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Abstract

There is abundant observational data in the software engineering domain, whereas running large-scale
controlled experiments is often practically impossible. Thus, most empirical studies can only report statisti-
cal correlations—instead of potentially more insightful and robust causal relations.

To support analyzing purely observational data for causal relations, and to assess any differences between
purely predictive and causal models of the same data, this paper discusses some novel techniques based
on structural causal models (such as directed acyclic graphs of causal Bayesian networks). Using these
techniques, one can rigorously express, and partially validate, causal hypotheses; and then use the causal
information to guide the construction of a statistical model that captures genuine causal relations—such that
correlation does imply causation.

We apply these ideas to analyzing public data about programmer performance in Code Jam, a large world-
wide coding contest organized by Google every year. Specifically, we look at the impact of different program-
ming languages on a participant’s performance in the contest. While the overall effect associated with pro-
gramming languages is weak compared to other variables—regardless of whether we consider correlational
or causal links—we found considerable differences between a purely associational and a causal analysis of
the very same data.

The takeaway message is that even an imperfect causal analysis of observational data can help answer the
salient research questions more precisely and more robustly than with just purely predictive techniques—
where genuine causal effects may be confounded.

1 Introduction

It is commonplace that “correlation does not imply causation”: just because two variables appear to change
together, it does not mean that one makes the other change. This fundamental limitation is especially damn-
ing for fields like empirical software engineering, where there is plenty of detailed observational data—for
example by mining software repositories—but fully controlled experiments are challenging to design and to
run. As a result, most (quantitative) empirical studies in software engineering apply statistical analysis to
detect associations (such as correlations), which may suggest and be consistent with—but do not necessarily
establish—causal effects.

On the bright side, if our only, or primary, goal is predicting an outcome from measured variables, we do
not necessarily need to understand causal relations, and a more traditional approach to statistical analysis
may be enough. Practical solutions for engineering can often be built on prediction alone: the spectacular
success of machine learning—which often learns from and predicts observational data—indicates that lots of
applications can go a long way with correlational data alone. In contrast, if we want to understand the specific
contributions of some variables on some outcomes, and to generalize their effects in a different scenario, we
must be able to distinguish between mere correlations and true causal effects. After all, an understanding
grounded in causal relations has not only practical value, but should be a fundamental goal of any rigorous
scientific discipline.



In this paper, we demonstrate on a case study (outlined in how thinking about causality can
make a difference—even when all we have is observational data—to reliably isolate the impact of specific
factors in software engineering empirical data, and to develop a statistical analysis that precisely answers
our research questions. In a nutshell, we will apply some basic tools of causal analysis (in particular, causal
directed acyclic graphs) to model and assess possible causal relations between variables [42]E] This, in turn,
will help us choose a statistical model that reliably identifies the magnitude of causal effects. We will also
demonstrate that not accounting for causality leads to choosing different statistical models for our case study,
which make accurate predictions “in the small” but spuriously misrepresent the impact of the variables of
interest.

The main lesson following this exercise will be that software engineering empirical research needs con-
ceptual and technical tools to model and reason about causal relations. Failing to do so—sticking to purely
associational interpretations of empirical data—can severely limit the robustness and generalizability of any
empirical results, and would ultimately stifle the long-term standing of software engineering’s scientific
progress.

1.1 Programming: Competitions and Languages

As a case study of applying causal modeling to empirical software engineering data, we consider program-
mers that take part in programming competitions. More precisely, we analyze data collected during seven past
editions of the Code Jam coding competition—organized every year by Google. describes how the
Code Jam contest works, and what public data we analyzed.

As they grow in popularity and accessibility, programming competitions help promote programming and
its applications in informal and fun settings. From the point of view of empirical software engineering,
programming competitions provide a setting where one can easily collect data about the behavior and per-
formance of devoted programmers. Of course, competitions usually take place under somewhat artificial
settings with numerous constraints, which do not necessarily reflect software development as done in a
professional environment. On the flip side, the same constraints also make them a partially controlled envi-
ronment, where it’s easier to zero in on some specific aspects of the behavior of programmers without too
many confounding factors. In particular, a programmer’s work in a programming competition usually has
very clear goals and constraints, and there are objective criteria to determine to what extent a submission
meets those goals and satisfies those constraints.

In this paper, we use Code Jam data to study, in a specific setting, a long-standing question in computer
science: the impact of using different programming languages. This evergreen topic featured in countless
empirical studies—including some recent hot-button work [48} [6; [14]—that usually analyzed observational
data by purely associational means. As summarized in different studies do not always agree on
their findings; but they tend to suggest that the association to using different programming languages is
generally small compared to other correlational factors. In this paper, we take yet another look at the same
topic but through the lens of causal relations. Does this stance affect the conclusions that we can draw from
an empirical analysis?

Code Jam accepts submissions in a broad variety of programming languages; in practice, as we discuss in
only a handful of programming languages are overwhelmingly chosen by participants to Code Jam.
In order to focus our analysis on data that is extensive and consistent, we only consider i) submissions in the
most popular languages (namely, C++, Java, and Python), and ii) experienced participants—that is, participants
who successfully took part in several editions of the Code Jam contest. Thus, we investigate the following
fundamental research question.

RQ: For experienced participants to the Code Jam contest, how does
using different programming languages relate to their results in the contest?
1.2 Correlation vs. Causation

The phrasing of question RQ is deliberately vague about what “relate to” means—in other words, what kind
of relations we are looking for. Two common interpretations are:

correlational: are some programming languages associated with a certain performance in Code Jam?

1 As we further discuss in[Section 2.1} the over-arching goal of modern causal analysis is to formally capture the intuitive notion of
causality with mathematical /statistical constructs, so that one can rigorously reason about causal links in experimental or observational
data.



causal: does using some programming languages affect the performance in Code Jam?

The first interpretation only looks for correlations among the programming language and other variables (in
particular, the outcome in the competition). The second interpretation is stricter, in a way, as it demands
evidence that the programming language tends to cause a change in the competition outcome.

In this paper, we first carry out a statistical analysis following the correlational/associational interpretation.
This represents a type of data analysis that is typical in present-day empirical software engineering. The
analysis, described in[Section 4} indicates that: i) using Java is associated with worse-than-average results in
the Code Jam competition; ii) using Python is associated with better-than-average results; and iii) using C++
has no consistent association with better or worse results.

revisits the correlational analysis under a causal lens. This represents a type of data analysis that
could add value if used more frequently in empirical software engineering. In particular, [Section 5.1|explains
in what sense “correlation does not imply causation”: the Code Jam contest is obviously not a randomized
experiment, and hence we cannot distinguish a causal relation from a mere correlation based on its data
alone. However, we can still build, under some reasonable assumptions, a different statistical model than
the one used in the correlational analysis that is poised to measure not mere correlations but causal effects.
Remarkably, the analysis of this “causally-consistent” model, presented in leads to results that
are nearly the opposite of the correlational analysis’s: i) using Python is associated with worse-than-average
results; ii) using C++ is associated with better-than-average results; and iii) using Java has no consistent
association with better or worse results.

This difference in results between associational and causal analysis is especially troubling given that the
former clearly outperforms the latter in terms of purely predictive accuracy; yet, it fails to properly isolate
causal effects.

As we further discuss in an underlying issue is that, in our data, the magnitude of the impact of
choosing different programming languages is anyway small compared to other factors (such as a program-
mer’s individual skills). Thus, the main contribution of our work lies not so much in picking the “right”
programming language but rather in demonstrating—on a case study of empirical programming data—that
thinking about causality can be crucial to choose the statistical models that most accurately answer our re-
search questions, and to identify confounding factors that may affect the reliability of a study’s results.

1.3 Contributions

This paper makes the following contributions:

¢ Highlights the importance, for empirical software engineering, of modeling and reasoning about causal
relations to fully understand, and properly analyze, observational data;

¢ Demonstrates using some basic tools of causal analysis on a case study, where the main findings differ
from those that one would draw based on a purely correlational (associational) statistical analysis;

* Argues, based on the case study, that a causal analysis’s capability of identifying confounders (sources
of non-causal, spurious correlations) provides a basis to more clearly identify the relative importance
of different factors, and more easily disentangle them;

e For reproducibility, all data and analysis scripts are available online—together with additional results
and detailed data visualization:

REPLICATION PACKAGE: |https://doi.org/10.5281/zenodo.7541480 [15].

1.4 Organization

The rest of the paper is organized as follows. [Section 2|summarizes some fundamental work on causal model-
ing and analysis, recalls some (recent) empirical work on the analysis of programming languages on software
development practices, and discusses the few other applications of causal models to software engineering
data analysis to date. [Section 3| presents the Code Jam programming contest, the available data from several
of its editions, and how we selected a subset of this data for analysis. follows a “canonical”, purely
correlational, statistical analysis of the Code Jam data—primarily using Bayesian techniques. pe-
ruses the statistical models developed in the previous section according to a model of causal relations among
observed variables, which leads to revising some key study results. explains how to reconcile the
two conflicting outcomes of [Section 4{s and [Section 5(s analysis, and corroborates previous evidence that the
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absolute impact of programming languages is often small compared to other factors. discusses fur-
ther threats to the validity of the case study’s findings; and concludes with a high-level discussion
of the paper’s ideas and results.

2 Related Work

This section reviews related work in the main areas that are relevant for this paper. outlines
fundamental concepts of modern causal inference—applicable, in principle, to every branch of science and
engineering. [Section 2.2]summarizes studies that have applied causal analysis techniques to empirical data in
the software engineering domain. [Section 2.3|reviews studies of the impact of using different programming
languages, including on data emerging from programming contests of various kind—this paper’s area of
application.

2.1 Causal Inference

Causal inference denotes a process, usually built on top of mathematical/statistical concepts, for identifying
and analyzing which factors lead to specific outcomes [41} [40]. It has grown in popularity as a tool for
data analysis, and can be used in conjunction with, or in place of, traditional statistical and data analysis
methods [46]. In a nutshell, while plain statistical methods identify associations, causal analysis determines
which factors lead to (cause) changes in others, and quantifies such causal effects.

The so-called ladder of causality illustrates the crucial differences between various types of analysis [44].
Classical, associative statistical analysis is the bottom level (“seeing”), addressing questions of the form “How
does seeing X change my belief in Y?”. The analysis of interventions (“doing”) is one step higher: “What
would happen to Y if I do X?”. Counterfactual analysis is the highest level (“imagining”): “What would
have happened to Y if X had not occurred?”.

In principle, the benefits of causal inference in empirical research are clear: finding the causes of studied
effects is a key goal of science. However, it can also have practical benefits, leading to more robust and
accurate estimates. For instance, a re-analysis of medical data on hip fractures among elderly patients found
that causal analysis could identify which factors contribute to the occurrence of hip fractures and to what
extent, and also provide predictions that were comparable to traditional methods [7]. Another study [49]
demonstrated that medical diagnosis based on causal inference was almost twice as effective (25th percentile
vs. 48th percentile of human doctors) as those based on traditional, associational statistical methods.

One key ingredient of modern-day causal inference is the use of directed acyclic graphs (DAGs) to model
the observed factors” dependence structure. Nodes in a DAG denote factors, and edges denote which nodes
(edge source/parent) cause changes in other nodes (edge target/child). Thus, the DAG of a causal model
makes the causal dependence structure explicit. In addition to DAGs, a causal analysis framework normally
offers means of estimating the value of effect nodes from the values of their cause nodes. In a so-called
structural equation model, this is achieved via equations—typically linear, but more general forms have
also been used—that relate each child node to its parents in the DAG. Another kind of causal model, the
probabilistic causal model, uses instead a single probability distribution over all factors [41].

The causal structure (the DAG) underlying some empirical data may be known a priori or be deduced
from domain theory. In some cases, one can apply so-called structural learning (also called causal discovery)
to identify causal structures from data [57]. Structural learning methods may combine observational data
with interventional data—that is, data measured after taking actions that cause changes in some of a DAG's
factors. A key benefit of structural causal models is that DAGs can be used both to guide which factors to
intervene on (change), and to calculate the causal effects from the observations.

There are frameworks for causal inference that are not based on the modeling of causal structure with
DAGs. A notable example is the potential outcomes framework [51], also referred to as the Neyman-Rubin
causal model. This framework estimates the causal effect of an intervention by comparing the outcome that
would have occurred under the intervention to the outcome that would have occurred in the absence of
the intervention. Pearl has criticized this approach by pointing out concrete mistakes in the estimation of
causal effects that may occur if failing to consider the causal structure [43]. However, the potential outcomes
framework may still have advantages in some fields such as econometrics [27], where it fits better their
typical assumptions and restrictions. In this paper, we focus on DAG-based causal inference, and leave the
evaluation of other causal inference approaches to future work.



2.2 Causal Inference and Analysis in Software Engineering

While causal analysis is certainly not (yet) a common practice in software engineering research, there is a
growing number of studies that tried to apply it to specific problems. In a recent survey [55], Siebert reviews
a total of 31 studies that applied some kind of causal analysis to software engineering data. All these papers
were published after 2010, and are considered “software engineering” because they focus on at least one of
the activities of the SWEBOK (Software Engineering Body of Knowledge) [1]. The papers belong to four
groups depending on their main activity: fault localization (17 papers), testing (4), performance analysis (5),
and others (5).

The 17 fault localization papers build on, or at least cite, Baah et al.’s work [3]. Most of them model the
causal effect that program elements (such as variables and statements) have on values and, ultimately, failures
in an executing program; identifying these effects can help locate and debug actual faults. One paper in this
group [31], targets a different unit of analysis, as it is concerned with fault localization in services composed
of multiple, interacting programs.

Among the four testing papers, one builds on the authors’ fault localization results to identify elements
to mutate [30]. Clark et al. [9] test simulation models to determine whether they exhibit the expected causal
effects. Liu et al. [32] apply Bayesian causal modeling to improve the A /B testing used to evaluate changes
in automotive software; they use the potential outcomes framework as their model of causality.

Most of the five papers on performance analysis focus on identifying components that determine a sys-
tem’s observed performance. An exception is the paper by Scholz et al. [53], which focuses instead on the
performance of fault prediction algorithms.

The remaining five papers surveyed by Siebert [55] are on miscellaneous topics that do not fit any of the
other main categories: the impact of open-source license choice, newsletter strategies, the effect of gender on
pull request acceptance, and productivity analysis.

Not all papers considered by Siebert apply a full set of causal modeling tools. Most of them deploy some
specific statistical methods that can help detect causal effects, but do not use structural/graphical models
(DAGsS). The few papers that did consider graphical causal models built them by applying causal discovery
algorithms—possibly complementing their output with expert, manual modeling.

A few additional recent papers applying causal analysis to software engineering data did not make it into
Siebert’s survey. Heyn and Knauss [26] use causal relations and DAGs to clarify, communicate, and apply
human knowledge to artificial intelligence system development. Fang et al. [12] use an econometric causal
inference technique (based on the aforementioned potential outcomes framework) to study if tweeting about
open-source development projects can affect their popularity. Finally, Dubslaff et al. [11] apply Halpern and
Pearl’s concept of actual causality [22] to understand and analyze dependencies in configurable software
systems.

2.3 Empirical Studies of Programming Languages

Empirical studies of programming languages fall into three main categories according to what kind of data
they collect and analyze. Controlled experiments usually compare a small set of language features on a specific
task; for example, static vs. dynamic type systems [23], or different concurrency primitives [50; 39]. Their
precise, controlled experimental setups work well to investigate fine-grained questions; for the same reason,
their results may have limited generalizability. Surveys, interviews, and other ways of methodically collecting
individual observations are the tool of choice to investigate qualitative questions and to assess programmer
perceptions and subjective preferences; for example, to understand trends behind language preferences and
adoption [36]. Repository data, obtained by mining GitHub or other artifact repositories (such as the Code Jam
contest data we analyze in this paper), offer plenty of information, which can support large-scale studies [54;
48; [38]; the flip-side is that the data may be noisy, or too heterogeneous to discern robust, general trends
within it.

In fact, empirical studies of programming languages based on mining repositories can lead to clear, solid
results when they target characteristics that are easy to measure reliably (such as the conciseness of programs
written in different programming languages); in contrast, many confounding factors may arise that com-
plicate discerning the actual, practical impact of programming languages on features lacking a universally
accepted, easy-to-measure operationalization (such as error proneness). As an example, take Nanz and Fu-
ria’s analysis of the Rosetta Code repository [37], which compared solutions to programming tasks written
in eight programming languages. Their comparison of conciseness found strong effect-size differences (Co-
hen’s d > 0.7) for 14 out of 28 language pairs, corroborating other studies of conciseness [47]. In contrast, their
comparison of failure proneness (simplistically measured as how many programs terminate with a runtime



failure) found no strong effect-size differences, and only five medium effect-size differences (0.3 < d < 0.5),
among the same 28 language pairs.

Fault proneness is an especially tricky measure to associate with the chosen programming language. Ray et
al.’s study of “code quality” in GitHub projects [48] also failed to find strong associations between program-
ming languages and presence of bugs, concluding that, while “some languages have a greater association
with defects than other languages [...] the effect is small”; Berger at al.’s critical reanalysis of [48] suggested
to further “reduce the number of languages with an association with defects” and found that “the practi-
cal effect size is exceedingly small” [6]. Our Bayesian reanalysis of the same data [14] also found that “the
fault proneness of a language over another strongly depends on the conditions in which the languages are to
be used”; namely, any “disproportionate differences [...] are project-specific rather than language-specific”.
Therefore, it is not surprising that the present paper will also conclude that the choice of pro-
gramming language has a modest effect on predicting the success of a person participating in the Code Jam
competition, and it is largely secondary compared to other dominant factors—most important, the intrinsic
skills and experience of each participant.

Empirical studies of programming contests. Programming contest empirical data have also been the sub-
ject of empirical studies—usually with a focus on using such contests to foster educational programs. Often,
such studies are mainly qualitative, aiming at surveying the state of the art as broadly as possible [21} 29],
and at suggesting ways to improve the impact of programming contests in education [61]].

To our knowledge, Back and Westman’s master’s thesis [4]|is the only other empirical study of Google
Code Jam data to date. It analyzes solutions to the contest’s problems written in C, C++, C#, Java, and Python,
and compares them for attributes such as size, running time, and memory consumption (along the lines
of [38]).

3 The Google Code Jam Data

Code Jam is a worldwide programming contest organized by Google every year since 2008. Each edition
consists of several elimination rounds; all rounds—except possibly the final one—take place online.

Each round begins and ends at predefined times set by the organizers. As long as a round is open, regis-
tered participants can download the coding problems for that round and submit their solutions. Solutions
can be written in a wide variety of programming languages, provided they are runnable on the platform
Google sets up for the contest.

Participants can submit as many solution attempts as they want for each problem, in any order. A submis-
sion gets a number of points that depends on the number of tests it passes in the test suite that accompanies
each problem. Participants are ranked based on the points of their best submission in each problem, using
the submission time as a tie breaker. At the end of each round, the top participants in the ranking advance to
the next round.

illustrates the progression of the 2010 edition of Code Jam, which included seven rounds. Initially,
8459 programmers entered the preliminary qualification round; 5553 were admitted to the next stage, and
allowed to submit to one or more of the three parallel rounds 1A, 1B, and 1C; 1924 participants were ranked
high enough to progress to round 2; 361 further progressed to round 3; and 24 took part in the world finals
that determined the overall contest winners.

While some details of the contest (such as the number of rounds, how many advance to the next round,
or some details of how points are counted) may change from year to year, the general contest structure
has remained largely unchanged. Thus, we can merge the data about submissions to Code Jam in several
yearly editions of the contest and analyze them consistently. Furthermore, we do not study the progression
of participants within a contest, but treat each round as a separate ranker of the participants’ performance
based exclusively on their submissions to that round.

3.1 The Code Jam Dataset

Data about all submissions to Code Jam are publicly available on the contest’s websiteE] We analyzed data for
the first seven yearly editions of the contest, 2008-2014, which we got from an unofficial database dump of
the contest dataf

2This thesis was supervised by the first author of the present paper.
3https://codingcompetitions .withgoogle.com/codejam
4https://www.go—hero.net/jam/
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Figure 1: The structure of the 2010 edition of Google Code Jam. Each arrow indicates the number of partici-
pants entering each round of the contest (above the arrow) and the number of different program-
ming languages used by these participants (below the arrow). Rounds 1A, 1B, and 1C are accessible
to all participants who passed the qualification round.

A datapoint in this dataset reports information about a participant’s results in a single round of the Code Jam
contest, consisting of values for following variables:

challenge: an identifier of the yearly edition of Code Jam and the round number within that edition
nickname: the unique identifier of the programmer who submitted in this challenge

language: the programming language used by these submissions

size: the submissions’ total size (in bytes)

rank: the final rank of the participant’s submissions within the challenge (1 is the top rank)

As we discussed above, each round includes one or more problems; for each problem, a participant’s
submission with the most points is taken as their final submission. Since a participant’s rank depends, in
general, on the points that all their (final) submissions collected in the round, size is simply the sum of the
sizes of all their final submissions in that round, to give an idea of their overall programming effort. In the
following, we sometimes refer to any such datapoints as “round/challenge participation”.

A clarification about terminology: a high rank denotes a rank that is close to the top rank (the first rank),
whereas a low rank denotes a rank that is further away from the top rank. Thus, a high-rank submission is one
with a small ordinal number; and a low-rank submission is one with a large ordinal number. Consistently
with this standard usage, we will talk about better-than-average ranks to denote smaller-than-average rank
ordinals, and worse-than-average ranks to denote larger-than-average rank ordinals.

3.2 Selecting Programming Languages

The Code Jam dataset includes submission in 75 different programming languages, including esoterica such
as Whitespac and GolfScriptE] As we might expect, though, the popularity of languages in Code Jam is
not uniform but highly skewed, with the usual suspects dominating. More precisely, the top 10 most used
languages are: 1. C++ (50% of all datapoints); 2. Java (20%); 3. Python (13%); 4. C# (5%); 5. C (5%); 6. Ruby (2%);
7. PHP (1%); 8. Perl (1%); 9. Pascal (1%); 10. Haskell (1%).

We want to focus our analysis on a small number of languages that are widely used in Code Jam, so that
there is abundant data to reliably estimate correlations and effects for those languages. Therefore, we only
consider submissions in the top-3 most used languages (C++, Java, and Python), which account for an order
of magnitude more submissions than all other languages combined. In particular, these languages are dis-
proportionately used by the programmers that advance to the later rounds of the contest; for example, they
are the three languages used in the 2010 final round (rightmost arrow in[Figure TJ).

3.3 Selecting Experienced Participants

Even after ignoring all but the three most used programming languages, the Code Jam dataset still includes
150539 datapoints for the submissions by 49 808 unique participants. Besides being an impractically large
dataset to analyze, it dilutes a smaller number of experienced participants within a far greater number of
casual participants. As we can see more clearly in [Figure 2 the overwhelming majority of participants took
part in only one or two yearly editions of Code Jam, where they advanced at most to the second round.

5https://en.wikipedia.org/wiki/Whitespace,(programming,language)
6https://en.wikipedia.org/wiki/Code,golf#Dedicated,golfing,languages
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Figure 2: Number of participants to Code Jam who entered at least y yearly editions of Code Jam and at least x
participation rounds in any one edition. The background color denotes the corresponding percent-
age of all 49 808 participants to Code Jam. An ellipse marks the subset of participants featuring in
the main analysis.

To select experienced participants, we further filter the dataset and only retain data about participants who
took part in at least two yearly editions of Code Jam and submitted, in any one edition, to at least six rounds.
Since each edition of Code Jam in our dataset includes seven rounds or more, the latter requirement is met
by who qualifies for the penultimate round at least once—clearly, an above-average result. This selection
criterion leaves us with 1896 datapoints corresponding to the submissions of 105 experienced participants to
Code Jam.

We found that this data selection reasonably balances dataset size and experience of participants: it’s not so
small as to be insignificant, nor so large as to be impractical to analyze and including too many casual partic-
ipants. However, there is nothing special about it: other data selections could also be reasonable and feasible.
To demonstrate this claim, discusses the results of running the same analysis on significantly
larger and smaller samples of the Code Jam dataset. While some detailed results may change, the overall an-
swer to our research question mostly does not, and remains largely independent of the data selection criteria
within a broad range.

4 Correlational Analysis of Programming Language Effects

This section presents a statistical analysis of the Code Jam dataset. We build four Bayesian regression models
my, my, m3, my of increasing complexity, and we compare them quantitatively according to their predictive
capabilities. More precisely, we use generalized linear (regression) models: a broad, widely-used family
of flexible statistical models [18]. The analysis follows the guidelines we discussed in previous work [14];
for brevity, we do not discuss here the application of the guidelines, but refer the interested readers to the
replication package for details.

By following the recommended guidelines to build and evaluate regression models, this section’s analysis
is arguably similar to any standard, up-to-date, rigorous statistical analysis of the same data made by an
informed researcher. Even with some latitude to accommodate their favorite statistical techniques, the big
picture that emerges should still be consistent with this section’s. In particular, [Section 4.4)explains that using
frequentist rather than Bayesian techniques would lead to similar overall conclusions.

4.1 Modeling

shows the four models, whose components we now describe and justify. These four models follow
standard guidelines, and are serviceable to support the analysis of the paper; but we do not imply that they
are the definitive or only models for the data. The replication package includes a few model variants, as well
as the data that can be fitted on any other kind of statistical model to explore different research questions.
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(a) Likelihoods of models my, my, m3, and my.
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Figure 3: Definitions of regression models mj, my, m3, and my. All these models have the same negative
binomial likelihood with log-linear parameter A; each model my includes exactly k predictors.

Variables. First of all, we should choose the variables of our models. Since our goal is to analyze the impact
of programming languages and other factors on the results in rounds of the Code Jam contest, we pick rank
as outcome variable in all our models.

The other variables in the dataset can be used as predictors (also: treatments). Since we are especially inter-
ested in the effect of programming languages, we include variable language as a predictor in all our models.
Then, we introduce progressively more complex models by adding the other variables as predictors: model
my only uses language; model my adds nickname, since different participants are likely to have different
results that reflect their skills; model m3 adds challenge, since each year/round of the competition is differ-
ent, and arguably has a different intrinsic complexity; and model m4 adds size, which partially indicates the
amount of work done by a participant in each round.

Plausibly, some of these four “independent” variables interact (for example, participants may have their
own favorite programming language), and hence they are not really independent. To account for this,
compares the four models using a kind of regularization that weighs off predictive accuracy against
complexity: any model with redundant variables will be penalized under this criterion. In a frequentist
setting (Section 4.4), a variable selection process provides a similar safeguard against including strongly in-
teracting variables. Later, will revisit variable interactions and interpret them under a causal lens.

Likelihood. The likelihood is a probability distribution of the outcome given some parameters; in a regres-
sion model, the likelihood’s parameters are (generalized) linear functions of the predictors.

Since the outcome variable rank is a positive integer, the Poisson distribution family is the most appropriate
choice since it has the highest information entropy for this kind of data [28]; in other words, it does not encode
any assumption other than that rank must be integer and not negative [33]. Specifically, we pick the negative
binomial distribution within the Poisson family, which is better suited for data that is overdispersed. This
is the case of variable rank whose mean 929 is much smaller than its variance 3962 575. Mean and variance
coincide in a Poisson distribution, which would fail to accurately capture the distribution of rank; in contrast,
a negative binomial distribution NegativeBinomial(A, ¢) has two parameters A and ¢, so that its mean A can
differ from its variance A + A2/ ¢.

Parameters. The mean A of the negative binomial distribution in our models is a linear function of the
predictors after applying a customary logarithmic link function, which ensures that the mean remains non-
negative.

Model m;. In model my, log(A;) = « language[]: i each datapoint i, the logarithm of parameter A equals a
language-dependent parameter aj,ngya0c(;)- In Other words, model 17 estimates a different mean for each
programming language, and uses that to predict a challenge’s rank.



Model m;. In model my, l0g(Ai) = Xjanguage(i] T Xnicknameli]» WHeTe Xpjcknameli] i another parameter, which
depends on nickname. In other words, model m; estimates the mean rank by combining mean estimates
for each programming language and for each participant (nickname).

Model m3. In model ms, log()\i) = Qlanguageli] + X nicknamelj) + X challengeli]’ where X challengeli] is another pa-
rameter, which depends on challenge. In other words, model m3 estimates the mean rank by also combin-
ing mean estimates for each challenge (a round in a specific yearly edition of the contest).

Model m4. In model my, 1og(Ai) = & janguage(i] + *nicknameli] + ¥challenge[i] + B - 10g(size;), where B is a new
linear parameter, which multiplies the logarithm of size. In other words, model my estimates the mean
rank by also estimating a contribution proportional to a submission’s size. We use the logarithm of size
because this variable varies greatly in the dataset (from 457 to 202965 bytes); taking the logarithm is a
standard practice to smoothen a wide variability range and focus on its “orders of magnitude” changes.

Parameters a, for every language ¢, a;, for every nickname 7, and «a. for every challenge c are also called
“intercepts”, since they correspond to constant terms in the linear model. For a similar reason, parameter 3
is also called “slope”.

Priors. The last components of a Bayesian model are priors, that is “initial” probability distributions on the
parameters «, for every language ¢, «, for every nickname n, B, a. for every challenge ¢, and ¢. The rest of
this section explains and justifies our choice of priors; however, there is a good deal of latitude in how we
precisely select them—as long as they pass the validation that we outline next.

We use standard weakly informative priors for all parameters: normal distributions for the as and §, and
a gamma distribution for ¢. As you can see in the priors of the language intercepts a; are not
centered (their mean is 5); in contrast, the priors of a;,, a¢, and 3 are centered (their mean is 0) and have smaller
standard deviations than the prior of the language intercepts «a,. This reflects the analysis’s focus on the effect
of languages: every model includes the language intercepts, which are thus the primary determinant of the
overall expected rank and are comparable between models; then, each other predictor may move the overall
estimate higher or lower, starting from the language’s baseline. Since the rank is a positive integer, the mean
rank must also be positive; hence, a prior with a positive mean is more likely to be consistent with the data.
However, the language intercepts’ broad prior standard deviation makes the prior weak; this means that the
data can freely sway the estimate of the actual impact of languages in either direction. As shown by the
validation step, these priors make for an efficient fitting of the data; but there’s nothing “special” about them,
since they are broad, and in fact different choices for the priors would lead to very similar overall estimates.

Model validation. Before we fit the models and use them for analyzing the data and answering our RQ, we
should validate them to ensure that they are well-formed and their predictions can be trusted [14]. Here, we
summarize the outcome of validation; all details are in the replication package.

First, we check that the priors are plausible, that is they are not unnecessarily constraining compared to the
observed data. The prior predictive simulation plots confirm that this is the case for all four models.

Second, we check that the models are workable, that is they can be fitted without computational problems
such as divergences. To this end, we inspect the fitting diagnostic metrics (divergent transitions, R ratio of
within-to-between chain variance, effective sample size, and trace plots) and confirm that they are within the
expected ranges for all four models.

Third, we check that the models are adequate, that is they can generate data that resembles the analyzed
empirical data. This is an important property to ensure that the model does not merely pass some diagnostic
checks but can actually be trusted to capture (at least some) aspects of the data. Inspecting the posterior
predictive checks plots for all four models confirms that they are all reasonably adequate

4.2 Model Comparison

Given that all four models pass the fundamental well-formedness checks, which model should we use for
our analysis? Our current analysis goal is making good predictions—that is, estimating correlations between
predictors and outcome. Thus, we can use an information-theoretic criterion to assess whether some model
offers better out-of-sample predictions than some other models.

7 As expected, the adequacy of the simplistic model m; is visibly lower than the other, more complex models; however, they all are
capable of reflecting at least the general shape and trend of the empirical data.
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Figure 4: For each language ¢, in each model my, my, m3,my, the 50% highest posterior density intervals of
the distribution of the difference J; between ¢’s intercept oy and the average intercept o for all
languages in the model. See for details on how these intervals are computed.

In particular, we use the widely used PSIS-LOO criterion [60], which estimates the relative adequacy of a
number of competing models using a form of leave-one-out validation. Applying PSIS-LOO ranks the four
models according to a score that estimates the relative predictive capabilities of one model compared to the
others; each score difference has a standard error, which quantifies the uncertainty in the score difference.

MODEL RANKING SCORE DIFFERENCE
ABSOLUTE STANDARDIZED
my 1 - -
m3 2 —387.6 —14.6
my 3 —785.4 —18.5
m 4 —85.8 —21

Table 1: Comparison of four MODELs according to the PSIS-LOO validation criterion. The models are ranked
from best to worst according to the criterion (the “best” model has rank 1). The table also reports, the
relative DIFFERENCE in predictive capability score between each model and the one that precedes it
in the ranking, both in ABSOLUTE value and STANDARDIZED (i.e., absolute value difference divided
by standard error).

Table 1| shows the results of applying PSIS-LOO to the models my, my, m3, my. Model my clearly outper-
forms all others in terms of predictive capabilities: the score of m3—the next best model in the ranking—is a
massive 14.6 standard errors lower. In turn, model m3 outperforms model m,: their difference is still massive
(18.5 standard errors). Model m; is the worst, although it’s closer to m, (2.1 standard errors).

The conclusion of this comparison is indisputable: if our goal is predicting with accuracy the statistical asso-
ciations between the predictors (including language) and the outcome rank, we should definitely use model
my, which offers far better out-of-sample predictive accuracy than the other, simpler models that incorporate
less information ]

4.3 Analysis: Programming Language Associations

Fitting a model on the Code Jam data gives a posterior distribution of the parameters a, for each language
¢ = C++,Java, Python—as well as distributions for the other parameters «,, 8, and «., but our RQ focuses on

8The replication package shows that 14 even outperforms considerably more sophisticated multilevel models that explicitly model
variable interactions but do not include variable size.
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MODEL BETTER WORSE NO ASSOCIATION

my C++,Java Python
my C++,Java Python
ms3 C++ Python Java
My Python Java C++

Table 2: For each MODEL, which languages are associated with BETTER and WORSE contest results, or have
NO consistent ASSOCIATION, at the 50% probability level.

the analysis of languages.

To answer our RQ, we compute contrasts that quantify the difference between the absolute value of the ay
for different languages. For each /, we derive the distributiorﬂ of 6y = ay — ar, where &y is the mean of the
distribution of all coefficients ac+, &java, ®python taken together. In other words, J; is the difference between
language ¢’s contribution to the rank and the average language contribution to the rank in the model.

[Figure 4] plots the 50% highest-posterior density intervals of the distributions of J, for each language £ and
in each model. If an interval I, for language ¢ is entirely below the zero line, it means that, with 50% proba-
bility, submissions written in language ¢ are associated with better-than-average ranks (that is, smaller rank
ordinals in Code Jam). If I, is entirely above the zero line, it means that, with 50% probability, submissions
written in language ¢ are associated with worse-than-average ranks (that is, larger rank ordinals in Code Jam).
If Iy includes the zero line, there is no consistent association with better- or worse-than-average results for
language ¢ at 50% probability.

Why do we focus on 50% probability intervals, instead of a higher, more common probability such as
95%? As we demonstrate in the absolute magnitude of the impact of programming languages is
modest compared to other variables in our data. Therefore, there is quite some uncertainty about the precise
effects associated with languages, and we are unlikely to find consistent effects at high probability levels.
The 50% probability intervals are still meaningful and give a “sense of where the parameters and predicted
values will be” instead of aiming for “an unrealistic near-certainty” [17]. In the replication package, we
also compute the 70%, 90%, and 95% probability intervals, showing that they still largely exhibit the same
tendencies as the 50% intervals, but with larger uncertainty (for example, an interval that is completely above
zero at 50% probability is mostly above zero at 95% probability—but also includes it). In other words, higher-
probability intervals display the same tendency as the 50% intervals—just with more uncertainty about the
precise interval spans. In summary, 50% probability intervals provide robust, valuable information, that
clearly conveys the main qualitative findings of our analysis.

Results: model my. According to model my (which model comparison identified as the one delivering the
most accurate predictions), at the 50% probability level:

¢ Python is associated with smaller-than-average rank ordinals, that is better contest results;

¢ Java is associated with larger-than-average rank ordinals, that is worse contest results;

¢ there is no consistent association for C++, as its 50% interval is nearly centered around zero.

Based on this, we can answer the paper’s main RQ under the correlational interpretation:

AQ (correlation): For experienced participants to the Code Jam contest,
using Python is associated with better contest results,
using Java is associated with worse contest results,
and using C++ has no consistent association.

Results: models my, my, m3. Further inspecting clearly indicates that the predictions of the four
models my, my, m3, and my are often inconsistent with each other. summarizes the predictions of each
model: in particular, models m1, my, and ms’s estimates are nearly the opposite of model m,’s. Since we have
shown that m4 outperforms the other three models in terms of predictive accuracy, it makes sense to base the
correlational analysis on 4.

“More precisely, we numerically estimate it on the posterior samples.
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Robustness. When the qualitative results of a statistical analysis “flip” as we refine models (such as when
going from mj3 to my), it may indicate that the associations we are measuring are weak. will confirm
this suspicion, detailing how the specific contribution of language is small compared to the other variables’.
From a different angle, this lack of robustness in the statistical analysis also prompts us to think about possible
causal relations, in order to go beyond mere predictive accuracy towards understanding the genuine causes
of the observed associations.

4.4 Frequentist Statistics

In related work [13} 14], we argued extensively about the advantages of Bayesian statistics over the more
traditional frequentist statistics. This recommendation applies regardless of whether we are just interested in
prediction or are looking for causal links.

Nevertheless, most of the observations and analyses we discuss in the present paper would remain valid
when using frequentist statistics. To substantiate this claim, the replication package presents four statistical
models f1, f2, f3, f4 that are the frequentist counterparts to the four Bayesian models m1, my, m3, m4 discussed
in the paper. Except for a few technical differences—such as how we encode contrasts and binary indicator
variables, and using flat rather than weakly informative priors—each frequentist model f; is a regression
model using the same predictors and outcome variables, the same negative binomial likelihood, and the same
log-linear parameterization as the corresponding Bayesian model m. Fitting fi on the Code Jam dataset and
analyzing it similarly to how we did for my, also leads to very similar results in terms of which programming
languages are associated with worse or better performance in the contest. The frequentist analysis also finds
that the predictions based on model f4 (like 11,4) are nearly opposite of those based on model f3 (like m3).

The frequentist approach also agrees with our Bayesian approach regarding which model is “best” for pre-
dictions. To this end, we apply a variable selection process that starts from model f; (with a single predictor,
like model m;), addﬂ one predictor at a time, and checks whether it “significantly” improves model perfor-
mance (measured by p-values or by information criteria such as AIC). This process continues until it selects
model f4, which is strictly better than all other simpler models according to this criterion.

In summary, we can go back to our four Bayesian models for the rest of the analysis, knowing that the
high-level contributions and results of the paper—most important, the causal analysis results—are largely
independent of whether one prefers to use Bayesian or frequentist regression models.

5 Causal Analysis of Programming Language Effects

This section discusses how to build an analysis of the Code Jam dataset that tries to identify true causal ef-
fects of the different programming languages; and compares its results to the purely associational analysis
presented in the previous section.

5.1 From Correlation To Causation

In general, one cannot identify causal relations by analyzing data alone, as these relations depend also on
how the data was genemted This implies that we cannot just lift the results of the statistical analysis to infer
causal effects without any assumptions on the data-generation process.

To illustrate this point, imagine that Code Jam were run as a fully controlled experiment designed to find
the impact of using different programming languages. This means that all independent variables would be
assigned randomly within the population of interest: random programmers (variable nickname) would be
selected to join the competition; they would be assigned a random problem (variable challenge), which they
would have to solve using a randomly chosen language (variable language) and producing a solution of
a given size (variable size). In this scenario, the randomization would cancel out any indirect correlation
between independent variables (in other words, the groups of programmers using different programming
languages would be homogeneous in all characteristics except for the used language); thus, the statistical
relation between language and rank (measured, for instance, by a regression model) would measure exclu-
sively the direct causal effect of language on rank.

Obviously, this is not how Code Jam works. Participants are free to join or leave the contest, can use the
programming language they prefer, and do not have any upfront constraints on the size of the program they

10A backward process has the same outcome: it suggests f, as the “best” model.
1“In causal analysis we must incorporate some understanding of the process that produces the data, and then we get something that
was not in the data to begin with.” [45} p. 85]
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(a) DAG djy, which models a direct effect of (b) DAG dq, which models a direct effect of skill
nickname on size. on size.

language

SIZGW

(c) DAG dp, which models a direct effect of
nickname and skill on size.

Figure 5: Three DAGs encoding possible causal relations among variables in the Code Jam dataset. Variables
rank and language are colored because their relation is the primary target of the causal analysis.
Variable skill is circled to denote that it is unobserved, that is not actually measured. All three
DAGs have the same nodes (variables) but differ in the arrows (causal relations) that enter size.

submit. Therefore, the statistical relation between language and rank may actually measure an unknown mix
of direct causal effect of language on rank and other confounding effects between independent variables. For
example, imagine that all best programmers like to use C++; then, a statistical analysis would report a clear
association between submissions in C++ and worse ranks. But this would mostly be an indirect effect of
the best programmers’ preference for one language over the others; if we asked them to only use Java, they
would likely still get top ranks just because of their superior programming skills.

Given that the Code Jam data is observational, and hence such confounding effects are likely to take place,
what can we do to isolate any causal effects? While we cannot infer them from the data alone, we can: i) de-
sign qualitative causal models that capture plausible causal relations among variables; ii) partially validate such
models on the data, determining which models are more or less likely to be consistent with the data; 7ii) use
a qualitative causal model that is consistent with the data as a guide to build a statistical model that properly
factors out any confounding effects. If built following these guidelines, the statistical model’s association be-
tween language and rank should measure the true causal effect between the two variables—at least, within
the uncertainty given by the data, and assuming the qualitative causal model is accurate. The rest of this
section goes through these steps for the Code Jam dataset.

5.2 Qualitative Causal Models: DAGs

Causal DAGs (Directed Acyclic Graphs) are intuitive graphical models to express qualitative causal relations
between variables. Let’s demonstrate how they work by designing qualitative causal models for the Code
Jam data.

A DAG consists of nodes (also called vertices) and arrows (also called arcs, edges, or links) connecting
them. In a causal DAG, nodes correspond to variables. For the Code Jam data, these are language, rank, size,
and nickname. A DAG may also include unobserved variables, which are in a cause-and-effect relations with
other variables, but are not directly available in the dataset. For the Code Jam data, we introduce unobserved



variablg?| skill as a placeholder for the programming skills of participants that are relevant for the contest.
Figure 5/displays all nodes—observed and unobserved—for the Code Jam contest, marking unobserved vari-
ables with a circle, and highlighting the two variables language and rank whose causal relation our analysis
focuses on.

A causal DAG’s arrows denote causal relations: an arrow A — B from node A to node B means that there
is a direct causal effect of A on B (in other words, changing A causes B to change as well). The model is
qualitative in that an arrow’s causal relation may be weak or strong, and is in general probabilistic (but it
should be detectable within the precision of the data measurements). For the Code Jam data, we design the
DAGs in[Figure 5|based on the following observations:

* Measuring the causal relation between language and rank is the main focus of our analysis; thus, we
include an arrow language — rank

¢ Different programmers prefer to use some languages over others; thus, we include an arrow nickname —
language.

® A program’s size depends also on the programming language it is written inE] thus, we include an
arrow language — size.

¢ Programmers differ in their coding skills, which obviously have an impact on their success in the con-
test; thus, we include arrows nickname — skill and skill — rank.

* Not all challenges in Code Jam have the same intrinsic difficulty; hence, the range of ranks that are
assigned varies from challenge to challenge (for example, because fewer participants submit to harder
challenges). Thus, we include an arrow challenge — rank

¢ A programmer’s skills are usually problem-dependent: different programmers may be more familiar
with certain kinds of problems; thus, we include an arrow challenge — skill.

e Similarly, a programmer may selectively decide to submit solutions only for challenges that they find
congenial; thus, we include an arrow challenge — nicknameE]

¢ Connecting nodes size and rank would be inconsistent with how the Code Jam contest works: the
contest rules do not take a submission’s size into account to rank it (thus, no arrow from size
to rank); and the rank is determined after submission, and hence changing a submission’s rank cannot
affect the submission’s size (thus, no arrow from rank to size).

Finally, we may consider different plausible relations between nickname and size. It’s clear that program-
mers often have more concise or verbose programming styles, but we can express this relation in a DAG in
different ways.

DAG dy. If we consider a programmer’s conciseness a form of personal preference, we include an arrow
nickname — size.

DAG d;. If we consider conciseness a direct result of a programmer’s skills, we include an arrow skill —
size.

DAG d,. If we consider conciseness a combination of personal preference and skills, we include both ar-
rows nickname — size and skill — size.

[Figure 5|shows the resulting DAGs d (Figure 5a)), d; (Figure 5b), and d, (Figure 5d).

12Unobserved variables are also called “latent” variables in frequentist terminology.

13The main analysis goal is quantitatively estimating the causal effect of language on rank, but this effect may not exist. Thus, the
rest of the analysis builds on the tentative assumption that language may directly affect rank, and tries to remove sources of bias in the
estimate of this causal effect as much as possible given the available information and any causal assumptions. In the end, the estimate
itself may confirm a significant effect or indicate that the effect is negligible. Clearly, a causal link in the opposite direction (from rank to
language) is impossible because a submission’s rank is determined after its language has been chosen.

4For example, Python programs are usually more concise than Java programs for the same task [38].

I5Nevertheless, omitting the arrow challenge — rank does not affect the conclusions of the ensuing causal analysis.

16This does not mean that a challenge can change a participant’s nickname; it means that the value of challenge can affect which
participants (identified by their nicknames) appear in the data for that particular challenge.
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5.3 Validating DAGs on Empirical Data

Which causal DAG among dy, d1, d2 should we adopt as qualitative causal model of the Code Jam data? We
can perform a kind of validation where we test whether some of the DAG'’s relations are consistent with the
data. This validation is necessarily partial: as we discussed previously, we cannot derive causal relations
from observational data in general (and exhaustively); this limitation also applies to a posteriori validation.
However, even partial validation can be useful to choose among different plausible DAGs, and to corroborate
the intuition that led us to construct the DAGs in the first place.

To validate a DAG, we first derive its implied conditional independencies: these are relations of statistical in-
dependence among DAG variables that can be derived from the DAG’s topology. A statistical independence
relation is written as X 1L Y | Z and means that variable X is independent of variable Y given variable Z;
intuitively, it captures the idea that there is no meaningful association between X and Y after we condition
on (know the value of) Z.

To see an example of conditional independence implied by all DAGs dy, d1, d», consider the path language <
nickname <— challenge. Variable challenge affects language only indirectly through variable nickname; if we
condition on nickname (that is, we single it out explicitly), we should then observe no remaining meaningful
correlation between language and challenge. Therefore, the three DAGs imply the conditional independence:

language L challenge | nickname (1)

Intuitively, this conditional independence is very plausible if we expect that participants tend to use the same
programming language in all challenges they take part in then, after we fix nickname, we can already
reliably predict language—regardless of challenge.

More precisely, (1) is the only conditional independence implied by DAGs d; and dZFEI In contrast, DAG d
includes subgraphs size <— nickname < challenge and size < nickname — language — rank, but no path
nickname — skill — size, which imply two additional conditional independencies:

size 1L challenge | nickname 2)
rank 1l size | nickname, language (©)]

How do we test a DAG’s implied conditional independencies? A simple way uses regression models to
measure the association between allegedly independent variables. Given X L Y | Z, we build a generalized
linear model with X as outcome, and Y and Z as predictorsm we fit the model on the data, and check whether
Y’s fitted parameters are consistently different from zero. If they are, it means that there is a consistent
association between X and Y, which invalidates the conditional independence; in this case, validation fails, as
it seems the data exhibits correlations that should be negligible according to the causal DAG. Conversely, if
Y’s parameters are indistinguishable from zero, validation is successful, in that the data agrees with the causal
DAG on this aspect. In practice, like every statistical analysis, we should not apply this kind of validation
as a strictly binary (yes/no) check, but rather evaluate the parameters’ uncertainty in context and possibly in
comparison with other model coefficients.

[Figure 6|shows the definitions of models mid,, midy, and mids, which test implied conditional independen-
cies (1), @), and (@) respectively. For brevity, we do not discuss choosing suitable priors for these models
but only show the likelihoods. All models introduce a parameter « that captures a population-level mean;
this way, all other parameters are differences over . Model mid; uses a negative binomial probability distri-
bution, since outcome variable language is an integer identifier and its variance is one order of magnitude
bigger than its mean. For similar reasons, model mids also uses a negative binomial distribution. Model mid,
uses instead a normal distribution, since its outcome variable varies on a continuous scale. Then, parameters
Xchallenger Xnickname, AN X janguage are index variables—one for each challenge, nickname, and language—used
as intercepts; parameter f3 is a slope associated with the (logarithm of) a submission’s size.

plots the 50% probability intervalsFE] of parameters «., for each challenge ¢, in model mid; (in
brown color) and in model mid, (in gray color). Only 2% of all 51 coefficients a. are consistently different
from zero in midy; in contrast, 71% of them are in midy. As for mids, coefficient p’s 50% probability interval is
(—1.02, —0.95), which is quite clearly negative. This analysis suggests that:

17Tn our dataset, more than 80% of all participants used the same language in all their Code Jam submissions.

18More precisely, it is the only testable conditional independence: conditional independencies that involve unobserved variables (such
as skill) cannot be tested since they are not available in the data.

PSince X I Y | Z is equivalent to Y 1L X | Z, we could equivalently use Y as outcome, and X and Z as predictors.

20 Analyzing higher probability intervals leads to similar overall conclusions.
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language; ~ NegativeBinomial(A;, ¢) log(size;) ~ Normal(p;,0)
log()\i> = a+ X challengeli] + X nicknameli] Bi= a+ X challengeli] + X nicknameli]

(a) Likelihood of model mid; for testing conditional inde-  (b) Likelihood of model mid, for testing conditional in-
pendence (). dependence (2).

rank; ~ NegativeBinomial(A;, ¢)

log(Ai) =atp- log(sizei) + X nicknameli] + X Janguageli]

(c) Likelihood of model midj for testing conditional inde-
pendence ().

Figure 6: Definitions of regression models mid, midy, and mids for testing the implied conditional indepen-
dencies of DAGs dy, d1, and d>.
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Figure 7: For each Code Jam challenge c, the 50% probability intervals of the estimates of parameters a. in

models mid; (brown, left scale) and mid; (gray, right scale). Intervals that do not include zero are
drawn in a darker color.

1. Variables challenge and language are negligibly associated in mid;; thus, the data confirms the condi-
tional independence (T).

2. Variables challenge and size are consistently associated in midy; thus, the data invalidates the condi-
tional independence (2).

3. Variables size and rank are consistently associated in mids; thus, the data invalidates the conditional
independence (3).

We conclude that DAGs d; and dp, which imply the same conditional independence (I)), pass validation,
whereas DAG d| fails it. Thus, we use DAGs d; or dj as the basis of our causal analysis of the effects of
programming languages.

5.4 Choosing Predictors to Measure Causality

After validating it, a causal DAG can guide the choice of which predictors to include and which to exclude
in a regression model in order to estimate the direct causal effects of one variable on another one. We'll
demonstrate this on DAG d; in[Figure 5 using DAG d; leads to the same conclusions.
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5.4.1 Causal and Non-Causal Paths

A (simple) path on a DAG is a sequence of nodes connected by arrows (ignoring the arrow direction), where
each node appears at most once. There are 14 paths in DAG d; that go from language to rank:

A. language — rank

language — size <— nickname — skill — rank

language — size < nickname — skill < challenge — rank
language — size <— nickname < challenge — rank
language — size < nickname <— challenge — skill — rank
language — size < skill — rank

language — size < skill < challenge — rank

T O m m U 0 ow

language — size < skill <— nickname <— challenge — rank

—~

language <— nickname — size < skill — rank

language <— nickname — size <— skill < challenge — rank
language <— nickname — skill — rank

language <— nickname — skill <— challenge — rank

language < nickname < challenge — rank

z 2~ R -

language <— nickname <— challenge — skill — rank

Since each pair of consecutive nodes in a path are correlated variables, a path from X to Y represents one
contribution to the overall correlation that is observed between X and Y. Some paths correspond to causal
correlations between X and Y; others represent spurious correlations that do not correspond to any causal
effects. For example, dy’s path[A]is clearly causal; in contrast, path [M]is not, since the resulting correlation
between language and rank is due to the effect of challenge on both rank and language: changing challenge
simultaneously affects rank and language, and a spurious correlation emerges. In this scenario, challenge is
called a confounder, as it biases the net causal effect of language on rank. More generally, every path from X
to Y with an arrow entering X is a so-called backdoor path that biases the estimate of the true causal effect of
X onY. In dy, paths|[]through [N]are backdoor paths.

5.4.2 Open and Closed Paths

Our goal is removing all backdoor paths, so that the correlation we observe between X and Y is unbiased—
that is, it is exclusively due to causal effects. Obviously, we cannot do that by simply removing arrows from a
DAG: the arrows are supposed to represent direct causal relations in the process that determined the data we
are analyzing. Instead, we can select which variables (nodes) to include (“control for”) in a regression model
that estimates the correlation between X and Y.

Intuitively, we select variables to use as predictors so as to close all backdoor paths. Closing a path means
that the path’s spurious correlation cancels out in the estimate of the regression model. Consider again
path[M]in d; if we include nickname among the regression variables, the path becomes closed, and it will not
contribute any spurious correlation between language and rank. In fact, including a variable in a regression
model means conditioning on the variable. Conditioning on nickname means that the model can specifically
estimate the correlation of nickname on the other variables, which blocks the spurious correlation between
language and rank otherwise induced by the path through nickname.

Unfortunately, adding variables as predictors may also backfire, as including some variables can open back-
door paths that would otherwise be closed. For example, take path/[l|in dy: as long as we do not include size
among the regression variables, the path remains closed, and it will not contribute any spurious correlation
between language and rank; but conditioning on size “opens the path” by introducing a correlation from
language that goes all the way through the path to rank.

Here is an intuitive explanation of why conditioning on size may bias the estimate of the effect of language
on rank. A submission’s size is affected by its language (some languages are generally more concise [47;

18



38]) and by the participant’s skill (more skilled programmers presumably can produce more concise code).
This implies that there are two main ways for a submission to be concise: either it's written by a skilled
programmer, or it’s written using a concise language. In other words, if we fix a submission’s size, it would
appear as if language and skill correlate: thanks to their higher skill, the better programmers using verbose
languages would still be able to produce submissions of size comparable to those of the worse programmers
(lower skill) using concise languages. This correlation, however, is merely a result of self selection, and does
not reflect any genuine causal relation between skill and IanguageE] On top of this, skill and language both
directly affect rank; therefore, the spurious correlation introduced by conditioning on size conflates these
two effects—ultimately biasing our estimate of the true causal effect of language on rank.

Systematically, a path is open unless it includes a collider: a node Z where both arrows connecting it to the
rest of the path enter it (asin X --- — Z < ---Y). In the previous example of path/[]} size is a collider, which
we should exclude from the regression variables lest backdoor path [[[becomes open.

5.4.3 Adjustment Sets

Finally, we can formulate a general recipe to select which variables to include as regression variables in a
model to estimate the genuine causal effect of X on Y given a DAG capturing the causal relations among
variables [8]. Consider all backdoor paths from X to Y in the DAG; for each open backdoor path, pick a
variable Z within the path such that conditioning on Z would close the path; while doing so, make sure that
you do not select any variable that is also a collider in some closed backdoor path. A set of variables that
satisfy these constraints is called an adjustment set; using them as regression variables would close all open
backdoor paths without opening any closed backdoor paths. Thus, a regression model that conditions on X
as well as on all variables in an adjustment set provides an unbiased estimate of the correlation between X
and Y that is solely due to the causal link between them.

The constraints on which variables to include or exclude from an adjustment set may be unsatisfiable—if
conditioning on a collider is needed to close another backdoor path. Conversely, multiple valid adjustment
sets may exist for the same DAG.

Adding predictors to a regression model is a common practice to address so-called “omitted variable bias”,
which occurs when a causal effect’s estimate is biased because we did not correct for possible confounders.
As we are demonstrating, causal DAGs are useful to rigorously find confounders and filter them out from the
causal estimate. The flip side is that there may also be a risk of “included variable bias”: adding the wrong
predictor to a regression may introduce a confounding effect and spoil the estimate of a causal relation. DAGs
are also useful to detect and address this kind of confounding that occurs when we include variables that
should not be included.

5.4.4 Unbiased Estimation for Code Jam Data

Analyzing the paths from language to rank ins DAG d, indicates two adjustment setsF_TI to accurately
estimate the causal effect of language on rank: A; = {nickname} and A, = {nickname, challenge}. A is the
minimal adjustment set, as conditioning on nickname is required to close any backdoors. A; is an alternative
adjustment set, which indicates that conditioning on challenge is neither needed nor harmful to filter out
spurious association. In contrast, size does not appear in either adjustment sets, which means that we should
not condition on it.

This analysis indicates that models m; and m3 in[Figure 3|are suitable to reliably estimate the causal effect
of language on rank. In contrast, we should not use models m; or my for this: model m; uses only language
as predictor (and none of the adjustment variables), whereas model m4 also uses size as predictor (which
adds a confounding effect). This conclusion holds quite robustly independent of the details of the causal
DAG that we assume; in particular, DAGs d; and even dj have the same adjustment sets as d».

While including challenge as predictor is neutral as far as removing confounding bias is concerned, it may
help improve the precision of the estimate of the effect of language on outcome rank. As a rule of thumb,
adding predictors “close” to the outcome helps reduce variance, since it may filter out the effect of other
unknown dependencies or non-linearities among variables [24]. Since model m3 also outperforms model m;
in terms of predictive accuracy (see[Table T), we will use the former as the basis of our causal analysis.

21Here is an analogous example of selection bias that is perhaps more intuitive to understand [25;58]. An actor’s success is mainly
determined by their acting talent and by their good looks (talent — success < looks). Thus, among successful actors, the more talented
ones will be worse looking, and the less talented ones will be better looking. This inverse relation between talent and looks is spurious
though: an actor’s talent and good looks are presumably independent, but conditioning on success measures a correlation that is simply
a figment of the way in which the data is analyzed.

22There exist several other adjustment sets, but they all include skill, which is unobserved, and hence cannot be used as predictor.
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5.5 Analysis: Programming Language Effects

The qualitative causal analysis based on DAGs indicates that we can use model m, or m3, but should pre-
fer mj3, to estimate the causal effect of language on rank. Equipped with this knowledge, we can revisit
the analysis of [Section 4.3 by inspecting model m3’s 50% highest-posterior density intervals of the distribu-
tion of J; (the difference between language ¢’s contribution and the average language contribution) for each

language /. displays these intervals.

Results: model m3. According to model m3 (which causal analysis identified as the one capturing most
accurately the direct causal effects of languages on Code Jam results), at the 50% probability level:

® C++ is associated with smaller-than-average rank ordinals, that is better contest results;
e Python is associated with larger-than-average rank ordinals, that is worse contest results;

e there is no consistent association for Java, although its 50% interval mostly covers better-than-average
ranks.

Based on this, we can answer the paper’s main RQ under the causal interpretation:

AQ (causal): For experienced participants to the Code Jam contest,
using C++ leads to better contest results,
using Python leads to worse contest results,
and using Java has no consistent effect (but leans towards better results).

The answer to the paper’s RQ has changed completely after shifting our focus on causal effects, as opposed
to purely correlational associations!

5.6 Correlation vs. Causation

The difference between the correlational and causal answers to the question of the relation between program-
ming languages and Code Jam contest results is striking, as they are nearly each other’s mirror image.

The contrast is amplified by other features of the analysis. First, there is a remarkable agreement between
the two “causally consistent” models m, and m3, whose predictions are essentially the opposite of model
my. Second, model m obliterates the other models in terms of predictive capabilities (see [Section 4.2); thus,
there is no reason to use models m3 or my according to purely predictive considerations. Third, even though
the simple model m; happens to agree with models m; and m3’s predictions despite not controlling for con-
founders, it is dead last in [Section 4.2's model comparison; thus, once again, model m, is indisputably the
one to prefer from a purely predictive point of view.

This confirms the intuition that the Code Jam contest is not run as a randomized controlled experiment.
Therefore, not all associations that we observe in the data reflect actual causal effects. If we want to estimate
the latter, as opposed to the former, we have to carefully select which information to include and which to
exclude from our statistical model.

6 The Modest Impact of Languages

How can we explain the striking difference between the correlational and causal analyses of the same Code
Jam data? In other words, how is it possible that adding a single predictor to model m3 leads to nearly
opposite predictions about the relative impact of different programming languages?

In order to shed some light on the matter, we break down model my to compare the relative effect of each
predictor variable it uses. We consider my4 because it is the one that delivers the most reliable predictions
according to the model comparison of [Section 4.2} Furthermore, it includes all available data, so that we can
compare all variables to each other.

The following discussion hinges on which plots the estimates and 50% probability intervals of
the effects of variables nickname, challenge, language, and size in model my. As detailed in the
effects are centered so that we can compare their absolute values on a consistent scale. Then,
and analyze the plot in detail to appreciate the different relative impact of each variable on a
submission’s rank.
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Figure 8: Estimates and 50% probability intervals of the centered effects: J,, for every language ¢; é,,, for every
nickname n; é, for every challenge ¢; and 4(s) for every difference s to mean log(size).

6.1 Centered Effects in Model 14

As shown in[Figure 3a} model 7124’s main term is the sum of four components, each capturing the contribution
of a different predictor among language, nickname, challenge, and size. Just like we did for language in the
main analysis of the paper, we introduce a derived variable ¢, for each nickname, challenge, and size; in a
nutshell, Jy is a centered version of a, which measures the differential contribution of x relative to the average

contribution of other xs in the same group.

EX

bp =y — [|XLE|UXX] for every language ¢ € L
EX

On = 0y — [TIN‘XX] for every nickname n € N
EX

Se = ac— [|x.é|cl¥x] for every challenge ¢ € C

d(s)=pB-s for any value s of log(size

y )

Figure 9: Definitions of centered random variables d,, ,, é., and §(s). E[x] denotes the expected value (mean)
of x; L, N, and C are the sets of all languages, nicknames, and challenges, respectively.

More precisely, consider the definitions in Each 6y, 6, 8¢, and 6(s) is a random variable derived
from one of my’s parameters. For example, for any language ¢ from the set L = {C++,Java, Python} of all
languages, Jy is the difference between a; and the mean (expected value) of all language-specific intercepts
AC++, XJava, AN Apython. Since ay is a random variable, whereas the mean is a constant, Jy is itself a (shifted)
random variable, with its own distribution that we can summarize with the usual statistics (mean, probabil-
ity intervals, and so on). In Bayesian analysis, J,’s distribution is approximated by a collection of posterior
samples, on which we measure the statistics.
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Similarly, 6, is the centered version of &, for any nickname n among all nicknames N in the Code Jam
dataset; and & is the centered version of &, for any challenge c among all challenges C in the dataset. The
definition of 4(s) is analogous but for the slope p in model m4, which multiplies the logarithm of continuous
variable size. Consistently with the other centered variables, we want d(s) to measure difference over the “av-
erage” contribution associated with size; to this end, s ranges over differences x — log(size), where log(size)
is the average (mean) logarithmic size of a submission in the Code Jam dataset. For example, s = 0 denotes a
submission whose logarithmic size is the same as the average submission size.

With these definitions in place, we can plot the estimates, as well as the 50% probability intervals of &,
On, Oc, and 6(s) on the same figure since they all range over the same scale of “differences on top of the
overall population mean”. This also means that we can meaningfully compare the relative contributions of
each term; according to the model’s predictions, those that are larger have a larger overall effect on the rank
of a submission, and hence are the main determinants of the overall results. The resulting plot is shown in

6.2 Comparison of Centered Effects

First, look at the contribution of language, which[Figure § pictures by three colored lines with a shaded band,
one per language ¢, that represent the estimate of §; and the 50% probability interval of that estimate. As
you can see, language’s effects span a narrow range, roughly centered around zero, and visibly overlap. This
means that the overall impact, on the predicted results, of using one or the other programming language is
modest and hardly definitive. The range between the upper endpoint of Java’s 50% probability interval and
the lower endpoint of Python’s is just 1.26; this translates to exp(1.26) ~ 3.5 on rank’s outcome scale which
means that using one language over another is usually associated with only a few position’s differences in
rank.

Now, look at the contribution of nickname, which [Figure 8| pictures as black dots and intervals (for mean
and 50% probability interval of the estimate); for readability, all values n of nickname are sorted by decreasing
values of 6, and given a progressive numerical identifier (on the bottom horizontal axis). As you can see,
nickname’s effects span a wider range than the language ones: the difference between the upper endpoint of
the leftmost interval and the lower endpoint of the rightmost interval is 3.1, or 22.4 on the outcome scale. This
value is one order of magnitude larger than the corresponding value for language; thus, the overall difference
in contributions between different participants is more conspicuous and consequential. In other words, if we
fix a participant and change the languagg”*| they use from Python to Java, we still can only expect a modest
change in rank; but if we let the best and worst participant use even the least effective language, their results
in the contest will remain substantially different.

We now repeat the analysis for challenge, whose contribution [Figure 8| pictures as gray dots and intervals
(for mean and 50% probability interval of the estimate); as for nickname, all values c of challenge are sorted
by decreasing values of J. and given a progressive numerical identifier (on the bottom horizontal axis). The
intervals associated with the different challenges span a wider range yet: the difference between the upper
endpoint of the leftmost interval and the lower endpoint of the rightmost interval is 5.0, or 153.2 on the
outcome scale.

Finally, the pink line in[Figure 8 diagrams the function y = 6(x), where x measures a difference between a
submission’s logarithmic size and the mean logarithmic size of submissions to Code Jam. Around the line is a
shaded ribbon, corresponding to the 50% probability interval of the estimate of 8; the ribbon is barely visible
because it is narrow, as there is little uncertainty in the estimate. The horizontal range on the top horizontal
axis spans the actual range of differences to mean logarithmic size that we observed in the Code Jam dataset.
Within this range, size’s effects on rank are the biggest yet: the difference between the vertical coordinates
of the top-left and bottom-right ends of the pink line is 6.6, or 752.7 on the outcome scale. In part, the large
effect attributed to size is a result of measuring the logarithm of a submission’s size. A submission that is
larger than another submission by s units on this scale is actually exp(s) larger in bytes; thus, the effects of
size emerge only when we observe substantial differences in actual size.

The relatively large effect of size also demonstrates a spurious (i.e., non-causal) correlation: clearly, a sub-
mission’s size cannot be a direct cause of the submission’s rank, since Code Jam rules do not take size into
account. Similarly, if we take a poorly-ranked submission and artificially increase its size (for example, by
adding dead code), its rank won’t improve. Therefore, size is an effective predictor (probably because it

23Taking the exponential inverts the logarithmic link function of model 11,’s linear relation.
24This is a statistical prediction of the model; in reality, not all participants may be fluent in different languages or comfortable
switching.
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INDEX YEARS ROUNDS DATAPOINTS PARTICIPANTS

1 7 6 721 27
2 6 6 960 39
3 5 6 1230 53
4 4 6 1564 75
5 3 6 1807 95
6 2 6 1896 105
7 1 6 2010 124
8 7 5 2762 115
9 7 4 4889 221
10 6 5 5106 233
11 7 3 5707 272
12 7 1 5776 279
13 7 2 5776 279
14 5 5 7359 366
15 4 5 9667 536
16 6 4 11242 576
17 3 5 11814 739
18 2 5 13478 957
19 6 3 13652 749
20 6 2 13 884 775
21 6 1 13908 779

Table 3: Different way of selecting the Code Jam data: each row identifies a dataset with DATAPOINTS about
submissions made by a number of PARTICIPANTS. These are the participants who entered at least
YEARS yearly edition of the Code Jam contest, at least ROUNDS consecutive rounds in any one year,
and who used the C++, Java, or Python programming languages. The rows are sorted by number
of datapoints and numbered with an ordinal INDEX of size. The paper’s main analyses target the
dataset with INDEX 6.

serves as a proxy for the expected effort required to meet a submission’s requirements), but does not imme-
diately suggest any practical strategy to improve success at Code Jam contests.

6.3 Language vs. Other Effects

Remember that model 4 makes better predictions than the other models. Thus, the above analysis suggests
that knowing a submission’s language sways only modestly the prediction of the submission’s rank. In
contrast, knowing who wrote the submission (nickname), how large the submission is (size), and which
specific challenge the submission is for, all affect predictions more strongly.

In fact, this is not a feature of model m, specifically: a plot similar to the one inbut for mgﬁ] would
look very similar—except for the absence of size, which is not used in mz—and confirm that the language-
specific effect is modest compared to the other predictors’ effects.

One takeaway message is simply that programming language effects—whatever they are—are modest com-
pared to others. Thus, they may be tricky to detect reliably, as they are easily confounded by other dominant
factors. As we discuss in this observation is consistent with several other empirical studies in-
vestigating the impact of programming languages. Another way of looking at this is that, since the effects
of programming languages are easily confounded, it is very hard for an empirical study to collect all the
necessary data in an accurate enough way; in other words, studies are easily underpowered [19].

How do these findings relate to the main focus of the paper—demonstrating how causal analysis tech-
niques can help improve how we answer software engineering questions empirically? In a way, this section’s
analysis helps validate the causal analysis, in that it confirms that the impact of programming languages is
limited in our (as in other studies’) data, and hence not taking causality into account can easily distort their
actual effects. Conversely, explicitly considering and modeling causal effects was instrumental in obtaining
a precise understanding of the role of programming languages and their relations to other factors.

7 Robustness and Threats to Validity
Before discussing (in [Section 7.2) any threats to the validity of our results, we outline (in [Section 7.I) some

additional analysis that we performed to understand the robustness and generalizability of our main results.

25This plot is available in the replication package.
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Figure 10: For each language ¢, in each model my, my, m3, my, the 50% highest posterior density intervals of
the distribution of J, as we select larger datasets from all Code Jam data. The “dataset size index”
corresponds to column INDEX in the larger, the more participants and datapoints are
included in the dataset. The dotted lines mark the dataset used in the main paper analyses.

7.1 Analysis Robustness

In[Section 3.3| we explained how we selected a subset of all available Code Jam data to compile a dataset that
is of reasonable size (neither unrealistically small nor impractically large) and captures the performance of
experienced participants (as opposed to any casual participants). To this end, we only considered data of pro-
grammers who: i) took part in at least two yearly editions of Code Jam; ii) in any one edition, entered at least
six rounds. In addition, we only considered submissions using the most popular programming languages
C++, Java, and Python. Do the main results of our analysis change if we select a subset of data differently?

To answer this question, we consider different subsets of the Code Jam data built as follows. A pair Y, R
identifies the subset of the Code Jam data including all submissions using languages C++, Java, and Python by
programmers who: i) took part in at least Y yearly editions of Code Jam; ii) in any one edition, entered at least
R rounds. lists 21 datasets, each corresponding to a pair Y, R = YEARS, ROUNDS—where 1 < Y <7
(since our data spans 7 editions of Code Jam) and 1 < R < 6 (since no edition has more than 6 rounds). More
precisely, enumerates the first 21 datasets in increasing order of size (column DATAPOINTS). We use
column INDEX to identify each dataset according to its size; the paper’s main analysis thus corresponds to
the dataset with index 6.

We fitted our four models on each of these 21 datasets. pictures the 50% probability intervals
of the language-specific §;. While the intervals change in size and position relative to zero as we include
more submissions, the high-level picture remains generally consistent. In particular, in the “causal” models
my, my, m3, C++ and Java are usually associated with negative J;, (better-than-average ranks), whereas Python
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ANALYTICS SMELL DISCUSSED IN ADDRESSED IN

Using deprecated data 7.2.1 7.1
Not interesting 7.2.1 2.3
Not exploring simplicity 7.2.2
Assumptions in statistical analysis 7.2.2
p < 0.05 and all that! 7.2.2
Not exploring stability 7.2.3 7.1
Inadequate reporting 7.2.4 [15]
No data visualization 7.2.4 @ ’ZT%
Not using related work 7.2.4 2

Table 4: A summary of the analytics smells [35] relevant for the paper. For each SMELL, the subsection where
it is DISCUSSED, and the section(s) or reference where it is ADDRESSED.

is usually associated with positive J, (worse-than-average ranks); the situation is opposite in model 114, where
Python is usually associated with negative J,, Java is usually associated with positive ;, and C++ usually
has no consistent associations.

There are a few exceptions to these trends: with the smallest datasets, there is more uncertainty (i.e., the
intervals are wider) because fewer data is used to fit the models; with the largest datasets, some associa-
tions shift because more heterogeneous participants are included. However, by and large, the contrast in
predictions between models 11, my, m3 and, on the other hand, model m4 remains.

Similarly to[Section 6fs analysis, this section’s robustness analysis further validates the causal analysis by
confirming that its results are not merely a product of how the data was selected. While we provided a
justification for selecting the original dataset—based on the intuitive notion of “experienced” participant—
ours was the first detailed analysis of Code Jam data, and hence validating our data selection process was
important. In contrast, other studies, targeting more widely used and accepted curated datasets, may forgo
such an exploration of the analysis robustness without losing much in terms of generalizability.

7.2 Threats to Validity and Analytics Smells

We scrutinize several aspects of the paper’s analysis, and connect them both to the traditional “threats to va-
lidity” categories (internal, external, construct, and conclusion) and to Menzies and Shepperd’s “Bad smells”
in analytics [35]. gives an overview of the analytics smells that are covered in this section.

7.2.1 Data

The operationalizations in the Code Jam data are generally straightforward, as they consist of standard at-
tributes (participant’s nickname, size, and so on) that should be unproblematic to obtain. In particular, vari-
able rank is computed automatically by the Code Jam organizers according to predefined rules.

Determining a submission’s programming language may be tricky in general, but should not be an issue
for Code Jam data, since ranking a submission requires to run it on the contest’s predefined environment, and
hence it must use one of the available language compilers. Besides, we only used the three most widely used
programming languages, which helps avoid odd corner cases.

We mostly used the data as is, except for aggregating multiple submissions by participant in a round,
and for taking the logarithm of the size. The former is consistent with how the rank is determined by all
participant submissions; the latter is customary when a quantity spans several order of magnitude.

The above observations indicate how threats to construct validity are mitigated.

We could not use all available Code Jam data both because it is impractically too much, and because it is too
heterogeneous in terms of participants’ skills. [Section 3|explains how we aimed for a reasonable selection that
should be representative of “experienced” participants; but we also performed additional analysis on larger
and smaller data selections to investigate robustness of the main results (Section 7.1). While this selection
might somewhat restrict the validity of our results to a certain category of participants, it certainly helps
address bad smell “using deprecated data”, as well as threats to internal validity. The latter, in particular, has to
do with whether the paper’s statistical analysis is capable of identifying cause-effect relations by addressing
biases and confounding effects; this is the crux of the paper’s contributions.
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The advantages brought by using different programming languages is a popular question for both re-
searchers and practitioners (see|Section 2.3); thus, the bad smell “not interesting” is not a risk for our research.

7.2.2 Modeling

Statistical modeling in the paper is based on widely used generalized regression models, starting
from a minimal model m; and extending it with other predictors that are available in the data. We then
argued—Dbased on statistical model comparison techniques, as well as on causal analysis considerations—
about the advantages and disadvantages of each model over the others. This process helps avoid the bad
smell “not exploring simplicity.”

Conversely, no analysis can be truly exhaustive and consider all possible models—nor can it claim that the
models that it considered are definitive. Thus, it is always possible that more refined, complex, or extended
models may reveal more nuanced trends in the data. As we briefly mentioned earlier in the paper, the repli-
cation package includes two more complex variants of model m3, which however do not lead to qualitatively
different conclusions about the impact of languages in Code Jam. As we have seen in the causal
models we consider in the paper are also somewhat robust, in that adding or removing some assumed causal
links does not affect the model’s implications.

As we argued in previous work [13} 59], using Bayesian modeling techniques offers distinct advantages
over the frequentist approaches that were dominant in the past. One of them is that there exist flexible valida-
tion techniques [14]; these techniques buttress the choice of statistical models by helping detect flawed models
that are unsuitable to capture the analyzed data, as well as other problems related to unwarranted statistical
“assumptions” (another bad smell [35]]). For brevity, we did not discuss in detail the validation process in the
paper, but the replication package documents how we followed it scrupulously, so as to mitigate any threats
to conclusion validity.

Using Bayesian data analysis techniques also simplifies moving away from dichotomous (binary) views of
“statistical significance”, whose skewing effects and questionable theoretical justifications have been repeat-
edly criticized [10;/56;20;(62;[16; 34;2; 5] (also as the related bad smell “p < 0.05 and all that!”).

7.2.3 Analysis

We observed how the main object of our analysis—the effect of programming languages—is elusive as any
programming-specific effects tend to me small in comparison to other factors. This necessarily limits any
strong claims of generalizability—which is what external validity is mostly concerned with.

We took some measures to mitigate these issues as best as possible. First, we mainly focused on 50%
probability intervals instead of the stricter 95% that are customarily used. This is a way of avoiding ending
up with a greatly underpowered study (another bad smell of [35]). Second, we explored how the results change
as we change the subset of Code Jam data that we analyze (Section 7.T), which is also a way of exploring
robustness/stability (avoiding bad smell “not exploring stability”).

Finally, the replication package includes further analyses of sensitivity and using more complex multi-level
models [18], which we do not present here for brevity. The sensitivity analysis confirms the modest relative
effect of the programming language. The analysis results of using more complex models corroborate those
obtained by using the paper’s plain regression models—which provides a further form of validation.

7.2.4 Other Issues

Providing a detailed replication package adheres to the best practices, and avoids the bad smell “inadequate
reporting”. The replication package uses data visualization extensively, and so does the paper (addressing
bad smell “no data visualization”).

As we discuss in[Section 2| there is very little work on causal analysis for software engineering data; thus,
this paper avoids the bad smell “not using related work”.

8 Discussion and Conclusions

As a concluding discussion, let’s review some of the high-level lessons that emerged from this paper’s case
study.
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Small means small. Regardless of the specific causal relations, our analysis confirms the observation, made
by several other empirical studies (see [Section 2), that the effects of using different programming languages
tend to be small—especially relative to those of other variables. When effects are small, the robustness of any
findings is necessarily lessened. However, causal analysis can still help to isolate general interactions whose
overall impact may become more prominent in other scenarios; in other words, thinking causally can still
improve external validity.

When associations are enough. If your exclusive or primary goal is making accurate predictions, a purely
correlational model may be sufficient; in fact, it may even outperform a causally consistent model. For ex-
ample, if you just want to predict the winner of the next Google Code Jam contest, you're probably better off
basing your predictions on model 4 (or an even more sophisticated model). Nevertheless, even in such situ-
ations, thinking about causality can still be useful as a sanity check and as a safeguard against misinterpreting
or overgeneralizing your analysis results.

Bayesian models remain more flexible. As we repeatedly observed in the paper, the high-level results our
analysis—in particular, the contrast between causal and non-causal statistical models—are largely indepen-
dent of whether we deploy Bayesian or frequentist statistics. More generally, a lot of the causal modeling
techniques we discussed in the paper can be applied to frequentist models as well. Nevertheless, we main-
tain that Bayesian statistics are preferable [13], as they are flexible and natural to interpret. For example,
performing [Section 6fs analysis on a frequentist model would be cumbersome (but still possible), whereas it
was straightforward on the full posterior probability distribution that Bayesian models provide.

Correlation vs. causation, again. Thinking about causal relations is not the endgame of empirical data
analysis. First, we already noted that there are scenarios in which predictive accuracy takes precedence.
Second, causal and predictive models need not disagree—in fact, they are often consistent [52]. Third, the
hypothesis underlying a causal model may need their own validation by other means, and may change as
the data generating process changes or is better understood. It remains that, if we do not take causal relations
into account, we may miss (important) parts of the picture. Conversely, thinking about causality prods us into
looking at the data from a fresh perspective, rigorously thinking about confounding factors, and ultimately
interpreting any potential findings in a more sound way.
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