed by the app developers (Figure 9a) and by PLUMBDROID (Figure 9b).

which confirms that they are considered serious enough faults.
In 2 out of the 5 leaks in IRCCloud, the fix produced by PLUMBDROID is identical to

the developer-written one, as they both release the same resource in the same location.
Figure 8 shows one of these leaks and its fix.10 In the other 3 leaks in IRCCloud, the
fix produced by PLUMBDROID released the same resource as the developer-written one
but in a different location of the same basic block. Figure 9 shows one of these leaks
and its fix by developer (Figure 9a) and by PLUMBDROID (Figure 9b). In all these cases,
the difference of release location is immaterial, as the statements that are between the
release point in the developer-written fix and the release point in PLUMBDROID’s fix are
simple assignments do not affect any shared resources and execute quickly.

In both leaks in Ushahidi, the difference between the (invalid) fixes produced by
PLUMBDROID and the developer-written ones is also the location of the release. Stick-
ing to the Android developer guidelines [4], PLUMBDROID only releases the resource

10In these examples, we express the fix as Java source code, even though PLUMBDROID works at the level
of the human-readable bytecode Smali.

29

https://github.com/irccloud/android/commit/35e0a587e3e9ed376b36355dfbccdeed049aae85

LocationListener in the callback onPause() for one of these leaks; doing so fails the
validation phase, since the Ushaidi app still uses location resources when it is running
in the background. Therefore, the developers fixed the leak by releasing the resource
in the callback onDestroy(), that is only when the app is shut down. The other leak
has a similar discrepancy between the Android guidelines followed by PLUMBDROID

and how the Ushahidi app is written.
In all, PLUMBDROID’s fixes are often very similar and functionally equivalent to

those written by programmers for the same leaks. PLUMBDROID’s validation phase is
useful to detect when an app deviates from Android’s guidelines on resource manage-
ment; in these cases, the user of PLUMBDROID can decide whether to refactor the app
to follow the guidelines, or modify PLUMBDROID so that it generates a fix at a different
location.

The similarity between PLUMBDROID and developer-written fixes, as well their
usual syntactic simplicity, is also evidence that these fixes are unlikely to negatively
alter the running-time performance of an app (and hence the user experience). This is
also consistent with our manual analysis (Section 4.1.3), which never found an app’s
responsiveness to worsen after applying a resource-leak fix.

According to the analysis of a sample, we found that the fixes produced by
PLUMBDROID often are functionally equivalent to those written by the app

developers.

4.2.3. RQ3: Performance
Columns TIME in Table 3 report the running time of PLUMBDROID in each step. As

we can expect from a tool based on static analysis, PLUMBDROID is generally fast and
scalable on apps of significant size. Its average running time is around 5 minutes per
app-resource and around 2 minutes per repaired leak (121 s ≃ 6084.8/50).

The ANALYSIS step dominates the running time, since it performs an exhaustive
search. In contrast, the ABSTRACTION step is fairly fast (as it amounts to simplifying
control-flow graphs); and the FIXING step takes negligible time (as it directly builds on
the results of the analysis step).

PLUMBDROID’s abstractions are key to its performance, as we can see from Table 3’s
data about the size of the resource-flow graphs. Even for apps of significant size, the
resource-flow graph remains manageable; more important, its cyclomatic complexity
M—a measure of the number of paths in a graph [39]—is usually much lower than the
cyclomatic complexity M ′ of the full control-flow graph, which makes the exhaustive
analysis of a resource-flow graph scalable.

PLUMBDROID is scalable: it takes about 2 minutes
on average to detect and fix a resource leak.

4.2.4. RQ4: Comparison with Other Tools
Comparison with Relda2. Table 4 compares the leak detection capabilities of

PLUMBDROID and Relda2 on the 17 apps used in the latter’s experiments [55]—which
only target non-aliasing resources. Relda2 reports more leaks than PLUMBDROID, but
PLUMBDROID’s precision (90% = 70/78) is much higher than Relda2’s (54% = 46/81),

30

PLUMBDROID Relda2

APP KLOC RESOURCE TIME (s) LEAKS Ë LEAKS Ë

Andless 0.5 WakeLock 13.1 1 1 1 1
Apollo 24.5 Camera 176.4 2 2 4 2
CheckCheck 4.5 WakeLock 35.4 3 3 6 4
Impeller 4.6 WiFiLock 25.9 4 3 1 1
Jane 42.7 LocationListener 280.5 2 2 0 0
MiguMusic 13.0 MediaPlayer 121.6 8 8 12 5
PicsArt 17.6 WakeLock 92.7 2 2 2 2
QRScan 24.5 Camera 144.1 4 4 6 3
Runnerup 37.2 LocationListener 232.9 13 11 8 5
Shopsavvy 5.3 LocationListener 41.3 8 7 5 3
SimSimi 3.9 WakeLock 35.6 7 6 11 4
SuperTorch 3.8 Camera 24.5 3 3 1 1
TigerMap 3.7 LocationListener 36.7 2 2 6 2
Utorch 1.0 Camera 20.5 2 2 1 1
Vplayer 6.6 MediaPlayer 49.8 7 5 7 5
WeatherPro 5.0 LocationListener 55.8 8 7 12 5
Yelp 14.3 LocationListener 156.4 2 2 2 2

AVERAGE 12.5 90.8
TOTAL 212.7 1543.2 78 70 85 46

Table 4: Comparison of PLUMBDROID’s and Relda2’s leak detection capabilities. For every APP

used in the comparison, the table reports its size KLOC in thousands of lines of code, and the re-
source analyzed for leaks. Then, it reports PLUMBDROID’s running TIME in seconds, the number
of LEAKS PLUMBDROID detected, and how many of these we definitely confirmed as true posi-
tives by manual analysis (Ë). These results are compared to the number of LEAKS detected by
Relda2, and how many of these were true positives (Ë) according to the experiments reported
in [55]. The two bottom rows report the AVERAGE (mean) and TOTAL for all apps/resources.

31

PLUMBDROID RelFix

APP KLOC RESOURCE TIME (s) LEAKS Ë FIXED INVALID LEAKS Ë FIXED

BlueChat 13.1
MediaPlayer 93.9 3 2 3 0 1 0 1
WakeLock 111.7 2 2 2 0 2 1 2

FooCam 14.7
Camera 152.7 1 1 1 0 3 1 3
MediaPlayer 124.5 0 – 0 0 1 1 1

GetBackGPS 21.4 LocationListener 153.4 2 2 2 1 3 3 3

SuperTorch 3.8 Camera 24.5 3 2 3 1 1 1 1

AVERAGE 50.2 110.1
TOTAL 200.6 660.7 11 9 11 2 11 7 11

Table 5: Comparison of PLUMBDROID’s and RelFix’s leak repair capabilities (on non-aliasing
resources). For every APP used in the comparison, the table reports its size KLOC in thousands
of lines of code, and the resources whose leaks are repaired. Then, it reports PLUMBDROID’s
running TIME in seconds, the number of leaks DETECTED and FIXED by PLUMBDROID, how
many of these leaks we could conclusively classify as real leaks (Ë, true positives), and the
number of fixes that PLUMBDROID classified as INVALID (that is, they failed validation). These
results are compared to the number of leaks DETECTED and FIXED by Relfix, and how many
of these are considered real leaks (Ë) according to the experiments reported in [28]. The two
bottom rows report the AVERAGE (mean) and TOTAL for all apps/resources.

and hence PLUMBDROID reports several more true leaks (70 vs. 46). The difference be-
tween the two tools varies considerably with the app. On 4 apps (Andless, PicsArt,
Vplayer, and Yelp) both tools detect the same number of leaks with the same (high)
precision; even though we cannot verify this conjecture, it is quite possible that ex-
actly the same leaks are detected by both tools in these cases. On 2 apps (Impeller and
CheckCheck), neither tool is strictly better: when PLUMBDROID outperforms Relda2
in number of confirmed detected leaks (app Impeller) it also achieves a lower preci-
sion; when PLUMBDROID outperforms Relda2 in precision (app CheckCheck) it also
finds one less correct leak. On the remaining 11 apps (Apollo, Jane, MiguMusic,
QRScab, Runnerup, Shopsavvy, SimSimi, SuperTorch, TigerMap, Utorch, and Weath-
erPro) PLUMBDROID is at least as good as Relda2 in both number of confirmed detected
leaks and precision, and strictly better in detected leaks, precision, or both. We cannot
directly compare PLUMBDROID’s and Relda2’s running times, since we could not run
them on the same hardware, but we notice that the running times reported in [55] are in
the ballpark of PLUMBDROID’s. In all, PLUMBDROID’s leak detection capabilities often
outperforms Relda2’s on the non-aliasing resources that we currently focus on.

Comparison with RelFix. Table 5 compares the fixing capabilities of PLUMB-
DROID and RelFix (which uses Relda2 for leak detection) on the 4 non-aliasing re-
sources used in the latter’s experiments [28]. Here too PLUMBDROID generally appears
more effective than RelFix: conservatively assuming that all fixes reported by [28] are

32

DROIDLEAKS Relda2/RelFix

D TIME (s) FIXED MISSED FIXED MISSED

1 116.7 40 10 75 14
2 184.9 50 0 84 5
3 320.2 50 0 89 0
4 501.3 50 0 89 0
5 907.8 50 0 89 0
6 1894.3 50 0 89 0

Table 6: Results of running PLUMBDROID with different unrolling depths on the DROIDLEAKS

benchmark and on the apps used in the comparison with Relda2 and RelFix. For each unrolling
depth D, the table reports the AVERAGE (mean, per app-resource) running TIME of PLUMBDROID

on all leaks of non-aliasing resources; and the total number of FIXED LEAKS and MISSED LEAKS

(not detected, and hence not fixed). The row with D = 3 corresponds to the DROIDLEAKS data
in Table 3, and the Relda2/RelFix data in Tables 4–5.

genuine and “safe”,11 PLUMBDROID has higher precision (82%= 9/11 vs. 64%= 7/11)
and fixes at least as many confirmed leaks (even after discarding those that fail valida-
tion).

PLUMBDROID generates small patches, each consisting of just 11 bytecode instruc-
tions on average, which corresponds to an average 0.017% increase in size of a patched
app. This approach leads to much smaller patches than RelFix’s, whose patches also
include instrumentation to detect the leaks on which the fixes depend to function cor-
rectly. As a result, the average increase in size introduced by a RelFix patch is 0.3%
in terms of bytecode instructions [28], which is one order of magnitude larger than
PLUMBDROID’s.

As explained in Section 4.1.2, all results in this section are subject to the limita-
tion that a direct comparison with Relda2 and RelFix was not possible. Despite this
limitation, the comparison collected enough evidence to indicate that PLUMBDROID’s
analysis is often more thorough and more precise than the other tools’.

On non-aliasing resources, PLUMBDROID is usually
more effective and precise than other techniques for the automated detection and

repair of Android resource leaks.

4.2.5. RQ5: Unrolling
In the experiments reported so far, PLUMBDROID ran with the unrolling depth pa-

rameter D = 3, which is the default. Table 6 summarizes the key data about ex-
periments on the same apps but using different values of D. These results indicate
that a value of D ≥ 3 is required for soundness: PLUMBDROID running with D = 1
missed 24 leaks (10 in DROIDLEAKS, and 14 in the apps used by Relda2/RelFix); with
D = 2 it missed 5 leaks (all in the apps used by Relda2/RelFix). All missed leaks

11RelFix’s paper [28] does not explicitly discuss possible fix validation errors.

33

only occur with resources that are acquired multiple times—that is they affect reen-
trant resources: WakeLock and WifiLock in apps CallMeter, CSipSimple, IRCCloud
(from DROIDLEAKS), CheckCheck, Impeller, PicsArt, SimSimi (from the comparison
with Relda2), and BlueChat (from the comparison with RelFix).

Is D = 3 also sufficient for soundness? While we cannot formally prove it, the ex-
periments suggest this is the case: increasing D to larger values does not find new leaks
but only increases the running time. Unsurprisingly, the running time grows conspic-
uously with the value of D, since a larger unrolling depth determines a combinatorial
increase in the number of possible paths. Thus, for the analyzed apps, the default
D = 3 is the empirically optimal value: it achieves soundness without unnecessarily
increasing the running time. It is possible this result does not generalize to apps with
more complex reentrant resource management; however, PLUMBDROID always offers
the possibility of increasing D until its analysis is sufficiently exhaustive.

PLUMBDROID’s analysis is sound provided it unrolls callback loops a sufficient
number of times (thrice in the experiments).

4.3. Aliasing Resources

We repeatedly remarked that PLUMBDROID’s current implementation is effective
only on non-aliasing resources; it remains applicable to aliasing resources, but it is
bound to generate a large number of false positives. In order to get a clearer picture
of PLUMBDROID’s limitations in the presence of aliasing, this section reports some ad-
ditional experiments on aliasing resources. It remains that our contributions focus on
non-aliasing resources; an adequate support of aliasing belongs to future work.

TOOL SUBJECTS RESOURCES LEAKS Ë PRECISION

Relda2 [28] 4 108 24 22%

PLUMBDROID DROIDLEAKS 6 273 86 32%

Table 7: Detection of leaks of aliasing resources by Relda2 (according to the experiments re-
ported in [28]) and PLUMBDROID (on the programs in DROIDLEAKS). The table reports the number
of aliasing RESOURCES involved in leaks, the reported LEAKS, how many of them are confirmed
true leaks Ë, and the corresponding precision Ë/LEAKS.

Table 7 shows the behavior of PLUMBDROID on leaks of the 6 aliasing resources
in DROIDLEAKS apps. PLUMBDROID reported a total of 273 leaks, but we could only
confirm about one third of them as real leaks (true positives). This is a lower bound
on PLUMBDROID’s precision on aliasing resources, as it’s possible that more reported
leaks are real but we could not conclusively confirm them as such because they affect
obfuscated apps. Nevertheless, it’s clear the precision is much lower than on non-
aliasing resources—as we expected.

For comparison, Table 7 also reports the performance of Relda2 according to the
experiments reported in [28] on 4 aliasing resources (Section 4.2.4 discusses the data
from the same source but involving non-aliasing resources). Relda2 reported a total
of 108 leaks, but only 22% of them are real leaks according to [28]. Even though the

34

experiments with PLUMBDROID and with Relda2 are not directly comparable, it’s clear
both tools achieve a low precision on aliasing resources—arguably low to the point that
practical usefulness is severely reduced.

4.4. Threats to Validity

The main threats to the validity of our empirical evaluation come from the fact that
we analyzed Android apps in bytecode format; furthermore, some of these apps’ byte-
code was only available in obfuscated form. In these cases, we were not able to inspect
in detail how the fixes modified the original programs; we could not always match with
absolute certainty the leaks and fixes listed in DROIDLEAKS with the fixes produced by
PLUMBDROID; and we could not run systematic testing of the automatically fixed apps.
This threat was significantly mitigated by other sources of evidence that PLUMBDROID

indeed produces fixes that are correct and do not alter program behavior except for re-
moving the source of leaks: first, the manual inspections we could carry out on the apps
that are not obfuscated confirmed in all cases our expectations; second, PLUMBDROID’s
analysis is generally sound, and hence it should detect all leaks (modulo bugs in our
implementation of PLUMBDROID); third, running the fixed apps for significant periods
of time did not show any apparent change in their behavior.

As remarked in Section 4.1.2, we could only perform an indirect comparison with
Relda2/RelFix (the only other fully automated approach for the repair of Android re-
source leaks that is currently available) since neither the tools nor details of their ex-
periments other than those summarized in their publications [55, 28] are available. To
mitigate the ensuing threats, we analyzed app versions that were available around the
time when the Relda2/RelFix experiments were conducted, and we excluded from the
comparison with PLUMBDROID measures that require experimental repetition (such as
running time). While it is still possible that measures such as precision were assessed
differently than how we did, these should be minor differences that do not invalidate
the high-level results of the comparison.

Our evaluation did not assess the acceptability of fixes from a programmer’s per-
spective. Since PLUMBDROID works on bytecode, its fixes may not be easily acces-
sible by developers familiar only with the source code. Nonetheless, fixes produced
by PLUMBDROID are succinct and correct by construction, which is usually conducive
to readability and acceptability. As future work, one could implement PLUMBDROID’s
approach at the level of source code, so as to provide immediate feedback to program-
mers as they develop an Android app. PLUMBDROID in its current form could instead
be easily integrated in an automated checking system for Android apps—for example,
within app stores.

We didn’t formally prove the soundness or precision of PLUMBDROID’s analysis,
nor that our implementation is free from bugs. Since PLUMBDROID is implemented on
top of ANDROGUARD [8] and APKTOOL [10] (Section 3.7), any bugs or limitations of
these tools may affect PLUMBDROID’s analysis. In particular, ANDROGUARD cannot
currently analyze native code12—a common limitation of static analysis. By and large,
however, these tools’ support of Android is quite extensive, and hence any current

12https://github.com/androguard/androguard/issues/566#issuecomment-431090708

35

https://github.com/androguard/androguard/issues/566#issuecomment-431090708

limitations are unlikely to significantly impact the soundness of the results obtained in
PLUMBDROID’s experimental evaluation.

Nonetheless, we analyzed in detail the features of PLUMBDROID’s analysis both the-
oretically (Section 3.6) and empirically (Section 4). The empirical evaluation corrob-
orates the evidence that PLUMBDROID is indeed sound (for sufficiently large unrolling
depth D), and that aliasing is the primary source of imprecision. In future work, we
plan to equip PLUMBDROID with alias analysis [23], in order to boost its precision on
the aliasing resources that currently lead to many false positives.

DROIDLEAKS offers a diverse collection of widely-used apps and leaked resources,
which we further extended with apps used in Relda2/RelFix’s evaluations. In our exper-
iments, we used all apps and resources in DROIDLEAKS and in Relda2/RelFix’s evalua-
tions that PLUMBDROID can analyze with precision. This helps to generalize the results
of our evaluation, and led to finding numerous leaks not included in DROIDLEAKS nor
found by Relda2/RelFix. Further experiments in this area would greatly benefit from
extending curated collections of leaks and repairs like DROIDLEAKS. Our replication
package is a contribution in this direction.

5. Related Work

TOOL ANALYSIS LEAKS AUTOMATED REENTRANT SOUNDNESS REPAIR

FindBugs [17] static Java resources full No No No
EnergyTest [13] dynamic energy partial No No No
LeakCanary [24] dynamic memory full No No No
Android Studio [7] dynamic memory full No No No
FunesDroid [2] dynamic memory partial No No No
Sentinel [54, 52] static+dynamic sensor partial Yes No No
Relda2/RelFix [55, 28] static Android resources full No No (Yes)
EnergyPatch [12, 14] static+dynamic energy full No No (Yes)

PLUMBDROID static Android resources full Yes Yes Yes

Table 8: Comparison of tools that detect and repair leaks in Android apps. For each tool, the
table report the kinds of code ANALYSIS it performs (static or dynamic), the kinds of LEAKS it
primarily targets, whether it is fully or partially AUTOMATED, whether it models REENTRANT

behavior, whether its detection is SOUND, and whether it can also generate REPAIRs of the de-
tected leaks. Entries (Yes) in column REPAIR denote fixes that release any leaking resource at
the very end of an app’s lifecycle, without following the resource-specific Android guidelines.

5.1. Automated Program Repair

PLUMBDROID is a form of automated program repair (APR) targeting a specific
kind of bugs (resource leaks) and programs (Android apps). The bulk of “classic”
APR research [19, 41, 51, 37] usually targets general-purpose techniques, which are
applicable in principle to any kinds of program and behavioral bugs. The majority of
these techniques are based on dynamic analysis—that is, they rely on tests to define

36

expected behavior, to detect and localize errors [21, 15], and to validate the generated
fixes [35, 22, 45]. General-purpose APR completely based on static analysis is less
common [33, 34, 18], primarily because tests are more widely available in general-
purpose applications, whereas achieving a high precision with static analysis is chal-
lenging for the same kind of applications and properties.

5.2. Leak Analysis

Whereas PLUMBDROID is one of only two fully automated approaches for fixing
Android resource leaks (the other is RelFix, discussed below and in Section 4.2.4),
detection of leaks and other defects is more widely studied and has used a broad range
of techniques—from static analysis to testing. Table 8 outlines the features of the main
related approaches, which we discuss in the rest of this section.

5.2.1. Static Analysis
Approaches based on static analysis build an abstraction of a program’s behavior,

which can be searched exhaustively for leaks. Since Android apps run on mobile de-
vices, they are prone to defects such as privacy leaks [20], permission misuses [27],
and other security vulnerabilities [57, 43] that are less prominent (or have less impact)
in traditional “desktop” applications. In such specialized domains, where soundness of
analysis is paramount, static analysis is widely applied—for example to perform taint
analysis [36] and other kinds of control-flow based analyses [26, 11]. Indeed, there
has been plenty of work that applied static analysis to analyze resource management in
Java [50, 16], including detecting resource leaks [47, 23].

Whereas some of these contributions could be useful also to analyze mobile apps
written in Java, in order to do so the techniques should first be extended to support
the peculiarities of the Android programming model—in particular, its event-driven
control flow.

General-purposes static analyzers for Java like FindBugs [17], are also capable of
detecting a variety of issues in common Java resources (e.g., files); however, FindBugs
is neither sound nor very precise [49], as it is based on heuristics and pattern-matching
that are primarily geared towards detecting stylistic issues and code smells.

5.2.2. Dynamic Analysis
Many approaches use dynamic analysis (testing), and hence are not sound (they

may miss leaks).
One example is a test-generation framework capable of building inputs exposing

resource leaks that lead to energy inefficiencies [13]. Since it targets energy efficiency,
the framework consists of a hybrid setup that includes hardware to physically measure
energy consumption, which makes it less practical to deploy (hence, Table 8 classifies
it as “partial” automation). Its measurements are then combined with more traditional
software metrics to generate testing oracles for energy leak detection. The framework’s
generated tests are sequences of UI events that trigger energy leaks or other inefficien-
cies exposed by the oracles. As it is usual for test-case generation, [13]’s framework is
based on heuristics and statistical assumptions about energy consumption patterns, and
hence its detection capabilities are not exhaustive (i.e., not sound).

37

Other tools [54, 52, 24, 7, 2, 56] exist that use tests to detect resource leaks—such
as sensor leaks [54, 52, 56] and memory leaks [24, 2]. A key idea underlying these
approaches is to combine runtime resource profiling [7] and search-based test-case
generation looking for inputs that expose leaks.

LeakCanary [24] and the Android Studio Monitor [7] are two of the most popular
tools used by developer to detect memory leaks as they have high precision and are
fully automated. Like all approaches based on testing, they are unsound in general,
and their capabilities strongly depend on the quality of the tests that are provided.

FunesDroid [2] generates inputs that correspond to pre-defined user interactions—
like rotating the screen—which can trigger memory leaks when executed in certain
activities. Besides being unsound like all testing techniques, FunesDroid’s testing ca-
pabilities are also limited by the kinds of interactions that it supports. Furthermore,
FunesDroid’s test generation capabilities are not fully automated for leak detection:
while the tool provides user interactions as inputs, one still needs to provide tests that
run the app where leaks are being detected.

Sentinel [54, 52], an approach based on generating GUI events for testing, models
resource usage as context-free languages, and hence it is one of the few leak analysis
techniques that is capable of fully modeling reentrant resources. The tool first performs
a static analysis of app code to build a model that maps GUI events to callback methods
that affect sensor behavior. Then, it traverses the model to enumerate paths, which in
turn are used to generate test cases. The last step (from paths to actual test inputs)
requires users to manually come up with suitable inputs that match the abstract paths;
therefore, the Sentinel approach is not fully automated.

5.3. Leak Repair

The amount of work on detecting various kinds of leaks [12, 13, 55, 31, 44] and
the recent publication of the DROIDLEAKS curated collection of leaks [29] indicate that
leak detection is considered a practically important problem in Android programming.
In this section, we discuss in greater detail two approaches that are also capable, like
PLUMBDROID, of fixing the Android leaks they detect.

5.3.1. Relda2 and RelFix
Relda2 [55] combines flow-insensitive and flow-sensitive static analyses to com-

pute resource summaries: abstract representations of each method’s resource usage,
which can be combined to perform leak detection across different procedures and call-
backs. Since Relda2 approximates loops in an activity’s lifecycle by abstracting away
some of the flow information (even in its “flow-sensitive” analysis), and does not accu-
rately track nested resource acquisitions, its analysis is generally unsound (leaks may
go undetected) and imprecise (spurious errors may be reported). In contrast, PLUMB-
DROID performs a more thorough and precise inter-procedural analysis by considering
all possible callback sequences. PLUMBDROID even allows users to set the unrolling
depth D (affecting the maximum length of analyzed callback sequences), which is
a means of trading off soundness (i.e., how thorough the analysis is) with running
time (i.e., how long/how many computational resources the analysis takes). PLUMB-
DROID’s modeling of resources is more detailed than Relda2’s also because it supports

38

a validation step (Section 3.5), which can detect inconsistencies between a resource’s
recommended usage guidelines and how it is actually used by an app. After building
a control-flow model of resource usages, Relda2 uses an off-the-shelf model checker
to analyze it. In contrast, PLUMBDROID uses a custom automata-theoretic analysis al-
gorithm to search for leaks on resource-flow graphs, which may contribute to more
precise and scalable results.

RelFix [28] can patch resource leaks in Android apps that have been detected by
Relda2. It applies patches at the level of Dalvik bytecode, whereas PLUMBDROID does
so at the level Smali (a human-readable format of Dalvik), which makes PLUMBDROID’s
output more accessible to human programmers. Section 4.2.4 discussed a detailed com-
parison between PLUMBDROID and Relda2/RelFix in terms of precision and patch sizes.
Another significant difference is how they build fixes: RelFix follows the simple ap-
proach of releasing resources in the very last callback of an activity’s lifecycle, whereas
PLUMBDROID builds fixes that adhere to Android’s recommended guidelines.

5.3.2. EnergyPatch
EnergyPatch [12, 14] is another approach for leak detection based on static tech-

niques where resource usage are modeled as regular expressions. EnergyPatch uses
abstract interpretation to compute an over-approximation of an app’s energy-relevant
behavior; then, it performs symbolic execution to detect which abstract leaking behav-
iors are false positives and which are executable (i.e., correspond to a real resource
leak); therefore, its analysis is hybrid as it combines static and dynamic techniques.
For each executable leaking behavior, symbolic execution can also generate a concrete
program input that triggers the energy-leak bug. EnergyPatch targets a different kind
of resource leaks (energy-consumption related, which lead to a wasteful usage of a mo-
bile device’s energy resources) than PLUMBDROID. Since EnergyPatch only analyzes
simple paths (i.e., without loops) in the callback graph, its analysis may be unsound
(especially for reentrant resources).

While EnergyPatch focuses on leak detection, it also offers a simple technique for
generating fixes, which simply releases all resources in the very last callback of an
activity’s lifecycle. As we discussed in Section 3.4, this approach is sometimes im-
practical because it may conflict with some of Android programming’s best practices.
In contrast, PLUMBDROID releases the resource aggressively, in the earliest callback,
since our validation step later can filter out patches that result in use-after-release is-
sues.

6. Conclusions and Future Work

This paper presented PLUMBDROID: a technique and tool to detect and automat-
ically fix resource leaks in Android apps. PLUMBDROID is based on succinct static
abstractions of an app’s control-flow; therefore, its analysis is sound and its fixes are
correct by construction. Its main limitation is that its analysis tends to generate false
positives on resources that are frequently aliased within the same app. In practice,
this means that PLUMBDROID’s is currently primarily designed for the numerous An-
droid resources that are not subject to aliasing. On these resources, we demonstrated

39

PLUMBDROID’s effectiveness and scalability. Extending PLUMBDROID’s approach with
aliasing information is an interesting and natural direction for future work.

Acknowledgments

Work partially supported by SNF grant 200021-182060 (Hi-Fi).

References

[1] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai,
editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM, 2004.

[2] Domenico Amalfitano, Vincenzo Riccio, Porfirio Tramontana, and Anna Rita Fa-
solino. Do memories haunt you? An automated black box testing approach for
detecting memory leaks in Android apps. IEEE Access, 8:12217–12231, 2020.

[3] The Android API reference. https://developer.android.com/reference/

packages. Accessed: 2022-04-28.

[4] The activity lifecycle (from the Android Developer Guides).
https://developer.android.com/guide/components/activities/

activity-lifecycle. Accessed: 2022-02-10.

[5] UI/Application Exerciser Monkey. https://developer.android.com/studio/
test/other-testing-tools/monkey. Accessed: 2022-02-10.

[6] Android Reference Manual. https://developer.android.com/reference. Ac-
cessed: 2021-02-16.

[7] Android Studio Monitor. https://developer.android.com/studio/profile/
monitor. Accessed: 2021-02-16.

[8] AndroGuard. https://github.com/androguard/androguard. Accessed: 2021-
02-16.

[9] Android Platform Architecture. https://developer.android.com/guide/

platform/. Accessed: 2021-02-16.

[10] Apktool. https://ibotpeaches.github.io/Apktool/. Accessed: 2021-02-16.

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page 259–269,
New York, NY, USA, 2014. Association for Computing Machinery.

40

https://developer.android.com/reference/packages
https://developer.android.com/reference/packages
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/reference
https://developer.android.com/studio/profile/monitor
https://developer.android.com/studio/profile/monitor
https://github.com/androguard/androguard
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://ibotpeaches.github.io/Apktool/

[12] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoud-
hury. EnergyPatch: Repairing resource leaks to improve energy-efficiency of
Android apps. IEEE Trans. Software Eng., 44(5):470–490, 2018.

[13] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roy-
choudhury. Detecting energy bugs and hotspots in mobile apps. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages 588–
598, 2014.

[14] Abhijeet Banerjee and Abhik Roychoudhury. Automated re-factoring of Android
apps to enhance energy-efficiency. In Proceedings of the International Con-
ference on Mobile Software Engineering and Systems, MOBILESoft ’16, page
139–150, New York, NY, USA, 2016. Association for Computing Machinery.

[15] Liushan Chen, Yu Pei, and Carlo A. Furia. Contract-based program repair without
the contracts. In Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, pages 637–647, Piscataway, NJ,
USA, 2017. IEEE Press.

[16] Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. The CLOSER: au-
tomating resource management in Java. In Richard E. Jones and Stephen M.
Blackburn, editors, Proceedings of the 7th International Symposium on Memory
Management, ISMM 2008, Tucson, AZ, USA, June 7-8, 2008, pages 1–10. ACM,
2008.

[17] FindBus. http://findbugs.sourceforge.net/. Accessed: 2021-02-16.

[18] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. Safe memory-leak fixing for C programs. In Antonia
Bertolino, Gerardo Canfora, and Sebastian G. Elbaum, editors, 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, pages 459–470. IEEE Computer Society, 2015.

[19] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software re-
pair: A survey. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 1219–1219, New York, NY, USA, 2018. ACM.

[20] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications on a large
scale. In Stefan Katzenbeisser, Edgar R. Weippl, L. Jean Camp, Melanie Volka-
mer, Mike K. Reiter, and Xinwen Zhang, editors, Trust and Trustworthy Com-
puting - 5th International Conference, TRUST 2012, Vienna, Austria, June 13-15,
2012. Proceedings, volume 7344 of Lecture Notes in Computer Science, pages
291–307. Springer, 2012.

[21] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Towards prac-
tical program repair with on-demand candidate generation. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, pages 12–23, 2018.

41

http://findbugs.sourceforge.net/

[22] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
Shaping program repair space with existing patches and similar code. In Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 298–309, 2018.

[23] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst.
Lightweight and modular resource leak verification. In ESEC/FSE 2021: The
ACM 29th joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), Athens, Greece, August
2021.

[24] Leak Canary Tool. https://square.github.io/leakcanary/. Accessed: 2021-
02-16.

[25] PlumbDroid: Automated Repair of Resource Leaks in Android Applications.
https://doi.org/10.5281/zenodo.6759123. Accessed: 2022-06-27.

[26] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of
Android apps: A systematic literature review. Inf. Softw. Technol., 88:67–95,
2017.

[27] Shuying Liang, Matthew Might, and David Van Horn. Anadroid: Malware anal-
ysis of Android with user-supplied predicates. Electron. Notes Theor. Comput.
Sci., 311:3–14, 2015.

[28] Jierui Liu, Tianyong Wu, Jun Yan, and Jian Zhang. Fixing resource leaks in An-
droid apps with light-weight static analysis and low-overhead instrumentation. In
27th IEEE International Symposium on Software Reliability Engineering, ISSRE
2016, Ottawa, ON, Canada, October 23-27, 2016, pages 342–352. IEEE Com-
puter Society, 2016.

[29] Yepang Liu, Jue Wang, Lili Wei, Chang Xu, Shing-Chi Cheung, Tianyong Wu,
Jun Yan, and Jian Zhang. Droidleaks: a comprehensive database of resource leaks
in Android apps. Empirical Software Engineering, 24(6):3435–3483, 2019.

[30] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting
performance bugs for smartphone applications. ICSE 2014, New York, NY, USA,
2014. Association for Computing Machinery.

[31] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lu. Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications. IEEE Trans. Soft-
ware Eng., 40(9):911–940, 2014.

[32] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták,
José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: a manifesto.
Commun. ACM, 58(2):44–46, 2015.

42

https://square.github.io/leakcanary/
https://doi.org/10.5281/zenodo.6759123

[33] Francesco Logozzo and Thomas Ball. Modular and verified automatic program
repair. In Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the
27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tuc-
son, AZ, USA, October 21-25, 2012, pages 133–146. ACM, 2012.

[34] Francesco Logozzo and Matthieu Martel. Automatic repair of overflowing ex-
pressions with abstract interpretation. In Anindya Banerjee, Olivier Danvy,
Kyung-Goo Doh, and John Hatcliff, editors, Semantics, Abstract Interpretation,
and Reasoning about Programs: Essays Dedicated to David A. Schmidt on the
Occasion of his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September
2013, volume 129 of EPTCS, pages 341–357, 2013.

[35] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, pages 166–178. ACM,
2015.

[36] Linghui Luo, Eric Bodden, and Johannes Späth. A qualitative analysis of Android
taint-analysis results. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
pages 102–114. IEEE, 2019.

[37] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. Automatic repair of real bugs in Java: A large-scale experiment on
the Defects4J dataset. Empirical Software Engineering, 2016.

[38] Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vásquez, and Gabriele
Bavota. Investigating types and survivability of performance bugs in mobile apps.
Empirical Softw. Engg., 25(3):1644–1686, may 2020.

[39] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng.,
2(4):308–320, 1976.

[40] MediaPlayer Overview. https://developer.android.com/guide/topics/

media/mediaplayer. Accessed: 2021-02-16.

[41] Martin Monperrus. Automatic software repair: A bibliography. ACM Comput.
Surv., 51(1), January 2018.

[42] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

[43] Y. Pan, X. Ge, C. Fang, and Y. Fan. A systematic literature review of android
malware detection using static analysis. IEEE Access, 8:116363–116379, 2020.

[44] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debug-
ging on smartphones: A first look at energy bugs in mobile devices. In Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, New
York, NY, USA, 2011. Association for Computing Machinery.

43

https://developer.android.com/guide/topics/media/mediaplayer
https://developer.android.com/guide/topics/media/mediaplayer

[45] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. ELIXIR:
effective object oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Ur-
bana, IL, USA, October 30 - November 03, 2017, pages 648–659, 2017.

[46] Michael Sipser. Introduction to the theory of computation. PWS Publishing Com-
pany, 1997.

[47] Emina Torlak and Satish Chandra. Effective interprocedural resource leak de-
tection. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián
Uchitel, editors, Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8
May 2010, pages 535–544. ACM, 2010.

[48] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In Proceedings of the Symposium on
Logic in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June
16-18, 1986, pages 332–344. IEEE Computer Society, 1986.

[49] Antonio Vetrò, Marco Torchiano, and Maurizio Morisio. Assessing the precision
of FindBugs by mining Java projects developed at a university. In Jim Whitehead
and Thomas Zimmermann, editors, Proceedings of the 7th International Working
Conference on Mining Software Repositories, MSR 2010 (Co-located with ICSE),
Cape Town, South Africa, May 2-3, 2010, Proceedings, pages 110–113. IEEE
Computer Society, 2010.

[50] Westley Weimer and George C. Necula. Finding and preventing run-time er-
ror handling mistakes. In John M. Vlissides and Douglas C. Schmidt, editors,
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2004, October
24-28, 2004, Vancouver, BC, Canada, pages 419–431. ACM, 2004.

[51] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Au-
tomatically finding patches using genetic programming. In 31st International
Conference on Software Engineering (ICSE), pages 364–374. IEEE, 2009.

[52] Haowei Wu, Yan Wang, and Atanas Rountev. Sentinel: generating GUI tests for
Android sensor leaks. In Xiaoying Bai, J. Jenny Li, and Andreas Ulrich, editors,
Proceedings of the 13th International Workshop on Automation of Software Test,
AST@ICSE 2018, Gothenburg, Sweden, May 28-29, 2018, pages 27–33. ACM,
2018.

[53] Haowei Wu, Shengqian Yang, and Atanas Rountev. Static detection of energy
defect patterns in Android applications. In Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, page 185–195, New York, NY,
USA, 2016. Association for Computing Machinery.

[54] Haowei Wu, Hailong Zhang, Yan Wang, and Atanas Rountev. Sentinel: Gener-
ating GUI tests for sensor leaks in Android and Android Wear apps. Software
Quality Journal, 28(1):335–367, mar 2020.

44

[55] Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan,
and Jian Zhang. Light-weight, inter-procedural and callback-aware resource leak
detection for Android apps. IEEE Trans. Software Eng., 42(11):1054–1076, 2016.

[56] Dacong Yan, Shengqian Yang, and Atanas Rountev. Systematic testing for re-
source leaks in Android applications. In IEEE 24th International Symposium on
Software Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November
4-7, 2013, pages 411–420. IEEE Computer Society, 2013.

[57] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pollution in
Android applications. In 20th Annual Network and Distributed System Security
Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013. The
Internet Society, 2013.

45

	Introduction
	An Example of [0.5]PlumbDroid in Action
	How [0.5]PlumbDroid Works
	Resources
	Intra-Procedural Analysis
	Resource-Flow Graphs
	Context-Free Emptiness: Overview
	Resource Automata
	Complement Automata
	Flow Automata
	Intersection Automata
	Emptiness Checking

	Inter-Procedural Analysis
	Explicit Call Sequences
	Implicit Call Sequences

	Fix Generation
	Validation
	Features and Limitations
	Soundness
	Precision

	Implementation

	Experimental Evaluation
	Experimental Setup
	Subjects: RQ1, RQ2, RQ3, RQ5
	Subjects: RQ4, RQ5
	Experimental Protocol

	Experimental Results
	RQ1: Correctness
	RQ2: Comparison with Developer Fixes
	RQ3: Performance
	RQ4: Comparison with Other Tools
	RQ5: Unrolling

	Aliasing Resources
	Threats to Validity

	Related Work
	Automated Program Repair
	Leak Analysis
	Static Analysis
	Dynamic Analysis

	Leak Repair
	Relda2 and RelFix
	EnergyPatch

	Conclusions and Future Work

