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Abstract—Statistics comes in two main flavors: frequentist and
Bayesian. For historical and technical reasons, frequentist statistics
have traditionally dominated empirical data analysis, and certainly re-
main prevalent in empirical software engineering. This situation is
unfortunate because frequentist statistics suffer from a number of
shortcomings—such as lack of flexibility and results that are unintuitive
and hard to interpret—that curtail their effectiveness when dealing with
the heterogeneous data that is increasingly available for empirical anal-
ysis of software engineering practice.

In this paper, we pinpoint these shortcomings, and present Bayesian
data analysis techniques that provide tangible benefits—as they can
provide clearer results that are simultaneously robust and nuanced.
After a short, high-level introduction to the basic tools of Bayesian
statistics, we present the reanalysis of two empirical studies on the
effectiveness of automatically generated tests and the performance of
programming languages. By contrasting the original frequentist anal-
yses with our new Bayesian analyses, we demonstrate the concrete
advantages of the latter. To conclude we advocate a more prominent
role for Bayesian statistical techniques in empirical software engineering
research and practice.

Index Terms—Bayesian data analysis, statistical analysis, statistical
hypothesis testing, empirical software engineering.

1 INTRODUCTION

Compared to other fields such as the social sciences, empir-
ical software engineering has been using standard statistical
practices for a relatively short period of time [42]. In light of
the replication crisis mounting in several of the more estab-
lished research fields [77], empirical software engineering’s
relative statistical immaturity can actually be an opportunity
to embrace more powerful and flexible statistical methods—
which can elevate the impact of the whole field and the
solidity of its research findings.

In this paper, we focus on the difference between so-
called frequentist and Bayesian statistics. For historical and
technical reasons [26], [30], [80], frequentist statistics are the
most widely used, and the customary choice in empirical
software engineering (see Sect. 1.1) as in other experimen-
tal research areas. In recent years, many statisticians have
repeatedly pointed out [22], [49] that frequentist statistics
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suffer from a number of shortcomings, which limit their
scope of applicability and usefulness in practice, and may
even lead to drawing flat-out unsound conclusions in cer-
tain contexts. In particular, the widely popular techniques
for null hypothesis statistical testing—based on computing
the infamous p-values—have been de facto deprecated [7],
[41], but are still routinely used by researchers who simply
lack practical alternatives: techniques that are rigorous yet
do not require a wide statistical know-how, and are fully
supported by easy-to-use flexible analysis tools.

Bayesian statistics has the potential to replace frequentist
statistics, addressing most of the latter’s intrinsic short-
comings, and supporting detailed and rigorous statistical
analysis of a wide variety of empirical data. To illustrate the
effectiveness of Bayesian statistics in practice, we present
two reanalyses of previous work in empirical software en-
gineering. In each reanalysis, we first describe the original
data; then, we replicate the findings using the same frequen-
tist techniques used in the original paper; after pointing
out the blind spots of the frequentist analysis, we finally
perform an internal replication [17] that analyzes the same
data using Bayesian techniques—leading to outcomes that
are clearer and more robust. The bottom line of our work
is not that frequentist statistics are intrinsically unreliable—
in fact, if properly applied in some conditions, they might
lead to results that are close to those brought by Bayesian
statistics [94]—but that they are generally less intuitive,
depend on subtle assumptions, and are thus easier to misuse
(despite looking simple superficially).

Our first reanalysis, presented in Sect. 3, targets data
about debugging using manually-written vs. automatically-
generated tests. The frequentist analysis by Ceccato et
al. [18] is based on (frequentist) linear regression, and is
generally sound and insightful. However, since it relies on
frequentist statistics to assess statistical significance, it is
hard to consistently map some of its findings to practical
significance and, more generally, to interpret the statistics in
the quantitative terms of the application domain. By simply
switching to Bayesian linear regression, we show many of
these issues can be satisfactorily addressed: Bayesian statis-
tics estimate actual probability distributions of the measured
data, based on which one can readily assess practical sig-
nificance and even build a prediction model to be used for
estimating the outcome of similar experiments, which can
be fine-tuned with any new experimental data.

The second reanalysis, presented in Sect. 4, targets
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data about the performance of different programming lan-
guages implementing algorithms in the Rosetta Code repos-
itory [83]. The frequentist analysis by Nanz and Furia [71]
is based on a combination of null hypothesis testing and
effect sizes, which establishes several interesting results—
but leads to inconclusive or counterintuitive outcomes in
some of the language comparisons: applying frequentist
statistics sometimes seems to reflect idiosyncrasies of the
experimental data rather than intrinsic differences between
languages. By performing full-fledged Bayesian modeling,
we infer a more coherent picture of the performance dif-
ferences between programming languages: besides the ad-
vantage of having actual estimates of average speedup of
one language or another, we can quantitatively analyze the
robustness of the analysis results, and point out what can be
improved by collecting additional data in new experiments.

Contributions. This paper makes the following contri-
butions:
• a discussion of the shortcomings of the most common

frequentist statistic techniques often used in empirical
software engineering;

• a high-level introduction to Bayesian analysis;
• detailed analyses of two case studies [18], [71] from

empirical software engineering, discussing how the
limitations of frequentist statistics weaken clarity and
generality of the results, while Bayesian statistics make
for robust and rich analyses.

Prerequisites. This paper only requires a basic famil-
iarity with the fundamental notions of probability theory.
Then, Sect. 2 introduces the basic principles of Bayesian
statistics (including a concise presentation of Bayes’ the-
orem), and illustrates how frequentist techniques such as
statistical hypothesis testing work and the shortcoming they
possess. Our aim is that our presentation be accessible to a
majority of empirical software engineering researchers.

Scope. This paper’s main goal is demonstrating the
shortcomings of commonly used frequentist techniques, and
to show how Bayesian statistics could be a better choice for
data analysis. This paper is not meant to be:

1) A tutorial on applying Bayesian statistic tools; we refer
readers to textbooks [37], [57], [62] for such step-by-step
introductions.

2) A philosophical comparison of frequentist vs. Bayesian
interpretation of statistics.

3) A criticism of the two papers (Ceccato et al. [18] and
Nanz and Furia [71]) whose frequentist analyses we
peruse in Sect. 3 and Sect. 4. We chose those papers
because they carefully apply generally accepted best
practices, in order to demonstrate that, even when
applied properly, frequentist statistics have limitations
and bring results that can be practically hard to inter-
pret.

Availability. All machine-readable data and analysis
scripts used in this paper’s analyses are available online at

https://bitbucket.org/caf/bda-in-ese

1.1 Related Work

Empirical research in software engineering. Statistical
analysis of empirical data has become commonplace in

software engineering research [4], [42], [99], and it is even
making its way into software development practices [54].

As we discuss below, the overwhelming majority of
statistical techniques that are being used in software engi-
neering empirical research are, however, of the frequentist
kind, with Bayesian statistics hardly even mentioned.

Of course, Bayesian statistics is a fundamental com-
ponent of many machine learning techniques [8], [46]; as
such, it is used in software engineering research indirectly
whenever machine learning is used. In this paper, however,
we are concerned with the direct usage of statistics to
analyze empirical data from the scientific perspective—a
pursuit that seems mainly confined to frequentist techniques
in software engineering [42]. As we argue in the rest of the
paper, this is a lost opportunity because Bayesian techniques
do not suffer from several limitations of frequentist ones,
and can support rich, robust analyses in several situations.

Bayesian analysis in software engineering? To validate
the impression that Bayesian statistics are not normally used
in empirical software engineering, we carried out a small
literature review of ICSE papers.1 We selected all papers
from the main research track of the latest six editions of
the International Conference on Software Engineering (ICSE
2013 to ICSE 2018) that mention “empirical” in their title
or in their section’s name in the proceedings. This gave 25
papers, from which we discarded one [90] that turned out
not to be an empirical study. The experimental data in the
remaining 24 papers come from various sources: the output
of analyzers and other tools [19], [20], [21], [69], [76], the
mining of repositories of software and other artifacts [15],
[59], [61], [84], [102], [103], the outcome of controlled experi-
ments involving human subjects [75], [93], [100], interviews
and surveys [6], [9], [26], [53], [55], [60], [79], [86], and a
literature review [88].

As one would expect from a top-tier venue like ICSE,
the 24 papers follow recommended practices in reporting
and analyzing data, using significance testing (6 papers),
effect sizes (5 papers), correlation coefficients (5 papers),
frequentist regression (2 papers), and visualization in charts
or tables (23 papers). None of the papers, however, uses
Bayesian statistics. In fact, no paper but two [26], [102]
even mentions the terms “Bayes” or “Bayesian”. One of
the exceptions [102] only cites Bayesian machine-learning
techniques used in related work to which it compares. The
other exception [26] includes a presentation of the two views
of frequentist and Bayesian statistics—with a critique of p-
values similar to the one we make in Sect. 2.2—but does
not show how the latter can be used in practice. The aim
of [26] is investigating the relationship between empirical
findings in software engineering and the actual beliefs of
programmers about the same topics. To this end, it is
based on a survey of programmers whose responses are
analyzed using frequentist statistics; Bayesian statistics is
mentioned to frame the discussion about the relationship
between evidence and beliefs, but does not feature past
the introductory second section. Our paper has a more
direct aim: to concretely show how Bayesian analysis can
be applied in practice in empirical software engineering

1. [86] has a much more extensive literature survey of empirical
publications in software engineering.

https://bitbucket.org/caf/bda-in-ese
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research, as an alternative to frequentist statistics; thus, its
scope is complementary to [26]’s.

As additional validation based on a more specialized
venue for empirical software engineering, we also inspected
all 105 papers published in Springer’s Empirical Software
Engineering (EMSE) journal during the year 2018. Only
22 papers mention the word “Bayes”: 17 of them refer to
Bayesian machine learning classifiers (such as naive Bayes
or Bayesian networks); 2 of them discuss Bayesian optimiza-
tion algorithms for machine learning (such as latent Dirich-
let allocation word models); 3 of them mention “Bayes” only
in the title of some bibliography entries. None of them use
Bayesian statistics as a replacement of classic frequentist
data analysis techniques.

More generally, we are not aware of any direct ap-
plication of Bayesian data analysis to empirical software
engineering data with the exception of [31], [32] and [29].
The technical report [31] and its short summary [32] are
our preliminary investigations along the lines of the present
paper. Ernst [29] presents a conceptual replication of an
existing study to argue the analytical effectiveness of multi-
level Bayesian models.

Criticism of the p-value. Statistical hypothesis testing—
and its summary outcome, the p-value—has been custom-
ary in experimental science for many decades, both for
the influence [80] of its proponents Fisher, Neyman, and
Pearson, and because it offers straightforward, ready-made
procedures that are computationally simple2. More recently,
criticism of frequentist hypothesis testing has been voiced in
many experimental sciences, such as psychology [22], [87]
and medicine [44], that used to rely on it heavily, as well
as in statistics research itself [36], [97], [98]. The criticism,
which we articulate in Sect. 2.2, concludes that p-value-
based hypothesis testing should be abandoned [2], [63].3

There has been no similar explicit criticism of p-values in
software engineering research, and in fact statistical hypoth-
esis testing is still regularly used [42].

Guidelines for using statistics. Best practices of using
statistics in empirical software engineering are described
in books [65], [99] and articles [4], [51]. Given their focus
on frequentist statistics,4 they all are complementary to the
present paper, whose main goal is showing how Bayesian
techniques can add to, or replace, frequentist ones, and how
they can be applied in practice.

2 AN OVERVIEW OF BAYESIAN STATISTICS

Statistics provides models of events, such as the output
of a randomized algorithm; the probability function P as-
signs probabilities—values in the real unit interval [0, 1],
or equivalently percentages in [0, 100]—to events. Often,
events are the values taken by random variables that follow a
certain probability distribution. For example, if X is a random

2. With modern computational techniques it is much less important
whether statistical methods are computationally simple; we have CPU
power to spare—especially if we can trade it for stronger scientific
results.

3. Even statisticians who still accept null-hypothesis testing recognize
the need to change the way it is normally used [11].

4. [4], [51], [99] do not mention Bayesian techniques; [5] mentions
their existence only to declare they are out of scope; one chapter [10]
of [65] outlines Bayesian networks as a machine learning technique.

variable modeling the throwing of a six-face dice, it means
that P[x] = 1/6 for x ∈ [1..6], and P[x] = 0 for x 6∈ [1..6]—
where P[x] is a shorthand for P[X = x], and [m..n] is the set
of integers between m and n.

The probability of variables over discrete domains is
described by probability mass functions (p.m.f. for short);
their counterparts over continuous domains are probability
density functions (p.d.f.), whose integrals give probabili-
ties. The following presentation mostly refers to continuous
domains and p.d.f., although notions apply to discrete-
domain variables as well with a few technical differences.
For convenience, we may denote a distribution and its p.d.f.
with the same symbol; for example, random variable X has
a p.d.f. also denoted X, such that X[x] = P[x] = P[X = x].

Conditional probability. The conditional probability
P[h | d] is the probability of h given that d has occurred.
For example, d may represent the empirical data that has
been observed, and h is a hypothesis that is being tested.

Consider a static analyzer that outputs > (resp. ⊥) to
indicate that the input program never overflows (resp. may
overflow); P[OK | >] is the probability that, when the
algorithm outputs >, the input program is indeed free from
overflows—the data is the output “>” and the hypothesis is
“the input does not overflow”.

2.1 Bayes’ Theorem
Bayes’ theorem connects the conditional probabilities
P[h | d] (the probability that the hypothesis is correct given
the experimental data) and P[d | h] (the probability that we
would see this experimental data given that the hypothesis
actually was true). The famous theorem states that

P[h | d] =
P[d | h] ·P[h]

P[d]
. (1)

Here is an example of applying Bayes’ theorem.

Example 2.1. Suppose that the static analyzer gives true
positives and true negatives with high probability (P[> |
OK] = P[⊥ | ERR] = 0.99), and that many programs are
affected by some overflow errors (P[OK] = 0.01). When-
ever the analyzer outputs >, what is the chance that the
input is indeed free from overflows? Using Bayes’ theo-
rem, P[OK | >] = (P[> | OK] · P[OK])/P[>] = (P[> |
OK] · P[OK])/(P[> | OK] · P[OK] + P[> | ERR]P[ERR]) =
(0.99 · 0.01)/(0.99 · 0.01+ 0.01 · 0.99) = 0.5, we conclude that
we can have a mere 50% confidence in the analyzer’s output.

Priors, likelihoods, and posteriors. In Bayesian analy-
sis [28], each factor of (1) has a special name:

1) P[h] is the prior—the probability of the hypothesis h
before having considered the data—written π[h];

2) P[d | h] is the likelihood of the data d under hypothesis
h—written L[d; h];

3) P[d] is the normalizing constant;
4) and P[h | d] is the posterior—the probability of the

hypothesis h after taking data d into account—written
Pd[h].

With this terminology, we can state Bayes’ theorem (1) as
“the posterior is proportional to the likelihood times the prior”,
that is,

P[h | d] ∝ P[d | h]×P[h] , (2)
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and hence we update the prior to get the posterior.
The only role of the normalizing constant is ensuring

that the posterior defines a correct probability distribution
when evaluated over all hypotheses. In most cases we
deal with hypotheses h ∈ H that are mutually exclusive
and exhaustive; then, the normalizing constant is simply
P[d] =

∫
h∈H P[d | h]P[h]dh, which can be computed from

the rest of the information. Thus, it normally suffices to
define likelihoods that are proportional to a probability, and
rely on the update rule to normalize them and get a proper
probability distribution as posterior.

2.2 Frequentist vs. Bayesian Statistics
Despite being a simple result about an elementary fact in
probability, Bayes’ theorem has significant implications for
statistical reasoning. We do not discuss the philosophical
differences between how frequentist and Bayesian statistics
interpret their results [23]. Instead, we focus on describ-
ing how some features of Bayesian statistics support new
ways of analyzing data. We start by criticizing statistical
hypothesis testing since it is a customary technique in
frequentist statistics that is widely applied in empirical
software engineering research, and suggest how Bayesian
techniques could provide more reliable analyses. For a sys-
tematic presentation of Bayesian statistics see Kruschke [57],
McElreath [62], and Gelman et al. [37].

2.2.1 Hypothesis Testing vs. Model Comparison
A primary goal of experimental science is validating models
of behavior based on empirical data. This often takes the
form of choosing between alternative hypotheses, such as,
in the software engineering context, deciding whether au-
tomatically generated tests support debugging better than
manually written tests (Sect. 3), or whether a programming
language is faster than another (Sect. 4).

Hypothesis testing is the customary framework offered by
frequentist statistics to choose between hypotheses. In the
classical setting, a null hypothesis H0 corresponds to “no
significant difference” between two treatments A and B (such
as two static analysis algorithms whose effectiveness we
want to compare); an alternative hypothesis H1 is the null
hypothesis’s negation, which corresponds to a significant
difference between applying A and applying B. A null
hypothesis significance test [5], such as the t-test or the U-test,
is a procedure that takes as input a combination D∗ of two
datasets DA and DB, respectively recording the outcome of
applying A and B, and outputs a probability called the p-
value.

The p-value is the probability, under the null hypoth-
esis, of observing data at least as extreme as the ones
that were actually observed. Namely, it is the probability
P[D ≥ D∗ | H0]

5 of drawing data D that is equal to the
observed data D∗ or more “extreme”, conditional on the
null hypothesis H0 holding. As shown visually in Fig. 1,
data is expected to follow a certain distribution under the
null hypothesis (the actual distribution depends on the
statistical test that is used); the p-value measures the tail

5. Depending on the nature of the data, the p-value may also be
defined as a left-tail event P[D ≤ D∗ | H0] or as a 2-tailed event
2 ·min (P[D ≤ D∗ | H0], P[D ≥ D∗ | H0]).

D∗

probability
density

Fig. 1: The p-value is the probability, under the null hypoth-
esis, of drawing data that is at least as extreme as the ob-
served data D∗. Graphically, the p-value is the shaded area
under the curve, which models the probability distribution
under the null hypothesis.

probability of drawing data equal to the observed D∗ or
more unlikely than it—in other words, how far the observed
data is from the most likely observations under the null
hypothesis. If the p-value is sufficiently small—typically
p ≤ 0.05 or p ≤ 0.01—it means that the null hypothesis
is an unlikely explanation of the observed data. Thus, one
rejects the null hypothesis, which corresponds to leaning
towards preferring the alternative hypothesis H1 over H0:
in this case, we have increased our confidence that A and B
differ.

Unfortunately, this widely used approach to testing hy-
potheses suffers from serious shortcomings [22], which have
prompted calls to seriously reconsider how it’s used as a
statistical practice [11], [97], or even to abandon it alto-
gether [2], [63]. The most glaring problem is that, in order
to decide whether H0 is a plausible explanation of the data,
we would need the conditional probability P[H0 | D ≥ D∗]
of the hypothesis given the data, not the p-value P[D ≥
D∗ | H0]. The two conditional probabilities are related by
Bayes’ theorem (1), but knowing only P[D ≥ D∗ | H0] is not
enough to determine P[H0 | D ≥ D∗];6 in fact, Sect. 2.1’s
example of the static analyzer (Ex. 2.1) showed a case where
one conditional probability is 99% while the other is only
50%.

Rejecting the null hypothesis in response to a small p-
value looks like a sound inference, but in reality it is not,
because it follows an unsound probabilistic extension of a
reasoning rule that is perfectly sound in Boolean logic. The
sound rule is modus tollens:

if X implies that Y is false
and we observe Y

then X is false

X −→ ¬Y Y
¬X (3)

For example, if X means “a person lives in Switzerland” and
Y means “a person is the King of Sweden”, if we observe a
person that is the Swedish king we can conclude that he
does not live in Switzerland. The probabilistic extension of
modus tollens, which is unsound, is:

if X implies that Y is probably false
(equivalently: Y is improbably true)

and we observe Y
then X is probably false

P[Y | X] < ε Y
P[X] < ε

(4)

6. Assuming that they are equal is the “confusion of the inverse” [24].
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To see that rule (4) is unsound let’s consider the case where
Y means “a person is the Queen of England” and X means
“a person lives in London”. Clearly, P[Y | X] is small
because only one person out of million Londoners is indeed
the Queen of England. However, if the observed Y happens
to be the Queen of England, we would be wrong to infer
that she’s unlikely to live in London; indeed, the sound
conclusion is that she definitely lives in London. Whenever
we reject X = H0 after observing Y = D following a
calculation that P[Y | X] = p is small, we are applying
this unsound rule.

This unsound inference is not the only issue with using
p-values. Methodological problems come from how hypoth-
esis testing pits the null hypothesis against the alterna-
tive hypothesis: as the number of observations grows, it
becomes increasingly likely that some effect is detectable
(or, equivalently, it becomes increasingly unlikely that no
effects are), which leads to rejecting the null hypothesis,
independent of the alternative hypothesis, just because it
is unreasonably restrictive (that is, it’s generally unlikely
that there are genuinely no effects). This problem may result
both in suggesting that some negligible effect is significant
just because we reject the null hypothesis, and in discarding
some interesting experimental results just because they fail
to trigger the arbitrary p < 0.05 threshold of significance.
This is part of the more general problem with insisting
on a dichotomous view between two alternatives: a better
approach would be based on richer statistics than one or few
summary values (such as the p-value) and would combine
quantitative and qualitative data (for example, about the
sign and magnitude of an effect) to get richer pictures.

To sum up, null hypothesis testing has both technical
problems (p-values are insufficient statistics to conclude
anything about the null hypothesis) and methodological
ones (null hypotheses often are practically useless models).

2.2.2 Types of Statistical Inference Errors

Frequentist statistics often analyze the probability of so-
called type 1 and type 2 errors:

Type 1: a type 1 error is a false positive: rejecting a hypothesis
when it is actually true;

Type 2: a type 2 error is a false negative: accepting a hypoth-
esis when it is actually false.

In the context of hypothesis testing, the probability of a
type 1 error is related to the p-value, but the p-value alone
does not “denote the probability of a Type I error” [5]: the
p-value is a probability conditional on H0 being true, and
hence it cannot be used to conclude whether H0 itself is
true—an assessment that is required to estimate the proba-
bility of a type 1 error, which occurs, by definition, only if H0
is true. In the context of experimental design, the p-value’s
rejection threshold α is an upper bound on the probability of
a type 1 error [45]. In this case, a type 1 error occurs when
H0 is true but p < α; in order to assign a probability to this
scenario, we need to assign a prior probability that the null
hypothesis is true:

P[type 1 error] = P[p < α | H0] ·P[H0] = α ·P[H0] (5)

Therefore, the probability of a type 1 error in an experiment
with rejection threshold set to α lies between zero and α.7

Note, however, that even the technically correct interpre-
tation of the significance level α as an upper bound on the
probability of a type 1 error breaks down when we have
multiple testing, as we illustrate in Sect. 4.2.2. In all cases,
the p-value is a statistics of the data alone, and hence it is
insufficient to estimate the probability of a hypothesis being
true.

Bayesian analysis prefers to avoid the whole business of
hypothesis testing and instead computing actual posterior
probability distributions based on data and priors. The
Bayesian viewpoint also suggests that the usual frequentist
preoccupation with type 1 and 2 errors is often misplaced:
the null hypothesis captures a narrow notion of “no effects”,
which is rarely the case. As Gelman remarks:8

A type 1 error occurs only if the null hypothesis
is true (typically if a certain parameter, or differ-
ence in parameters, equals zero). In the applica-
tions I’ve worked on [. . . ] I’ve never come across a
null hypothesis that could actually be true. A type 2
error occurs only if I claim that the null hypothesis
is true, and I would certainly not do that, given my
statement above!

Instead, Gelman recommends [40] focusing on type S
and type M errors. A type S error occurs when we mistak-
enly infer the sign of an effect: for example that a language
A is consistently faster than language B, when in fact it is
B that is faster than A. A type M error occurs when we
overestimate the magnitude of an effect: that language A is 3
times faster than language B, when in fact it is at most 5%
faster. Sect. 4.3.2 discusses type S and type M errors in Nanz
and Furia [71]’s case study.

2.2.3 Scalar Summaries vs. Posterior Distributions

Even though hypothesis testing normally focuses on two
complementary hypotheses (H0 and its negation H1), it is
often necessary to simultaneously compare several alter-
native hypotheses h ∈ H grouped in a discrete or even
dense set H. For example, in Sect. 4’s reanalysis, H is the
continuous interval of all possible speedups of one language
relative to another. A distinctive advantage of full-fledged
Bayesian statistics is that it supports deriving a complete
distribution of posterior probabilities, by applying (1) for all
hypotheses h ∈ H, rather than just scalar summaries (such
as estimators of mean, median, and standard deviation,
standardized measures of effect size, or p-values on discrete
partitions of H). Given a distribution we can still compute
scalar summaries (including confidence/credible intervals),
but we retain additional advantages such as being able to
visualize the distribution and to derive other distributions
by iterative application of Bayes’ theorem. This supports
decisions based on a variety of criteria and on a richer
understanding of the experimental data, as we demonstrate
in the case studies of Sect. 3 and Sect. 4.

7. You will still find the erroneous statement that α is the probability
of a type 1 error in numerous publications including some bona fide
statistics textbooks [82], [96].

8. Andrew Gelman’s blog Type 1, type 2, type S, and type M errors, 29
December 2004.

https://andrewgelman.com/2004/12/29/type_1_type_2_t/
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2.2.4 The Role of Prior Information
The other distinguishing feature of Bayesian analysis is that
it starts from a prior probability which models the initial
knowledge about the hypotheses. The prior can record
previous results in a way that is congenial to the way sci-
ence is supposed to work—not as completely independent
experiments in an epistemic vacuum, but by constantly scru-
tinizing previous results and updating our models based on
new evidence.

A canned criticism of Bayesian statistics observes that
using a prior is a potential source of bias. However, ex-
plicitly taking into account this very fact helps analyses be
more rigorous and more comprehensive. In particular, we
often consider several different alternative priors to perform
Bayesian analysis. Priors that do not reflect any strong a
priori bias are traditionally called uninformative; a uniform
distribution over hypotheses is the most common example.
Note, however, that the term “uninformative” is misleading:
a uniform prior encodes as much information as a non-
uniform one—it is just a different kind of information.9

In a different context, this misunderstanding is illustrated
metaphorically by this classic koan [81, Appendix A] in-
volving artificial intelligence pioneers Marvin Minsky and
Gerald Sussman:

In the days when Sussman was a novice, Minsky
once came to him as he sat hacking at the PDP-
6. “What are you doing?”, asked Minsky. “I am
training a randomly wired neural net to play Tic-
Tac-Toe” Sussman replied. “Why is the net wired
randomly?”, asked Minsky. “I do not want it to
have any preconceptions of how to play”, Sussman
said. Minsky then shut his eyes. “Why do you close
your eyes?”, Sussman asked his teacher. “So that
the room will be empty.” At that moment, Sussman
was enlightened.

A uniform prior is the equivalent a randomly wired neural
network—with unbiased assumptions but still with specific
assumptions.

Whenever the posterior distribution is largely indepen-
dent of the chosen prior, we say that the data swamps the
prior, and hence the experimental evidence is decidedly
strong. If, conversely, choosing a suitable, biased prior is
necessary to get sensible results, it means that the evidence
is not overwhelming, and hence any additional reliable
source of information should be vetted and used to sharpen
the analysis results. In these cases, characteristics of the
biased priors may suggest what kinds of assumptions about
the data distribution we should investigate further. For
example, suppose that sharp results emerge only if we
use a prior that assigns vanishingly low probabilities to a
certain parameter x taking negative values. In this case, the
analysis should try to ascertain whether x can or cannot
meaningfully take such values: if we find theoretical or prac-
tical reasons why x should be mostly positive, the biased
prior acts as a safeguard against spurious data; conversely,
if x could take negative values in other experiments, we
conclude that the results obtained with the biased prior

9. In fact, in a statistical inference context, a uniform prior often
leads to overfitting because we learn too much from the data without
correction [62].

are only valid in a restricted setting, and new experiments
should focus on the operational conditions where x may be
negative.

Assessing the impact of priors with markedly different
characteristics leads to a process called (prior) sensitivity
analysis, whose goals are clearly described by McElreath [62,
Ch. 9]:

A sensitivity analysis explores how changes in
assumptions influence inference. If none of the
alternative assumptions you consider have much
impact on inference, that’s worth reporting. Like-
wise, if the alternatives you consider do have an
important impact on inference, that’s also worth
reporting. [. . . ] In sensitivity analysis, many jus-
tifiable analyses are tried, and all of them are
described.

Thus, the goal of sensitivity analysis is not choosing a prior,
but rather better understanding the statistical model and its
features. Sect. 4.3.3 presents a prior sensitivity analysis for
some of the language comparisons of Nanz and Furia [71]’s
data.

To sum up, Bayesian analysis stresses the importance
of careful modeling of assumptions and hypotheses, which
is more conducive to accurate analyses than the formulaic
application of ready-made statistics. In the rest of the paper,
we illustrate how frequentist and Bayesian data analysis
work in practice on two case studies based on software
engineering empirical data. We will see that the strength
of Bayesian statistics translates into analyses that are more
robust, sound, and whose results are natural to interpret in
practical terms.

2.3 Techniques for Bayesian Inference

No matter how complex the model, every Bayesian analysis
ultimately boils down to computing a posterior probability
distribution—according to Bayes’ theorem (1)—given likeli-
hood, priors, and data. In most cases the posterior cannot
be computed analytically, but numerical approximation al-
gorithms exist that work as well for all practical purposes.
Therefore, in the remainder of this article we will always
mention the “posterior distribution” as if it were computed
exactly; provided we use reliable tools to compute the
approximations, the fact that we are actually dealing with
numerical approximations does not make much practical
difference.

The most popular numerical approximation algorithms
for Bayesian inference work by sampling the posterior dis-
tribution at different points; for each sampled point h̄, we
calculate the posterior probability Pd[h̄] = P[h̄ | d] by
evaluating the right-hand side of (1) at h̄ for the given
likelihood and data d. Sampling must be neither too sparse
(resulting in an inaccurate approximation) nor too dense
(taking too much time). The most widely used techniques
achieve a simultaneously effective and efficient sampling by
using Markov Chain Monte Carlo (MCMC) [14] randomized
algorithms. In a nutshell, the sampling process corresponds
to visiting a Markov chain [33, Ch. 6], whose transition
probabilities reflect the posterior probabilities in a way that
ensures that they are sampled densely enough (after the
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chain reaches its steady state). Tools such as Stan [16] pro-
vide scalable generic implementations of these techniques.

Users of Bayesian data analysis tools normally need
not understand the details of how Bayesian sampling al-
gorithms work. As long as they use tried-and-true statistical
models and follow recommended guidelines (such as those
we outline in Sect. 5), validity of analysis results should not
depend on the details of how the numerical approximations
are computed.

3 LINEAR REGRESSION MODELING: SIGNIFI-
CANCE AND PREDICTION

Being able to automatically generate test cases can greatly
help discover bugs quickly and effectively: the unit tests
generated by tools such as Randoop (using random
search [74]) are likely to be complementary to those a human
programmer would write, and hence have a high chance
of exercising behavior that may reveal flaws in software.
Conversely, the very features that distinguish automatically-
generated tests from programmer-written ones—such as un-
informative identifiers and a random-looking nature [25]—
may make the former less effective than the latter when
programmers use tests to debug faulty programs. Ceccato
et al. [18] designed a series of experiments to study this
issue: do automatically generated tests provide good support for
debugging?

3.1 Data: Automated vs. Manual Testing

Ceccato et al. [18] compare automatically-generated and
manually-written tests—henceforth called ‘autogen’ and
‘manual’ tests—according to different features. The core
experiments are empirical studies involving, as subjects, stu-
dents and researchers, who debugged Java systems based
on the information coming from autogen or manual tests.

Our reanalysis focuses on Ceccato et al. [18]’s first study,
where autogen tests were produced running Randoop and
the success of debugging was evaluated according to the
experimental subjects’ effectiveness—namely, how many of
the given bugs they could successfully fix given a certain
time budget.

Each experimental data point assigns a value to six
variables:

fixed: the dependent variable measuring the (nonnegative)
number of bugs correctly fixed by the subject;

treatment: auto (the subject used autogen tests) or manual
(the subject used manual tests);

system: J (the subject debugged Java application JTopas) or
X (the subject debugged Java library XML-Security);

lab: 1 or 2 according to whether it was the first or second of
two debugging sessions each subject worked in;

experience: B (the subject is a bachelor’s student) or M (the
subject is a master’s student);

ability: low, medium, or high, according to a discretized
assessment of ability based on the subject’s GPA and
performance in a training exercise.

For further details about the experimental protocol see
Ceccato et al. [18].

3.2 Frequentist Analysis
3.2.1 Linear Regression Model
Ceccato et al. [18]’s analysis fits a linear regression model
that expresses outcome variable fixed as a linear combina-
tion of five predictor variables:

fixed = cI + cT · treatment + cS · system + cL · lab

+ cE · experience + cA · ability + ε (6)

where each variable’s value is encoded on an integer inter-
val scale, and ε models the error as a normally distributed
random variable with mean zero and unknown variance.
We can rewrite (6) as:

fixed ∼ N
(

cI +cT · treatment + cS · system + cL · lab
+cE · experience + cA · ability , σ

)
(7)

where N (µ, σ) is a normal distribution with mean µ and
(unknown) variance σ2. Form (7) is equivalent to (6), but
better lends itself to the generalizations we will explore later
on in Sect. 3.3.

Tab. 1 shows the results of fitting model (7) using a
standard least-squares algorithm. Each predictor variable
v’s coefficient cV gets a maximum-likelihood estimate cV and
a standard error eV of the estimate. The numbers are a bit
different from those in Table III of Ceccato et al. [18] even
if we used their replication package; after discussion10 with
the authors of [18], we attribute any remaining differences
to a small mismatch in how the data has been reported
in the replication package. Importantly, the difference does
not affect the overall findings, and hence Tab. 1 is a sound
substitute of Ceccato et al. [18]’s Table III for our purposes.

Null hypothesis. To understand whether any of the
predictor variables v in (7) makes a significant contribution
to the number of fixed bugs, it is customary to define a null
hypothesis Hv

0 , which expresses the fact that debugging ef-
fectiveness does not depend on the value of v. For example,
for predictor treatment :
Htreatment

0 : there is no difference in the effectiveness of de-
bugging when debugging is supported by autogen or
manual tests.

Under the linear model (7), if Hv
0 is true then regression

coefficient cV should be equal to zero. However, error term ε
makes model (7) stochastic; hence, we need to determine the
probability that some coefficients are zero. If the probability
that cV is close to zero is small (typically, less than 5%) we
customarily say that the corresponding variable v is a statis-
tically significant predictor of fixed ; and, correspondingly, we
reject Hv

0 .
p-values. The other columns in Tab. 1 present standard

frequentist statistics used in hypothesis testing. Column t
is the t-statistic, which is simply the coefficient’s estimate
divided by its standard error. One could show [89] that, if
the null hypothesis Hv

0 were true, its t statistic tv over re-
peated experiments would follow a t distribution t(no − nβ)
with no − nβ degrees of freedom, where no is the number
of observations (the sample size), and nβ is the number of
coefficients in (7).

The p-value is the probability of observing data that is,
under the null hypothesis, at least as extreme as the one

10. Personal communication between Torkar and Ceccato, December
2017.
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TABLE 1: Regression coefficients in the linear model with Gaussian error model (7), computed with frequentist analysis.
For each coefficient cV, the table reports maximum likelihood estimate cV, standard error eV of the estimate, t statistic of the
estimate, p-value (the probability of observing the t statistic under the null hypothesis), and lower and upper endpoints of
the 95% confidence interval CV

95% of the coefficient.

COEFFICIENT cV ESTIMATE cV ERROR eV t STATISTIC p-VALUE LOWER UPPER

cI (intercept) −1.756 0.725 −2.422 0.020 −3.206 −0.306
cT (treatment) 0.651 0.330 1.971 0.055 −0.010 1.311
cS (system) −0.108 0.332 −0.325 0.747 −0.772 0.556
cL (lab) 0.413 0.338 1.224 0.228 −0.262 1.089
cE (experience) 0.941 0.361 2.607 0.013 0.219 1.663
cA (ability) 0.863 0.297 2.904 0.006 0.269 1.457

that was actually observed. Thus, the p-value for v is the
probability that tv takes a value smaller than−|tv| or greater
than +|tv|, where tv is the value of tv observed in the data;
in formula:

pv =
∫ −|tv |

−∞
T (x)dx +

∫ +∞

+|tv |
T (x)dx , (8)

where T is the density function of distribution t(no − nβ).
Column p-value in Tab. 1 reports p-values for every predic-
tor variable computed according to (8).

3.2.2 Significance Analysis
Significant predictors. Using a standard confidence level
α = 0.05, Ceccato et al. [18]’s analysis concludes that:
• system and lab are not statistically significant because

their p-values are much larger than α—in other words,
we cannot reject Hsystem

0 or Hlab
0 ;

• experience and ability are statistically significant because
their p-values are strictly smaller than α—in other
words, we reject Hexperience

0 and Hability
0 ;

• treatment is borderline significant because its p-value is
close to α—in other words, we tend to reject Htreatment

0 .
Unfortunately, as we discussed in Sect. 2, p-values can-

not reliably assess statistical significance. The problem is
that the p-value is a probability conditional on the null hypoth-
esis being true: pv = P[|tv| > |tv| | Hv

0 ]; if pv � α is small,
the data is unlikely to happen under the null hypothesis,
but this is not enough to soundly conclude whether the null
hypothesis itself is likely true.

Another, more fundamental, problem is that null hy-
potheses are simply too restrictive, and hence unlikely to
be literally true. In our case, a coefficient may be statistically
significant from zero but still very small in value; from a
practical viewpoint, this would be as if it were zero. In
other words, statistical significance based on null hypothesis
testing may be irrelevant to assess practical significance [42].

Confidence intervals. Confidence intervals are a better
way of assessing statistical significance based on the output
of a fitted linear regression model. The most common 95%
confidence interval is based on the normal distribution, i.e.,

CV
95% = (cV − 2 eV, cV + 2 eV)

is the 95% confidence interval for a variable v whose coeffi-
cient cV has estimate cV and standard error eV given by the
linear regression fit.

If confidence interval CV
95% includes zero, it means that

there is a significant chance that cV is zero; hence, we
conclude that v is not significant with 95% confidence.
Conversely, if CV

95% for variable v does not include zero, it
includes either only positive or only negative values; hence,
there is a significant chance that cV is not zero, and we
conclude that v is significant with 95% confidence.

Even though, with Ceccato et al. [18]’s data, it gives
the same qualitative results as the analysis based on p-
values, grounding significance on confidence intervals has
the distinct advantage of providing a range of values the
coefficients of a linear regression model may take based on
the data—instead of the p-value’s conditional probability
that really answers not quite the right question.

Interpreting confidence intervals. It is tempting to in-
terpret a frequentist confidence intervals CV

95% in terms of
probability of the possible values of the regression coeffi-
cient cV of variable v.11 Nonetheless the correct frequentist
interpretation is much less serviceable [67]. First, the 95%
probability does not refer to the values of cV relative to the
specific interval CV

95% we computed, but rather to the process
used to compute the confidence interval: in an infinite series
of repeated experiments—in each of which we compute a
different interval CV

95%—the fraction of repetitions where the
true value of cV falls in CV

95% will tend to 95% in the limit.
Second, confidence intervals have no distributional infor-
mation: “there is no direct sense by which parameter values
in the middle of the confidence interval are more probable
than values at the ends of the confidence interval” [58].

To be able to soundly interpret CV
95% in terms of probabil-

ities we need to assign a prior probability to the regression
coefficients and apply Bayes’s theorem. A natural assump-
tion is to use a uniform prior; then, under the normal model
for the error term ε in (6), v behaves like a random variable
with a normal distribution with mean equal to v’s linear
regression estimate cV and standard deviation equal to v’s
standard error eV. Therefore, CV

95% = (`, h) is the (centered)
interval such that ∫ h

`
N (x)dx = 0.95 ,

where N is the normal density function of distribution
N (cV, eV)—with mean equal to cV’s estimate and standard
deviation equal to cV’s standard error.

11. This interpretation is widespread even though it is incorrect [47].
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However, this entails that if CV
95% lies to the right of zero

(` > 0) then the probability that the true value of cV is
positive is∫ +∞

0
N (x)dx ≥

∫ +∞

`
N (x)dx

=
∫ h

`
N (x)dx +

∫ +∞

h
N (x)dx

= 0.95 + 0.025 ,

that is at least 97.5%.

3.2.3 Summary and Criticism of Frequentist Statistics
In general, assessing statistical significance using p-values
is hard to justify methodologically, since the conditional
probability that p-values measure is neither sufficient nor
necessary to decide whether the data supports or contradicts
the null hypothesis. Confidence intervals might be a better
way to assess significance; however, they are surprisingly
tricky to interpret in a purely frequentist setting as perusing
Ceccato et al. [18]’s analysis has shown. More precisely,
we have seen that any sensible, intuitive interpretation of
confidence intervals requires the introduction of priors. We
might as well go all in and perform a full-fledged Bayesian
analysis instead; as we will demonstrate in Sect. 3.3, this
generally brings greater flexibility and other advantages.

3.3 Bayesian Reanalysis
3.3.1 Linear Regression Model
As a first step, let us apply Bayesian techniques to fit the
very same linear model (7) used in Ceccato et al. [18]’s
analysis. Tab. 2 summarizes the Bayesian fit with statistics
similar to those used in the frequentist setting: for each pre-
dictor variable v , we estimate the value and standard error
of multiplicative coefficient cV—as well as the endpoints of
the 95% credible interval (last two columns in Tab. 2).

The 95% uncertainty interval for variable v is the cen-
tered12 interval (`, h) such that∫ h

`
Pv (x)dx = 0.95 ,

where Pv is the posterior distribution of coefficient cV. Since
Pv is the actual distribution observed on the data, the
uncertainty interval can be interpreted in a natural way as
the range of values such that cV ∈ (`, h) with probability
95%.

Uncertainty intervals are traditionally called credible in-
tervals, but we agree with Gelman’s suggestion13 that un-
certainty interval reflects more clearly what they measure.14

We could use the same name for the frequentist confidence
intervals, but we prefer to use different terms to be able to
distinguish them easily in writing.

The numbers in Tab. 2 summarize a multivariate dis-
tribution on the regression coefficients. The distribution—
called the posterior distribution—is obtained, as described
in Sect. 2.3, by repeatedly sampling values from a prior

12. That is, centered around the distribution’s mean.
13. Andrew Gelman’s blog Instead of “confidence interval,” let’s say

“uncertainty interval”, 21 December 2010
14. More recently, other statisticians suggested yet another term:

compatibility interval [3].

distribution, and applying Bayes’ theorem using a likeli-
hood function derived from (7) (in other words, based on
the normal error term). The posterior is thus a sampled,
numerical distribution, which provides rich information
about the possible range of values for the coefficients, and
lends itself to all sorts of derived computations—as we will
demonstrate in later parts of the reanalysis.

Statistical significance. Using the same conventional
threshold used by the frequentist analysis, we stipulate that
a predictor v is statistically significant if the 95% uncertainty
interval of its regression coefficient cV does not include
zero. According to this definition, treatment , experience ,
and ability are all significant—with treatment more weakly
so. While the precise estimates differ, the big picture is
consistent with the frequentist analysis—but this time the
results’ interpretation is unproblematic.

cA (ability)

cE (experience)

cL (lab)

cS (system)

cT (treatment)

-1 0 1 2

Fig. 2: Plots of the posterior probability distributions of
each regression coefficient in the linear model with Gaussian
error model (7), computed with Bayesian analysis and weak
unbiased priors. Each plot is a density plot that covers an
area corresponding to 99% probability; the inner shaded
area corresponds to 95% probability; and the thick vertical
line marks the distribution’s median.

Since the coefficients’ distributions are fully available we
can even plot them. In Fig. 2, the thick vertical lines mark
the estimate (the distribution’s median); the shaded areas
correspond to 95% probability; and the distribution curves
extend to cover the 99% probability overall. Visualization
supports a more nuanced view of statistical significance,
because the plots include probability distribution informa-
tion:15 it is clear that experience and ability are strongly
significant; even though treatment is borderline significant,
there remains a high probability that it is significant (since

15. Remember that confidence intervals do not possess this kinds of
information (see Sect. 3.2.2).

https://andrewgelman.com/2010/12/21/lets_say_uncert/
https://andrewgelman.com/2010/12/21/lets_say_uncert/
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TABLE 2: Regression coefficients in the linear model with Gaussian error model (7), computed with Bayesian analysis. For
each coefficient cV, the table reports posterior mean estimate cV, posterior standard deviation (or error) eV of the estimate, and
lower and upper endpoints of the 95% uncertainty interval of the coefficient (corresponding to 2.5% and 97.5% cumulative
posterior probability).

COEFFICIENT cV ESTIMATE cV ERROR eV LOWER UPPER

cI (intercept) −1.753 0.719 −3.159 −0.319
cT (treatment) 0.659 0.337 0.011 1.332
cS (system) −0.112 0.347 −0.808 0.566
cL (lab) 0.408 0.344 −0.265 1.069
cE (experience) 0.947 0.363 0.245 1.670
cA (ability) 0.863 0.298 0.290 1.443

most of the curve is to the right of the origin); while neither
system nor lab is significant at the 95% value, we can
discern a weak tendency towards significance for lab—
whereas system has no consistent effect.

3.3.2 Generalized Models
Priors. The posterior distributions look approximately nor-
mal; indeed, we have already discussed how they are ex-
actly normal if we take uniform priors. A uniform prior as-
sumes that any possible value for a coefficient is as likely as
any other. In some restricted conditions (see Sect. 3.3.4), and
with completely uniform priors, frequentist and Bayesian
analysis tend to lead to the same overall numerical results;
however, Bayesian analysis is much more flexible because it
can compute posterior distributions with priors that are not
completely uniform.

A weak unbiased prior is the most appropriate choice
in most cases. Even when we do not know much about
the possible values that the regression coefficients might
take, we often have a rough idea of their variability range.
Take variable treatment : discovering whether it is definitely
positive or negative is one of the main goals of the analysis;
but we can exclude that treatment (indeed, any variable)
has a huge effect on the number of fixed bugs (such as
hundred or even thousands of bugs difference). Since such
a huge effect is ruled out by experience and common sense,
we used a normal distribution with mean 0 and standard
deviation 20 as prior. This means that we still have no bias
on whether treatment is significant (mean 0), but we posit
that its value is most likely between −60 = 0− 3 · 20 and
+60 = 0 + 3 · 20 (three standard deviations off the mean).16

In this case, using a completely uniform prior would not
lead to qualitatively different results, but would make the
estimate a bit less precise without adding any relevant
information.

If we had evidence—from similar empirical studies or
other sources of information—that sharpen our initial esti-
mate of an effect, we could use it to pick a more biased prior.
We will explore this direction more fully in Sect. 4.3 where
we present the other case study.

Poisson data model. To further demonstrate how
Bayesian modeling is flexible and supports quantitative

16. Since a normal distribution has infinitely long tails, using it as
prior does not rule out any posterior value completely, but makes
extreme values exceedingly unlikely without exceptionally strong data
to support them (i.e., we make infinity a non-option).

predictions, let us modify (7) to build a generalized linear
model of the Ceccato et al. [18]’s experiments.

Since system and lab turned out to be not significant,
we exclude them from the new model. Excluding insignif-
icant variables has the advantage of simplifying the model
without losing accuracy—thus supporting better general-
izations [62]. Then, since fixed can only be a nonnegative
integer, we model it as drawn from a Poisson distribution
(suitable for counting variables) rather than a normal dis-
tribution as in (7) (which allows for negative real values as
well). Finally, we use a stronger prior for cT corresponding to
a normal distribution N (0.5, 0.8), which is a bit more biased
as it nudges cT towards positive values of smallish size:

fixed ∼ P
exp

 cI + cT · treatment
+ cE · experience
+ cA · ability

 (9)

where P(λ) is the Poisson distribution with rate λ. Since λ
has to be positive, it is customary to take the exponential of
the linear combination of predictor variables as a parameter
of the Poisson.

Fitting model (9) gives the estimates in Tab. 3, graphi-
cally displayed in Fig. 3. The results are still qualitatively
similar to previous analyses: treatment , experience , and
ability are significant at the 95% level—treatment more
weakly so. However, a simpler model is likely, all else being
equal, to perform better predictions; let us demonstrate this
feature in the next section.

3.3.3 Quantitative Prediction
Simplicity is a definite advantage of linear regression mod-
els: simple models are easy to fit and, most important,
easy to interpret. After estimating the coefficients in (6), we
can use those estimates to perform quantitative predictions.
For example, in the linear model (6), cT = 0.66 is the
average difference in the number of bugs that a programmer
working with autogen tests could fix compared to working
with manual tests—all other factors staying the same: cI +

treatment = auto︷︸︸︷
cT · 1 + cS · system + cL · lab

+ cE · experience + cA · ability + ε


−
 cI +

treatment =manual︷︸︸︷
cT · 0 + cS · system + cL · lab

+ cE · experience + cA · ability + ε


= cT
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TABLE 3: Regression coefficients in the generalized linear model with Poisson error model (9), computed with Bayesian
analysis. For each coefficient cV, the table reports posterior mean estimate cV, posterior standard deviation (or error) eV of
the estimate, and lower and upper endpoints of the 95% uncertainty interval of the coefficient (corresponding to 2.5% and
97.5% cumulative posterior probability).

COEFFICIENT cV ESTIMATE cV ERROR eV LOWER UPPER

cI (intercept) −1.953 0.510 −3.006 −0.954
cT (treatment) 0.493 0.254 0.012 0.991
cE (experience) 0.800 0.309 0.201 1.400
cA (ability) 0.642 0.226 0.205 1.096

cA (ability)

cE (experience)

cT (treatment)

0.0 0.5 1.0 1.5

Fig. 3: Plots of the posterior probability distributions of each
regression coefficient in the generalized linear model with
Poisson error model (9), computed with Bayesian analysis.
Each plot is a density plot that covers an area corresponding
to 99% probability; the inner shaded area corresponds to
95% probability; and the thick vertical line marks the distri-
bution’s median.

Even though the transparency of the linear model is a
clear plus, performing estimates and predictions only based
on the estimates of the regression coefficients has its limits.
On the one hand, we ignore the richer information—in
the form of posterior distributions—that Bayesian analyses
provide. On the other hand, analytic predictions on the
fitted model may become cumbersome on more complex
models, such as the Poisson regression model (9), where
the information carried by regression coefficients is less
intuitively understandable. Ideally, we would like to select a
model based on how well it can characterize the data with-
out having to trade this off against mainly computational
issues.

Since Bayesian techniques are based on numerical meth-
ods, they shine at estimating and predicting derived statis-
tics. We can straightforwardly sample the predictor input

space in a way that reflects the situation under study, and
simulate the outcomes numerically.17 Provided the sample
is sufficiently large, the average outcome reflects the fitted
model’s predictions. Let us show one such simulation to
try to answer a relevant and practical software engineering
question based on the data at hand.

Our analysis has shown that autogen tests are better—
lead to more fixed bugs—than manual tests; and that pro-
grammers with higher ability are also better at fixing bugs.
Since high-ability programmers are a clearly more expensive
resource than automatically generated tests, can we use
autogen tests extensively to partially make up for the lack
of high-ability programmers? We instantiate the question in
quantitative terms:

How does the bug-fixing performance of these two
teams of programmers compare?
Team low/auto: made of 80% low-ability, 10%

medium-ability, and 10% high-ability program-
mers; using 10% manual tests and 90% autogen
tests

Team high/manual: made of 40% low-ability, 40%
medium-ability, and 20% high-ability program-
mers; using 50% manual tests and 50% autogen
tests

Simulating the performance of these two teams using
model (9) fitted as in Tab. 3, we get that team high/manual
fixes 20% more bugs than team low/auto in the same
conditions. This analysis tells us that ability is considerably
more decisive than the nature of tests, but autogen tests can
provide significant help for a modest cost. It seems likely
that industrial practitioners could be interested in simulat-
ing several such scenarios to get evidence-based support
for decisions and improvement efforts. In fact, the posterior
distributions obtained from a Bayesian statistical analysis
could be used to optimize, by repeated simulation, different
variables—the number of high-ability team members and
the proportion of manual versus autogen test cases in our
example—to reach specific goals identified as important by
practitioners.

3.3.4 Summary of Bayesian Statistics
Using Bayesian techniques brings advantages over using
frequentist techniques even when the two approaches lead
to the same qualitative results. Bayesian models have an
unambiguous probabilistic interpretation, which relates the

17. Since frequentist statistics do not have post-data distributional
information, this can be done only within a Bayesian framework.
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variables of interest to their probabilities of taking certain
values. A fitted model consists of probability distributions
of the estimated parameters, rather than less informative
point estimates. In turn, this supports quantitative estimates
and predictions of arbitrary scenarios based on numerical
simulations, and fosters nuanced data analyses that are
grounded in practically significant measures.

Numerical simulations are also possible in a frequentist
setting, but their soundness often depends on a number of
subtle assumptions that are easy to overlook or misinterpret.
In the best case, frequentist statistics is just an inflexible
hard-to-interpret version of Bayesian statistics; in the worst
case, it may even lead to unsound conclusions.

Frequentist 6= Bayesian + Uniform Priors. In this case
study, the Bayesian analysis’s main results turned out to
be numerically quite close to the frequentist’s. We also en-
countered several cases where the “intuitive” interpretation
of measures such as confidence intervals is incorrect under
a strict frequentist interpretation but can be justified by as-
suming a Bayesian interpretation and uniform (or otherwise
“uninformative”) priors. It is tempting to generalize this and
think that frequentist statistics are mostly Bayesian statistics
with uniform priors by other means. Unfortunately, this
is in general not true: on the contrary, the correspondence
between frequentist statistics and Bayesian statistics with
uninformative priors holds only in few simple cases.

Specifically, frequentist confidence intervals and
Bayesian uncertainty intervals calculations coincide only
in the simple case of estimating the mean of a normal
distribution—what we did with the simple linear regression
model (7)—when the Bayesian calculation uses a particular
uninformative prior [52]. In many other applications [67],
frequentist confidence intervals markedly differ from
Bayesian uncertainty intervals, and the procedures to
calculate the former do not normally come with any
guarantees that they can be validly interpreted as post-data
statistics.

4 DIRECT BAYESIAN MODELING: THE ROLE OF
PRIORS

Comparing programming languages to establish which is
better at a certain task is an evergreen topic in computer
science research; empirical studies have made such compar-
isons more rigorous and their outcomes more general.

In this line of work, Nanz and Furia [71] analyzed
programs in the Rosetta Code wiki [83]. Rosetta Code is
a collection of programming tasks, each implemented in
various programming languages. The variety of tasks, and
the expertise and number of contributors to the Rosetta
Code wiki, buttresses a comparison of programming lan-
guages under conditions that are more natural than few
performance benchmarks, yet still more controlled than
empirical studies of large code repositories in the wild.

4.1 Data: Performance of Programming Languages
Nanz and Furia [71] compare eight programming languages
for features such as conciseness and performance, based on
experiments with a curated selection of programs from the
Rosetta Code repository [83]. Our renalysis focuses on Nanz
and Furia [71]’s analysis of running time performance.

For each language ` among C, C#, F#, Go, Haskell,
Java, Python, and Ruby, Nanz and Furia [71]’s experiments
involve an ordered set T(`) of programming tasks, such as
sorting algorithms, combinatorial puzzles, and NP-complete
problems; each task comes with an explicit sample input.
For a task t ∈ T(`), R(`, t) denotes the set of running times
of any implementations of task t in language `, among those
available in Rosetta Code, that ran without errors or timeout
on the same sample input. R(`, t) is a set because Rosetta
Code often includes several implementation of the same
task (algorithm) in the same language—variants that may
explore different programming styles or were written by
different contributors.

Take a pair `1, `2 of languages; T1,2 is the set T(`1)∩ T(`2)
of tasks that have implementations in both languages. Thus,
we can directly compare the performance of `1 and `2 on any
task t ∈ T1,2 by juxtaposing each running time in R(`1, t) to
each in R(`2, t). To this end, define R1,2(t) as the Cartesian
product R(`1, t) × R(`2, t): a component (r1, r2) of R1,2(t)
measures the running time r1 of some implementation of
a task in language `1 against the running time r2 of some
implementation of the same task in the other language `2.

It is useful to summarize each such comparison in terms
of the speedup of one implementation in one language rel-
ative to one in the other language. To this end, S1,2(t) is a
vector of the same length as R1,2(t), such that each compo-
nent (r1, r2) in the latter determines component ι(r1, r2) in
the former, where

ι(a, b) = sgn(a− b) ·
(

1− min(a, b)
max(a, b)

)
. (10)

The signed ratio ι(r1, r2) varies over the interval (−1,+1): it
is zero iff r1 = r2 (the two implementations ran in the same
time exactly), it is negative iff r1 < r2 (the implementation in
language `1 was faster than the implementation in language
`2), and it is positive iff r1 > r2 (the implementation in
language `2 was faster than the implementation in language
`1). The absolute value of the signed ratio is proportional to
how much faster the faster language is relative to the slower
language; precisely, 1/(1− |ι(r1, r2)|) is the faster-to-slower
speedup ratio. Nanz and Furia [71] directly compared such
speedup ratios, but here we prefer to use the inverse speedups
ι(r1, r2) because they encode the same information but using
a smooth function that ranges over a bounded interval,
which is easier to model and to compare to statistics, such
as effect sizes, that are also normalized.

Among the various implementations of a chosen task
in each language, it makes sense to focus on the best one
relative to the measured features; that is, to consider the
fastest variant. We use identifiers with a hat to denote the
fastest measures, corresponding to the smallest running
times: R̂(`, t) is thus min R(`, t), and R̂1,2(t) and Ŝ1,2(t) are
defined like their unhatted counterparts but refer to R̂(`1, t)
and R̂(`2, t). In the following, we refer to the hatted data as
the optimal data.

Analysis goals. The main goal of Nanz and Furia [71]’s
analysis is to determine which languages are faster and
which are slower based on the empirical performance data
described above. The performance comparison is pairwise:
for each language pair `1, `2, we want to determine:
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1) whether the performance difference between `1 and `2
is significant;

2) if it is significant, how much `1 is faster than `2.

4.2 Frequentist Analysis
Sect. 4.2.1 follows closely Nanz and Furia [71]’s analysis us-
ing null hypothesis testing and effect sizes. Then, Sect. 4.2.2
refines the frequentist analysis by taking into account the
multiple comparisons problem [66].

4.2.1 Pairwise Comparisons
Null hypothesis. As customary in statistical hypothesis
testing, Nanz and Furia [71] use null hypotheses to express
whether differences are significant or not. For each language
pair `1, `2, null hypothesis H1,2

0 denotes lack of significant
difference between the two languages:
H1,2

0 : there is no difference in the performance of languages
`1 and `2 when used for the same computational tasks

Nanz and Furia [71] use the Wilcoxon signed-rank test to
compute the p-value expressing the probability of observing
performance data (R̂(`1, t) against R̂(`2, t) for every t ∈ T1,2)
at least as extreme as the one observed, assuming the null
hypothesis H1,2

0 . The Wilcoxon signed-rank test was chosen
because it is a paired, unstandardized test (it does not
require normality of the data). Thus, given a probability
α, if p < α we reject the null hypothesis and say that
the difference between `1 and `2 is statistically significant at
level α.

Effect size. Whenever the analysis based on p-values
indicates that the difference between `1 and `2 is significant,
we still do not know whether `1 or `2 is the faster language
of the two, nor how much faster it is. To address this ques-
tion, we compute Cliff’s δ effect size, which is a measure
of how often the measures of one language are smaller than
the measures of the other language;18 precisely, δ < 0 means
that `1 is faster than `2 on average—the closer δ is to −1 the
higher `1’s relative speed; conversely, δ > 0 means that `2 is
faster than `1 on average.

Frequentist analysis results. Tab. 4 shows the results
of Nanz and Furia [71]’s frequentist analysis using colors
to mark p-values that are statistically significant at level
0.01 (p < 0.01) and statistically significant at level 0.05
(0.01 ≤ p < 0.05); for significant comparisons, the effects δ
are colored according to which language (the one in the col-
umn header, or in the row header) is faster, that is whether δ
is negative or positive. Tab. 4 also reports summary statistics
of the same data: the median m and mean µ inverse speedup
Ŝ1,2(t) across all tasks t ∈ T1,2.

Take for example the comparison between F# and Go
(column #5, row #3). The p-value is colored in dark blue
because 0.01 < p = 0.025 < 0.05, and hence the perfor-
mance difference between the two languages is statistically
significant at level 0.05. The effect size δ is colored in
green because it is positive δ = 0.408 > 0 meaning that the
language on the row header (Go, also in green) was faster on
average.

18. Nanz and Furia [71]’s analysis used Cohen’s d as effect size;
here we switch to Cliff’s δ both because it is more appropriate for
nonparametric data and because it varies between −1 and +1 like the
inverse speedup ratio ι we use in the reanalysis.

The language relationship graph in Fig. 4 summarizes all
pairwise comparisons: nodes are languages; an arrow from
`1 to `2 denotes that the difference between the two lan-
guages is significant (p < 0.05), and goes from the slower
to the faster language according to the sign of δ; dotted
arrows denote significant differences at level 0.05 but not
at level 0.01; the thickness of the arrows is proportional
to the absolute value of the effect δ. To make the graph
less cluttered, after checking that the induced relation is
transitive, we remove the arrows that are subsumed by
transitivity.

4.2.2 Multiple Comparisons

Conspicuously absent from Nanz and Furia [71]’s analysis is
how to deal with the multiple comparisons problem [66] (also
known as multiple tests problem). As the name suggests, the
problem occurs when several statistical tests are applied to
the same dataset. If each test rejects the null hypothesis
whenever p < α, the probability of committing a type 1
error (see Sect. 2.2.2) in at least one test can grow as high as
1− (1− α)N (where N is the number of independent tests),
which grows to 1 as N increases.

In a frequentist settings there are two main approaches
to address the multiple comparisons problem [5], [66]:
• adjust p-values to compensate for the increased proba-

bility of error; or
• use a so-called “omnibus” test, which can deal with

multiple comparisons at the same time.
In this section we explore both alternatives on the Rosetta
Code data.

P-value adjustment. The intuition behind p-value ad-
justment (also: correction) is to reduce the p-value threshold
to compensate for the increased probability of “spurious”
null hypothesis rejections which are simply a result of mul-
tiple tests. For example, the Bonferroni adjustment works
as follows: if we are performing N tests on the same data
and aim for a α significance level, we will reject the null
hypothesis in a test yielding p-value p only if p · N < α—
thus effectively tightening the significance level.

There is no uniform view about when and how to apply
p-value adjustments [1], [5], [35], [70], [72], [78]; and there
are different procedures for performing such adjustments,
which differ in how strictly they correct the p-values (with
Bonferroni’s being the strictest adjustment as it assumes
a “worst-case” scenario). To provide as broad a view as
possible, we applied three widely used p-value corrections,
in decreasing strictness: Bonferroni’s [1], Holm’s [1], and
Benjamini-Hochberg’s [12].

Tab. 5 shows the results compared to the unadjusted
p-values; and Fig. 4 shows how the language relationship
graph changes with different significance levels. Even the
mildest correction reduces the number of significant lan-
guage performance differences that we can claim, and strict
corrections drastically reduce it: the 17 language pairs such
that p < 0.05 without adjustment become 15 pairs using
Benjamini-Hochberg’s, and only 7 pairs using Holm’s or
Bonferroni’s.

Multiple comparison testing. Frequentist statistics also
offers tests to simultaneously compare samples from several
groups in a way that gets around the multiple comparisons
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LANGUAGE MEASURE C C# F# Go Haskell Java Python

C# p 0.000
δ −0.440

m −0.793
µ −0.600

F# p 0.013 0.182
δ −0.603 −0.223

m −0.875 −0.429
µ −0.693 −0.370

Go p 0.000 0.006 0.030
δ −0.298 0.270 0.408

m −0.387 0.717 0.727
µ −0.474 0.384 0.534

Haskell p 0.000 0.142 0.929 0.025
δ −0.591 −0.186 0.124 −0.356

m −0.964 −0.655 −0.401 −0.909
µ −0.688 −0.315 0.003 −0.440

Java p 0.000 0.140 0.008 0.451 0.064
δ −0.446 0.062 0.434 −0.147 0.234

m −0.869 0.466 0.605 −0.337 0.557
µ −0.612 0.188 0.519 −0.194 0.220

Python p 0.000 0.042 0.875 0.006 0.334 0.007
δ −0.604 −0.265 −0.021 −0.423 0.048 −0.314

m −0.960 −0.733 −0.016 −0.859 −0.100 −0.714
µ −0.730 −0.378 −0.018 −0.446 0.003 −0.319

Ruby p 0.000 0.016 0.695 0.003 0.233 0.001 0.090
δ −0.609 −0.360 −0.042 −0.532 −0.059 −0.396 −0.100

m −0.973 −0.855 0.076 −0.961 −0.343 −0.831 −0.156
µ −0.659 −0.545 −0.030 −0.543 −0.115 −0.468 −0.173

TABLE 4: Frequentist reanalysis of Nanz and Furia [71]’s Rosetta Code data about the performance of 8 programming
languages. For each comparison of language `1 (column header) with language `2 (row header), the table reports: the
p-value of a Wilcoxon signed-rank test comparing the running times of programs in `1 and in `2 (colored differently if
p < 0.01 or 0.01 ≤ p < 0.05); Cliff’s δ effect size, which is negative if `1 tends to be faster, and positive if `2 tends to be
faster; and the median m and mean µ of the inverse speedup of `1 vs. `2 (again, negative values indicate that `1 is faster on
average, and positive values that `2 is).

C

C#

F#

GoHaskell

JavaPython
Ruby

(a) Without p-value correction.

C

C#

F#

GoHaskell

JavaPython
Ruby

(b) Bonferroni p-value correction.

C

C#

F#

GoHaskell

JavaPython
Ruby

(c) Holm p-value correction.

C

C#

F#

GoHaskell

JavaPython
Ruby

(d) Benjamini-Hochberg p-value
correction.

Fig. 4: Language relationship graphs summarizing the frequentist reanalysis of Nanz and Furia [71], with different p-value
correction methods. In every graph, an arrow from node `1 to node `2 indicates that the p-value comparing performance
data between the two languages is p < 0.01 (solid line) or 0.01 ≤ p < 0.05 (dotted line), and Cliff’s δ effect size indicates
that `2 tends to be faster; the thickness of the arrows is proportional to the absolute value of Cliff’s δ.

problem. The Kruskal-Wallis test [48] is one such test that
is applicable to nonparametric data, since it is an extension
of the Mann-Whitney test to more than two groups, or a
nonparametric version of ANOVA on ranks.

To apply Kruskal-Wallis, the samples from the various
groups must be directly comparable. The frequentist analy-
sis done so far has focused on pairwise comparisons resulting
in inverse speedup ratios; in contrast, we have to consider
absolute running times to be able to run the Kruskal-Wallis
test. Unfortunately, this means that only the Rosetta Code
tasks for which all 8 languages have an implementation can
be included in the analysis (using the notation of Sect. 3.1:⋂
` T(`)); otherwise, we would be including running times

on unrelated tasks, which are not comparable in a meaning-
ful way. This restriction leaves us with a mere 6 data points
per language—for a total of 24 = 6 · 8 running times.

On this dataset, the Kruskal-Wallis test indicates that
there are statistically significant differences (p = 0.002 <
0.05); but the test cannot specify which language pairs differ
significantly. To find these out, it is customary to run a post-
hoc analysis. We tried several that are appropriate for this
setting:
MC: a multiple-comparison between treatments [85,

Sec. 8.3.3]
Nemenyi: Nemenyi’s test of multiple comparisons [101]
Dunn: Dunn’s test of multiple comparisons [101] with p-
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LANGUAGE CORRECTION C C# F# Go Haskell Java Python

C# – 0.000
B 0.007
H 0.006

B-H 0.001

F# – 0.013 0.182
B 0.358 1.000
H 0.205 1.000

B-H 0.028 0.232

Go – 0.000 0.006 0.030
B 0.000 0.169 0.849
H 0.000 0.121 0.394

B-H 0.000 0.018 0.053

Haskell – 0.000 0.142 0.929 0.025
B 0.001 1.000 1.000 0.706
H 0.001 1.000 1.000 0.353

B-H 0.000 0.189 0.929 0.047

Java – 0.000 0.140 0.008 0.451 0.064
B 0.002 1.000 0.214 1.000 1.000
H 0.002 1.000 0.130 1.000 0.709

B-H 0.000 0.189 0.018 0.505 0.100

Python – 0.000 0.042 0.875 0.006 0.334 0.007
B 0.000 1.000 1.000 0.180 1.000 0.198
H 0.000 0.502 1.000 0.122 1.000 0.128

B-H 0.000 0.069 0.908 0.018 0.389 0.018

Ruby – 0.000 0.016 0.695 0.003 0.233 0.001 0.090
B 0.001 0.441 1.000 0.083 1.000 0.025 1.000
H 0.001 0.236 1.000 0.062 1.000 0.020 0.900

B-H 0.000 0.031 0.748 0.010 0.283 0.004 0.133

TABLE 5: Frequentist reanalysis of Nanz and Furia [71]’s Rosetta Code data about the performance of 8 programming
languages. For each comparison of language `1 (column header) with language `2 (row header), the table reports the p-
value of a Wilcoxon signed-rank test—comparing the running times of programs in `1 and in `2—corrected with different
methods: no correction (–, identical to the p-values in Tab. 4), Bonferroni correction (B), Holm correction (H), Benjamini-
Hochberg correction (B-H). Values are colored if p < 0.01 or 0.01 ≤ p < 0.05.

values adjusted using Benjamini-Hochberg
PW: a pairwise version of the Wilcoxon test with p-values

adjusted using Benjamini-Hochberg [48]
The number of significantly different language pairs are

as follows:

POST HOC 95% level 99% level

MC 2 0
Nemenyi 2 0

Dunn 3 0
PW 5 0

A closer look into the results shows that all the significant
comparisons involve C and another language, with the
exception of the comparisons between Go and Python, and
Go and Ruby, which the pariwise Wilcoxon classifies as
significant at the 95% level; no comparison is significant at
the 99% level.

4.2.3 Summary and Criticism of Frequentist Statistics
Analyzing significance using hypothesis testing is problem-
atic for a number of general reasons. First, a null hypoth-
esis is an oversimplification since it forces a binary choice
between the extreme case of no effects—which is unlikely
to happen in practice—versus some effects. Second, p-values
are probabilities conditional on the null hypothesis being
true; using them to infer whether the null hypothesis itself
is likely true is unsound in general.

Even if we brush these general methodological problems
aside, null-hypothesis testing becomes even murkier when
dealing with multiple tests. If we choose to ignore the multi-
ple tests problem, we may end up with incorrect results that
overestimate the weight of evidence; if we decide to add
corrections it is debatable which one is the most appropriate,
with a conflicting choice between “strict” corrections—safer
from a methodological viewpoint, but also likely to strike
down any significant findings—and “weak” corrections—
salvaging significance to a larger degree, but possibly arbi-
trarily chosen.

Using effect sizes is a definite improvement over p-
values: effect sizes are continuous measures rather than bi-
nary alternatives; and are unconditional summary statistics
of the experimental data. Nonetheless, they remain elemen-
tary statistics that provide limited information. In our case
study, especially in the cases where the results of a language
comparison are somewhat borderline or inconclusive, it is
unclear whether an effect size provides a more reliable
measure than statistics such as mean or median (even when
one takes into consideration common language effect size
statistics [4], normally referred to as Vargha-Delaney effect
size [95]). Besides, merely summarizing the experimental
data is a very primitive way of modeling it, as it cannot
easily accommodate different assumptions to study how
they would change our quantitative interpretation of the
data. Finally, frequentist best practices normally recommend
to use effect size in addition to null-hypothesis testing;
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which brings additional problems whenever a test does not
reach significance, but the corresponding effect size is non-
negligible.

As some examples that expose these general weaknesses,
consider the four language comparisons C# vs. F#, F# vs.
Python, F# vs. Ruby, and Haskell vs. Python. According
to the p-values the four comparisons are inconclusive. The
effect sizes tell a different story: they suggest a sizable
speed advantage of C# over F# (δ = −0.223), and a
small to negligible difference in favor of F# over Python
(δ = −0.021), of F# over Ruby (δ = −0.042), and of Python
over Haskell (δ = 0.048). Other summary statistics make
the picture even more confusing: while median and mean
agree with the effect size in the F# vs. C# and F# vs. Python
comparisons, the median suggests that Ruby is slightly
faster than F# (m = 0.076), and that Haskell is faster than
Python (m = −0.1); whereas mean and effect size suggest
that F# (µ = −0.03) and Python (µ = 0.003) are slightly
faster. We might argue about the merits of one statistic over
the other, but there is no clear-cut way to fine-tune the
analysis without arbitrarily complicating it. In contrast, with
Bayesian statistics we can obtain nuanced, yet natural-to-
interpret, analyses of the very same experimental data—as
we demonstrate next.

4.3 Bayesian Reanalysis
We analyze Nanz and Furia [71]’s performance data using
an explicit Bayesian model. For each language pair `1, `2, the
model expresses the probability that one language achieves
a certain speedup s over the other language. Speedup s is
measured by the inverse speedup ratio (10) ranging over the
interval (−1,+1).

4.3.1 Statistical Model
To apply Bayes’ theorem, we need a likelihood—linking
observed data to inferred data—and a prior—expressing our
initial assumption about the speedup.

Likelihood. The likelihood L[d, s] weighs how likely
we are to observe an inverse speedup d assuming that
the “real” inverse speedup is s. Using the terminology of
Sect. 2, d is the data and s is the hypothesis of probabilistic
inference. In this case, the likelihood essentially models
possible imprecisions in the experimental data; thus, we
express it in terms of the difference d− s between observed
and the “real” speedup:

d− s ∼ N (0, σ) ,

that is the difference is normally distributed with mean
zero (no systematic error) and unknown standard deviation.
This just models experimental noise that might affect the
measured speedups (and corresponds to all sorts of approx-
imations and effects that we cannot control for) so that they
do not coincide with the “real” speedups.

Priors. The prior π[s] models initial assumptions on
what a plausible speedup for the pair of languages might be.
We consider three different priors, from uniform to biased:

1) a uniform prior U (−1, 1)—a uniform distribution over
(−1, 1);

2) a weak unbiased centered normal prior N (0, σ1)—a nor-
mal distribution with mean 0 and standard deviation
σ1, truncated to have support (−1, 1);

3) a biased shifted normal prior N (µ2, σ2)—a normal dis-
tribution with mean µ2 and standard deviation σ2,
truncated to have support (−1, 1);

Picking different priors corresponds to assessing the impact
of different assumptions on the data under analysis. Unlike
the uniform prior, the normal priors have to be based on
some data other than Nanz and Furia [71]’s. To this end
we use the Computer Language Benchmarks Game [91] (for
brevity, Bench). The data from Bench are comparable to those
from Nanz and Furia [71] as they also consist of curated
selections of collectively written solutions to well-defined
programming tasks running on the same input and refined
over a significant stretch of time; however, Bench was de-
veloped independently of Rosetta Code, which makes it a
complementary source of data.

In the centered normal prior, we set σ1 to the largest
absolute inverse speedup value observed in Bench between
`1 and `2. This represents the assumption that the largest
speedups observed in Bench give a range of plausible max-
imum values for speedups observed in Rosetta Code. This
is still a very weak prior since maxima will mostly be much
larger than typical values; and there is no bias because the
distribution mean is zero.

In the shifted normal prior, we set µ2 and σ2 to the mean
and standard deviation of Bench’s optimal data. The result-
ing distribution is biased towards Bench’s data, as it uses
Bench’s performance data to shape the prior assumptions; if
µ2 � 0 or µ2 � 0, the priors are biased in favor of one of
the two languages being faster. In most cases, however, the
biased priors still allow for a wide range of speedups; and,
in any case, they can still be swamped by strong evidence
in Nanz and Furia [71]’s data.

Posteriors and uncertainty intervals. For each pair of
languages `1 and `2, for each prior, applying Bayes’ theo-
rem gives a posterior distribution P1,2(s), which assigns a
probability to any possible value s of inverse speedup. We
summarize the posterior using descriptive statistics:

1) 95% and 99% uncertainty intervals;
2) median m and mean µ of the posterior.

Since we are trying to establish which language, `1 or
`2, is faster according to our experiments, it is useful to
check whether the uncertainty intervals include the origin or
not. For 95% probability, consider the leftmost uncertainty
interval (c0%, c95%) and the rightmost uncertainty interval
(c5%, c100%); that is, cx is the value such that the posterior
probability of drawing an inverse speedup less than cx is x:∫ cx
−1 P1,2(s)ds < x. If c95% < 0 there is a 95% chance that
`1 is at least c95% faster than `2 according to the posterior;
conversely, if 0 < c5% there is a 95% chance that `2 is at least
c5% faster;19 if neither is the case, the comparison between
the two languages is inconclusive at a 95% certainty level.
A similar reading applies to the 99% uncertainty intervals.

4.3.2 Bayesian Reanalysis Results

Tab. 6 shows the results of the Bayesian analysis of Nanz and
Furia [71] data, for each of three priors. If two languages
differ at a 95% certainty level, the table reports the value
c95% if the language in the column header is faster, and the

19. Since c5% ≤ c95%, the two conditions are mutually exclusive.



17

C
C

#
F#

G
o

H
as

ke
ll

Ja
va

Py
th

on

L
A

N
G

U
A

G
E

M
E

A
SU

R
E

U
N

S
U

N
S

U
N

S
U

N
S

U
N

S
U

N
S

U
N

S
C

#
95

%
−

0.
39

8
−

0.
39

2
−

0.
63

1
99

%
−

0.
30

7
−

0.
30

6
−

0.
61

0
m
−

0.
60

1
−

0.
59

4
−

0.
67

8
µ
−

0.
59

8
−

0.
59

2
−

0.
67

7

F#
95

%
−

0.
35

5
−

0.
34

7
−

0.
41

1
−

0.
08

2
−

0.
07

3
−

0.
08

0
99

%
−

0.
17

8
−

0.
17

2
−

0.
30

1
+

0.
00

0
+

0.
00

0
+

0.
00

0
m
−

0.
68

2
−

0.
66

1
−

0.
65

1
−

0.
36

7
−

0.
36

0
−

0.
31

1
µ
−

0.
66

7
−

0.
64

9
−

0.
64

7
−

0.
36

7
−

0.
35

8
−

0.
30

8

G
o

95
%
−

0.
35

8
−

0.
35

5
−

0.
36

3
0.

09
9

0.
09

1
0.

09
0

0.
18

7
0.

16
9

0.
18

9
99

%
−

0.
30

4
−

0.
30

0
−

0.
31

6
+

0.
00

1
+

0.
00

0
+

0.
00

9
+

0.
05

3
+

0.
03

5
+

0.
09

0
m
−

0.
47

3
−

0.
47

3
−

0.
47

0
+

0.
38

6
+

0.
37

5
+

0.
32

1
+

0.
53

5
+

0.
51

3
+

0.
45

8
µ
−

0.
47

3
−

0.
47

1
−

0.
47

0
0.

38
7

0.
37

6
0.

32
1

0.
53

3
0.

51
3

0.
45

6

H
as

ke
ll

95
%
−

0.
51

2
−

0.
50

2
−

0.
49

4
−

0.
01

1
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0
−

0.
21

1
−

0.
20

1
−

0.
05

7
99

%
−

0.
41

9
−

0.
42

3
−

0.
41

9
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
−

0.
10

5
−

0.
09

9
+

0.
00

0
m
−

0.
68

7
−

0.
68

1
−

0.
65

3
−

0.
31

8
−

0.
30

6
+

0.
05

5
+

0.
00

9
+

0.
00

1
+

0.
22

9
−

0.
44

3
−

0.
42

9
−

0.
24

3
µ
−

0.
68

6
−

0.
68

0
−

0.
65

3
−

0.
31

7
−

0.
30

5
0.

05
7

0.
00

7
0.

00
1

0.
23

3
−

0.
44

1
−

0.
42

7
−

0.
24

2

Ja
va

95
%
−

0.
46

1
−

0.
45

7
−

0.
57

5
0.

00
0

0.
00

0
0.

00
0

0.
28

0
0.

27
8

0.
24

0
0.

00
0

0.
00

0
−

0.
01

1
0.

00
0

0.
00

0
0.

00
0

99
%
−

0.
39

7
−

0.
38

9
−

0.
55

2
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
18

6
+

0.
18

2
+

0.
17

3
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
m
−

0.
61

0
−

0.
60

6
−

0.
63

2
+

0.
18

7
+

0.
17

7
+

0.
12

1
+

0.
52

0
+

0.
51

1
+

0.
44

7
−

0.
19

3
−

0.
19

0
−

0.
18

7
+

0.
21

7
+

0.
21

6
+

0.
12

3
µ
−

0.
61

0
−

0.
60

6
−

0.
63

2
0.

18
9

0.
17

7
0.

12
0

0.
52

0
0.

51
1

0.
44

3
−

0.
19

3
−

0.
19

0
−

0.
18

6
0.

21
9

0.
21

6
0.

12
0

Py
th

on
95

%
−

0.
58

1
−

0.
56

9
−

0.
79

1
−

0.
10

2
−

0.
10

3
−

0.
16

4
0.

00
0

0.
00

0
0.

00
0
−

0.
23

2
−

0.
22

4
−

0.
30

8
0.

00
0

0.
00

0
0.

00
0
−

0.
08

3
−

0.
08

0
−

0.
16

1
99

%
−

0.
51

5
−

0.
50

2
−

0.
76

5
+

0.
00

0
+

0.
00

0
−

0.
06

2
+

0.
00

0
+

0.
00

0
+

0.
00

0
−

0.
13

8
−

0.
12

5
−

0.
22

4
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
+

0.
00

0
−

0.
07

7
m
−

0.
72

8
−

0.
72

4
−

0.
85

1
−

0.
37

5
−

0.
37

1
−

0.
40

4
−

0.
02

1
−

0.
01

7
−

0.
15

0
−

0.
44

5
−

0.
43

6
−

0.
49

5
+

0.
00

3
+

0.
00

4
−

0.
11

7
−

0.
31

9
−

0.
31

6
−

0.
36

9
µ
−

0.
72

8
−

0.
72

3
−

0.
85

1
−

0.
37

6
−

0.
37

1
−

0.
40

5
−

0.
02

3
−

0.
01

6
−

0.
15

8
−

0.
44

5
−

0.
43

7
−

0.
49

7
0.

00
4

0.
00

4
−

0.
11

9
−

0.
31

9
−

0.
31

5
−

0.
37

2

R
ub

y
95

%
−

0.
45

2
−

0.
44

3
−

0.
95

0
−

0.
28

8
−

0.
27

4
−

0.
54

8
0.

00
0

0.
00

0
−

0.
56

8
−

0.
32

1
−

0.
31

2
−

0.
63

1
0.

00
0

0.
00

0
−

0.
85

8
−

0.
25

5
−

0.
24

4
−

0.
80

7
0.

00
0

0.
00

0
−

0.
00

8
99

%
−

0.
36

6
−

0.
34

7
−

0.
94

7
−

0.
16

3
−

0.
15

0
−

0.
48

8
+

0.
00

0
+

0.
00

0
−

0.
50

5
−

0.
22

2
−

0.
21

1
−

0.
57

5
+

0.
00

0
+

0.
00

0
−

0.
84

3
−

0.
16

1
−

0.
15

4
−

0.
78

6
+

0.
00

0
+

0.
00

0
+

0.
00

0
m
−

0.
65

6
−

0.
64

6
−

0.
95

7
−

0.
54

5
−

0.
52

9
−

0.
69

9
−

0.
02

6
−

0.
02

6
−

0.
72

3
−

0.
54

2
−

0.
53

8
−

0.
74

9
−

0.
11

4
−

0.
11

5
−

0.
89

7
−

0.
47

0
−

0.
46

0
−

0.
85

4
−

0.
17

3
−

0.
17

2
−

0.
17

5
µ
−

0.
65

5
−

0.
64

4
−

0.
95

7
−

0.
54

3
−

0.
52

7
−

0.
69

8
−

0.
02

9
−

0.
02

4
−

0.
72

3
−

0.
54

2
−

0.
53

6
−

0.
74

9
−

0.
11

3
−

0.
11

4
−

0.
89

7
−

0.
46

9
−

0.
46

0
−

0.
85

4
−

0.
17

2
−

0.
17

1
−

0.
17

5

TA
BL

E
6:

Ba
ye

si
an

re
an

al
ys

is
of

N
an

z
an

d
Fu

ri
a

[7
1]

’s
R

os
et

ta
C

od
e

da
ta

ab
ou

t
th

e
pe

rf
or

m
an

ce
of

8
pr

og
ra

m
m

in
g

la
ng

ua
ge

s.
Fo

r
ea

ch
co

m
pa

ri
so

n
of

la
ng

ua
ge

` 1
(c

ol
um

n
he

ad
er

)w
it

h
la

ng
ua

ge
` 2

(r
ow

he
ad

er
),

fo
r

ea
ch

ch
oi

ce
of

pr
io

r
di

st
ri

bu
ti

on
am

on
g

un
if

or
m
U,

ce
nt

er
ed

no
rm

al
N

,a
nd

sh
if

te
d

no
rm

al
S,

th
e

ta
bl

e
re

po
rt

s
th

e
en

dp
oi

nt
of

th
e

95
%

an
d

99
%

un
ce

rt
ai

nt
y

in
te

rv
al

s
of

th
e

po
st

er
io

r
in

ve
rs

e
sp

ee
du

p
of

` 1
vs

.`
2

th
at

is
cl

os
es

t
to

th
e

or
ig

in
,i

f
su

ch
in

te
rv

al
do

es
no

ti
nc

lu
de

th
e

or
ig

in
;

in
th

is
ca

se
,t

he
en

dp
oi

nt
’s

ab
so

lu
te

va
lu

e
is

a
lo

w
er

bo
un

d
on

th
e

in
ve

rs
e

sp
ee

du
p

of
` 1

vs
.`

2,
an

d
in

di
ca

te
s

th
at

` 1
te

nd
s

to
be

fa
st

er
if

it
is

ne
ga

ti
ve

an
d

th
at

` 2
te

nd
s

to
be

fa
st

er
if

it
is

po
si

ti
ve

.I
f

th
e

un
ce

rt
ai

nt
y

in
te

rv
al

in
cl

ud
es

th
e

or
ig

in
,t

he
ta

bl
e

re
po

rt
s

a
va

lu
e

of
0.

0,
w

hi
ch

in
di

ca
te

s
th

e
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
is

in
co

nc
lu

si
ve

.
Th

e
ta

bl
e

al
so

re
po

rt
s

m
ed

ia
n

m
an

d
m

ea
n

µ
of

th
e

po
st

er
io

r
in

ve
rs

e
sp

ee
du

p
of

` 1
vs

.`
2

(a
ga

in
,n

eg
at

iv
e

va
lu

es
in

di
ca

te
th

at
` 1

is
fa

st
er

on
av

er
ag

e,
an

d
po

si
ti

ve
va

lu
es

th
at

` 2
is

).



18

C

C#

F#

GoHaskell

JavaPython
Ruby

(a) With uniform prior distribution U .

C

C#

F#

GoHaskell

JavaPython
Ruby

(b) With centered normal prior distri-
bution N .

C

C#

F#

GoHaskell

JavaPython
Ruby

(c) With shifted normal prior distribu-
tion S .

Fig. 5: Language relationship graphs summarizing the Bayesian reanalysis of Nanz and Furia [71], with different prior
distributions of speedups. In every graph, an arrow from node `1 to node `2 indicates that, according to the posterior
probability distribution of inverse speedups, `1 is faster than `2 with 99% probability (solid line) or 95% probability (dotted
line); the thickness of the arrows is proportional to the absolute value of the minimum inverse speedup.

U N S
– B H BH – –

ANALYSIS 95 % 99 % 95 % 99 % 95 % 99 % 95 % 99 % 95 % 99 % 95 % 99 %

frequentist 17 12 7 6 7 6 15 7

Bayesian 19 15 18 14 22 18

TABLE 7: The number of language comparisons, out of
a total 28 language pairs, where each ANALYSIS found a
significant difference at the 95% and 99% levels. The two
rows correspond to frequentist and Bayesian analyses; the
frequentist analyses differ in what kind of p-value correction
they employ (– for none, B for Bonferroni, H for Holm, and
BH for Benjamini-Hochberg); the Bayesian analyses differ
in what prior they employ (U for uniform, N for centered
normal, and S for shifted normal distributions).

value c5% if the language in the row header is faster; if the
comparison is inconclusive, the table reports the value 0.0.
The table displays the results of the comparison at a 99%
certainty level in a similar way, using the values c99%, c1%,
or 0.0.

The language relationship graphs in Fig. 5 summarize all
comparisons similarly to the frequentist analysis: nodes are
languages; an arrow from `1 to `2 denotes that the difference
between the two languages is significant (at 95% certainty
level), and goes from the slower to the faster language;
solid arrows denote differences that are significant at 99%
certainty level (otherwise arrows are dotted); the thickness
of the arrows is proportional to the absolute value of the
endpoint of the 95% or 99% certainty level closer to the
origin (as explained above).

Prediction errors and multiple tests. Multiple testing is
generally not an issue in Bayesian analysis [39]. In fact, there
is no null-hypothesis testing in Bayesian analysis: we are
not performing multiple tests, each with a binary outcome,
but are computing posterior distribution probabilities based
on data and priors. We can estimate mean and standard
deviation of the posterior, and get a clear, quantitative
picture of how likely there is an effect and of what size—
instead of having to guess a correction for how the errors in
binary tests may compound. As we discussed in Sect. 2.2, it
is also advisable to focus on type S and M errors, which are
directly meaningful in terms of practical significance.

While it is possible to reason in terms of type S and
M errors also using frequentist techniques such as effect

sizes, Bayesian analysis provide a natural framework to
precisely and soundly assess these probabilities of errors.
In our Bayesian reanalysis of Nanz and Furia [71]’s data, we
can readily assess the probability of type S and M errors:
• if a 95% uncertainty interval does not include the origin,

there is at most a 5% chance of committing a type S
error in that comparison;

• the width W of a 95% uncertainty interval indicates that
there is at most a 5% chance of committing a type M
error larger than W.

Significance analysis. There are no major inconsistencies
between the overall pictures drawn by the frequentist (with
effect sizes) and by the Bayesian analysis. Bayesian statistics,
however, produced results that are more natural to interpret
in terms of practically significant measures, and lend richer
information that supports a detailed analysis even when the
frequentist analysis was utterly inconclusive.

In quantitative terms, every “significant” difference ac-
cording to frequentist analysis was confirmed by Bayesian
analysis. Conversely, the Bayesian analysis provides conclu-
sive comparisons (that is, one language being faster than an-
other) for more language pairs than the frequentist analysis
(see Tab. 7): while the latter finds significant differences in 17
language pairs (out of a total of 28), Bayesian analysis finds
18 with centered normal priors, 19 with uniform priors, and
22 with shifted normal priors.

We consider this a distinct advantage from a software
engineering perspective: we could draw more conclusions
from the same data. The fact that priors of different strengths
lead to increasingly precise outcomes also sharpens the
overall conclusions: the Rosetta dataset and the Bench
dataset (used to model the stronger prior) seem to often
corroborate each other. More generally, such techniques
support analyses where each new scientific study increases
the clarity and robustness of the overall understanding of
what is really going on. Even in situations where a new
study does not corroborate but contradicts a previous one,
we would enrich our understanding of the issues by making
it more nuanced in a quantitative way.

4.3.3 Prior Sensitivity Analysis
Differences due to using different priors point to what kinds
of assumptions are necessary to narrow down the analysis
in certain cases. To disentangle the cases where weak data
leads to inconclusive or inconsistent results, we can always
visually and numerically inspect the posterior distributions
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provided by Bayesian analysis. This is a kind of sensitivity
analysis of the priors, whose goal is reporting the effects of
choosing different priors, in order to better understand the
strength of the data under analysis and the ramifications of
assumptions that we may introduce.

Rather than going through an exhaustive sensitivity
analysis, let us single out four interesting cases. These are
the four language comparisons that we mentioned at the
end of Sect. 4.3.4: C# vs. F#, F# vs. Python, F# vs. Ruby, and
Haskell vs. Python. These comparisons were inconclusive in
the frequentist analysis, sometimes with contradictory evi-
dence given by different summary statistics. In the Bayesian
analysis, we get nuanced yet clearer results; and we can
go beyond a binary choice made on the basis of summary
statistics, looking at the posterior distributions plot for these
three cases (shown in Fig. 6):

C# vs. F#: regardless of the prior, the posterior estimated
(inverse) speedup is negative with 95% probability. This
confirms that C# tends to be faster in the experiments,
largely independent of prior assumptions: the data
swamps the priors.

F# vs. Python: the analysis is genuinely inconclusive if we
use an unbiased prior (uniform or centered normal), as
both posteriors are basically centered around the origin.
If we use a biased prior (the shifted normal prior),
instead, the posterior tends to negative values. This
may indicate some evidence that F# is faster, but only if
we are willing to use Bench’s data as the starting point
to process Rosetta Code’s data (which, alone, remains
too weak to suggest a significant effect).
Precisely, we can compute on the posterior draws—
built using the shifted prior—that the probability that
the speedup is negative is approximately 73%; and the
probability that it is less than −0.09 (corresponding to
a 1.1-or-greater speedup of F# over Python) is about
60%. The shifted normal prior is N (−0.55, 0.69) in this
case, which corresponds to a marked bias in favor of
F# being substantially faster. Nonetheless, we can find
both tasks where F# is faster and tasks where Python is
faster both in Rosetta Code and in Bench, indicating no
clear winner with the current data even if F# has some
advantage on average.

F# vs. Ruby: here the posterior changes drastically accord-
ing to the prior. With uniform and centered normal
priors, we cannot claim any noticeable speedup of one
language over the other. But with the shifted normal
prior, the posterior lies decidedly to the left of the origin
and is quite narrow, indicating a high probability that
F# is much faster than Ruby; precisely, the speedup is
less than −0.4 with near certainty.
In this comparison, the shifted prior isN (−0.79, 0.31)—
strongly biased in favor of F#. The dependence on such
a strong prior means that Rosetta’s data about this
language comparison is not conclusive by its own: both
datasets may indicate that F# tends to be faster, but
Bench’s data is overwhelming whereas Rosetta’s is very
mixed. Regardless of whether we are willing to take
Bench as a starting point of our analysis, we understand
that Rosetta’s data about this language comparison is
inadequate and should be extended and sharpened

with new experiments or with a deeper analysis of
Rosetta’s experimental conditions that determined the
outlier results.

Haskell vs. Python: the language comparison is inconclu-
sive if we use an unbiased prior (uniform or centered
normal). In contrast, starting from a shifted normal
prior, Haskell emerges as the faster language with 82%
probability.
In this case the biased prior is N (−0.67, 0.55), which is
clearly biased in favor of Haskell but would not prevent
strong data evidence from changing the outcome. If
we are willing to see this biased prior as encoding a
reasonable assumption on the preferential advantage
that a compiled language such as Haskell ought to have
over an interpreted language, Rosetta’s data tempers
the speed advantage Haskell can claim but does not
nullify it. Regardless of whether we find this inter-
pretation reasonable, the analysis clearly shows what
the outcome of this language comparison hinges on,
and suggests that further experiments involving these
two languages are needed to get to a more general
conclusion.

Repeating the sensitivity analysis for every language
comparison, extending the models, and possibly collecting
more data, are beyond the scope of this paper. The goal
of this subsection was illustrating concrete examples of
how sensitivity analysis can support a sophisticated data
analysis while remaining grounded in results that have a
direct connection to the quantities of interest that determine
practical significance. Key to this flexibility are the very
features of Bayesian statistics that we presented throughout
the paper.

4.3.4 Summary of Bayesian Statistics
The availability of full posterior distributions makes
Bayesian analyses more transparent and based on richer,
multi-dimensional information than frequentist analyses.
Priors are another tool unique to Bayesian analysis that fully
supports “what-if” analyses: by trying out different priors—
from completely uniform to informative/biased—we can
understand the impact of assumptions on interpreting the
experimental data, and naturally connect our analysis to
others and, more generally, to the body of knowledge of
the domain under empirical investigation.

5 DOING BAYESIAN STATISTICS IN PRACTICE:
GUIDELINES AND TOOLS

The main goal of this paper is demonstrating the advan-
tages of Bayesian statistics over frequentist statistics. Once
we become convinced of this point, how do we concretely
adopt Bayesian statistics in the kind of empirical research
that is common in software engineering? While we leave a
detailed presentation of a framework to future work, here
we summarize some basic guidelines organized around a
few broadly applicable steps.

Research questions. If we formulate the research ques-
tions following the usual approach based on null hypothesis
(no effect) vs. alternative hypothesis (some effect), then
using statistical hypothesis testing may appear as the only
natural analysis approach. To avoid this, we should try
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Fig. 6: Posterior distributions of inverse speedup ratios comparing C# to F#, F# to Python, F# to Ruby, and Haskell to
Python. Each comparison comprises three posterior distributions built using Bayesian analysis with uniform U , centered
normal N , and shifted normal S prior distributions.

to phrase the research questions in a way that: 1) they
have a clear connection to variables in the analysis domain;
2) they avoid dichotomous alternative answers; and 3) they
quantify—if approximately—the expected ranges of values
that constitute a practically significant effect.

For example, we could rephrase Nanz and Furia [71]’s
generic research question about two languages `1 and `2:

Is `1 significantly faster than `2?

as:

What is the average speedup of `1 over `2, and
what is the probability that it is greater than 1%?20

The new formulation requires that every answer to the
question provide an estimate of speedup, and that small
(less than 1%) differences are practically irrelevant.

20. In Sect. 4.3, we answered a different question—about the proba-
bility that it is greater than zero—so as to allow a direct comparison to
the results of the original analysis based on hypothesis testing.

Regressive models. Regressive models—from simple
linear regressions to more flexible generalized linear
models—are very powerful statistical models which are
applicable with remarkable flexibility to a wide variety of
problems and data domains [38].21 Since regression can
also be done by means of frequentist techniques, regres-
sive models are an approachable entry point to Bayesian
statistics for researcher used to frequentist techniques. There
exist statistical packages (such as rstanarm and brms for
R) that provide functions with an interface very similar
to the classic lm (which does regression with frequentist
techniques), with optional additional inputs (for example,
to change the priors) to take full advantage of Bayesian
statistics’ greater flexibility. We used such packages in the
reanalysis of Ceccato et al. [18] in Sect. 3.

21. In particular, regressive models are not limited to continuous
variables but can also model discrete variables such as those on a Likert
scale [68].
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Even when a statistical model other than standard linear
regression is a better choice, it often is useful to start the
analysis using simple regressive models, and then tweak
them with the additional modeling features that may be
required. This incrementality may not be possible—or as
easy—in a frequentist setting, where changing statistical
model normally requires switching to a new custom al-
gorithm. In contrast, Bayesian statistics are all based on a
uniform framework that applies Bayes’ theorem to update
the posterior based on the data; the model is all in the
choice of priors and likelihoods. Thus, performing software
engineering studies based on Bayesian techniques would
support a flexible use of different models of varying com-
plexity within a single, coherent statistical framework.

Choosing priors. After following this paper’s reanaly-
ses, it should be clear that “choosing the prior” need not be
a complex exercise. In fact, in Bayesian analysis you don’t
choose the prior, but rather experiment with a variety of
priors as a way of evaluating different modeling choices.
This process, presented in Sect. 2.2.4, is called sensitivity
analysis.

As a minimum, priors should indicate reasonable ranges
of values, or, conversely, rule out “impossible” ranges of
values as highly unlikely. This is what the uniform and
centered normal priors did in Sect. 4.3. If we have more
precise information about the plausible variable ranges and
we want to explore their effect on the model, we can try
out more biased priors—such as the shifted normal priors
in Sect. 4.3. The goal of sensitivity analysis is not to choose a
prior over others—not even after the analysis—but rather to
explore the same data from different angles, painting a rich,
nuanced picture.

When the goal of sensitivity analysis is to identify the
model with the greatest predictive power—that is, that strikes
a good balance between underfitting and overfitting—there
exist quantitative comparison criteria based on measures
of information entropy [62]. In most common cases, how-
ever, a qualitative sensitivity analysis—such as the one
in Sect. 4.3.3—goes a long way in describing the analysis
results while remaining grounded in the problem domain.

As more empirical evidence is gathered, and studies are
performed, about a certain software engineering area of
interest, priors can be chosen based on the evidence that
is already known and is relevant to new studies within the
same area. This can give empirical software engineering a
concrete way in which to build chains of evidence that span
multiple studies, and ultimately present the current state-
of-the-art knowledge to practitioners in a quantitative form.
Doing so could also make research results more actionable,
since different scenarios could be evaluated and simulated.

Visualization. At every step during the analysis, visu-
alizing data and intermediate results acts as a sanity check
on the data analysis. Of course visualization is not helpful
only in a Bayesian setting, but one of the key strengths
of Bayesian analysis is that it often better lends itself to
visualization since it is based on distributions of data, and
how they change to better reflect the data. For example, the
posterior plots of Fig. 6 support the sensitivity analysis of

three language comparisons that closes Sect. 4.3.22

Dichotomous decisions. Even if we avoid using the
problematic notion of “null hypothesis”, there exist research
questions that ultimately require a dichotomous (yes/no)
answer. How can we approach such questions without
giving up the benefits of a Bayesian analysis?

Since Bayesian analysis’s primary source of information
is in the form of posterior distributions, the best way to
approach dichotomous decisions is to ground them in an
analysis of the posteriors. This also helps ensure that the
decisions are taken based on practically significant measures
rather than artificial statistics such as the p-values.

This general guideline is very flexible. Then, there exist
more specific protocols that can be applied to formalize
the notion of how to answer dichotomous questions based
on an analysis of the posteriors. In clinical studies, for in-
stance, researchers have used the notion of region of practical
equivalence (ROPE) to express “a range of parameter values
that are equivalent to the null value for current practical
purpose” [58]. ROPEs are typically derived based on histor-
ical data and meta analyses in each data domain. Then a
decision is taken based on whether the ROPE is included in
or excluded from a nominal uncertainty interval (typically,
with 95% or 99% probability).

Bayes factors [43], [52], [56] are another Bayesian tech-
nique that may be used, under certain conditions, to choose
between models in a dichotomous fashion. A Bayes factor
is a ratio of likelihoods B1,2 = L[d; h1]/L[d; h2] of the same
data d under different hypotheses (that is, statistical models)
h1 and h2. In a nutshell, the Bayes factor B1,2 expresses
how much the data would shift the posterior probability
in favor of h1 over h2: B1,2 < 1 indicates that h1’s probability
decreases, whereas B1,2 > 1 indicates that it increases.
Therefore, if h1’s and h2’s prior probabilities are about the same,
B1,2 can be used to decide whether the data supports more
strongly h1 or h2. When the prior probabilities are not
similar in value, their exact ratio must be known in order
to meaningfully interpret a Bayes factor.

We mentioned ROPE analysis and Bayes factor as exam-
ples of techniques that may be appropriate in certain specific
contexts. However, we stress again that there is no substitute
for a careful, bespoke posterior analysis—performed with
domain knowledge—if we want to get to sound conclusions
grounded in practical significance.

Tools. A number of powerful probabilistic languages,
geared towards analyzing Bayesian statistical models, have
been developed in the last decade. The best known are
JAGS,23 BUGS,24 Turing,25 and Stan26; Stan is probably the
most mature and actively maintained at the time of writing.
All of these tools input a statistical model—such as the one
in (7)—including information about priors, as well as the
analyzed data; they output a posterior distribution com-
puted numerically as we described in Sect. 2.3, which can
be visualized, analyzed, and used to build derived models.
This process is central to every Bayesian data analysis.

22. Gabry et al. [34] suggest guidelines on visualization in a Bayesian
analysis workflow.

23. http://mcmc-jags.sourceforge.net/
24. https://www.mrc-bsu.cam.ac.uk/software/bugs/
25. https://github.com/TuringLang
26. https://mc-stan.org/

http://mcmc-jags.sourceforge.net/
https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://github.com/TuringLang
https://mc-stan.org/
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These tools are normally used as back ends through
convenient interfaces in the most common statistical anal-
ysis toolsets—such as R,27 Python’s Scipy,28 and Julia.29.
The interface functions take care of importing and export-
ing data with the back ends, and provide functionality
that makes building and using common models (such as
regressive ones) straightforward. Another interesting tool
worth mentioning is JASP30 which supports both frequentist
and Bayesian analyses under a single, user-friendly inter-
face. This way, it can provide an accessible way to design
Bayesian analyses that replace the use of better-known
frequentist techniques.

6 THREATS TO VALIDITY AND LIMITATIONS

Like every empirical study, this paper’s reanalyses (Sect. 3
and Sect. 4) may incur threats to validity. Rather than just
discussing them as traditionally done [99], we illustrate how
using Bayesian statistics can generally help to mitigate them
(Sect. 6.1) and to avoid other common problems in empirical
software engineering (Sect. 6.2). This section concludes with
a mention of the limitations of Bayesian statistics (Sect. 6.3).

6.1 Threats to Validity

Using Bayesian statistics is unlikely to affect construct va-
lidity, which has to do with whether we measured what
the study was supposed to measure. Our reanalyses reused
the same data that was produced in the original studies by
Ceccato et al. [18] and by Nanz and Furia [71]; therefore,
the same construct validity threats—and threat mitigation
strategies—apply to the reanalyses in Sect. 3.3 and Sect. 4.3.

Conclusion validity depends on the application of ap-
propriate statistical tests. As we discussed throughout the
paper, frequentist statistics are often hard to apply correctly
in a way that is also functional to answering a study’s
research questions; Bayesian statistics, which are more trans-
parent and straightforward to interpret, can certainly help in
this respect. Thus, conclusion validity threats are generally
lower in our reanalyses than in the original analyses.

Internal validity is mainly concerned with whether
causality is correctly evaluated. This depends on several
details of experimental design that are generally indepen-
dent of whether frequentist or Bayesian statistics are used.
However, one important aspect of internal validity pertains
to the avoidance of bias; this is where Bayesian statistics can
help, thanks to their ability of weighting out many different
competing models rather than restricting the analysis to
two rigid hypotheses (null vs. alternative hypothesis). This
aspect is particularly relevant for Sect. 4’s reanalysis of
Rosetta Code data, where Bayesian modeling replaced the
inflexible null-hypothesis testing.

Since they can integrate previous, or otherwise inde-
pendently obtained, information in the form or priors, and
are capable of modeling practically relevant information
in a rich way, Bayesian statistics can help mitigate threats
to external validity, which concern the generalizability of

27. https://www.r-project.org/
28. https://www.scipy.org/
29. https://julialang.org/
30. https://jasp-stats.org/

findings. In particular, prior sensitivity analysis (described
in Sect. 2.2.4) assessed the (in)dependence of the statistical
conclusions on the choice of priors in both case studies
(Sect. 3.3.2 and Sect. 4.3.3), thus giving a clearer picture of
the generalizability of their findings.

6.2 Analytics Bad Smells
Menzies and Shepperd [64] recently proposed a list of 12
“bad smells”—indicators of poor practices in analytics re-
search. Let’s outline how using Bayesian statistics can help
avoid most of these pitfalls.

1) Not interesting. While whether a study is interesting
mainly depends on its design and topic, Bayesian statis-
tics make it easier to model quantities that are of direct
practical relevance.

2) Not using related work. Sect. 1.1 indicates that
Bayesian statistics is hardly ever used in empirical
software engineering research, suggesting that there is
ample room for progress in this direction.

3) Using deprecated or suspect data. This poor practice is
independent of the statistical techniques that are used;
in our reanalyses, the original studies’ data is of good
quality to the best of our knowledge.

4) Inadequate reporting. We make available all raw data,
as well as the analysis scripts, we used in our reanal-
yses to help reproducibility and further analyses. Note
that the raw data was already released by the original
studies [18], [71].

5) Underpowered studies. The Bayesian focus on type M
and type S errors (Sect. 2.2.2), and its prior sensitivity
analysis (Sect. 2.2.4), help assess the limitations of a
study that really matter to achieve practical signifi-
cance.

6) p < 0.05 and all that! It should be clear that one of
the main recommendations of this paper is to dispense
with p-values and statistical hypothesis testing.

7) Assumptions (e.g., of normality) in statistical anal-
ysis. Bayesian statistical modeling makes assumptions
visible, and hence harder to apply without justification.
Sensitivity analysis is a very effective way of assessing
the impact of different assumptions.

8) No data visualization. Visualization is a valuable prac-
tice regardless of the kind of statistical techniques
that are being used. Since Bayesian analysis provides
full posterior distributions (as opposed to scalar sum-
maries), visualization is a natural way to inspect details
of an analysis’s outcome—as shown, for example, in
Fig. 2, Fig. 3, and Fig. 6.

9) Not exploring stability. The practice of sensitivity
analysis (Sect. 2.2.4) is precisely a form of robustness
assessment.

The three remaining “smells” (not tuning, not exploring
simplicity, and not justifying choice of learners) mainly pertain
to details of how statistical inference is carried out. Since
all of our models are simple (conceptually, and to analyze
using standard tools), these smells are not really relevant,
but they might be if we used significantly more complex
models. In these cases too, frequentist statistics—with its
rigid procedures and unintuitive results—does not seem to
be at an advantage.

https://www.r-project.org/
https://www.scipy.org/
https://julialang.org/
https://jasp-stats.org/
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6.3 Limitations of Bayesian Statistics

This paper discussed at length the limitations of frequentist
statistics. Let us now outline some limitations of Bayesian
statistics.

Experimental design and data quality are primary deter-
minants of the value of every data analysis’s results. This
is true when applying Bayesian statistics as much as it is
when applying frequentist statistics. In particular, Bayesian
analysis techniques are not a silver bullet, and cannot fix a
botched study design or data that is irrelevant or spurious.

In contrast to frequentist techniques such as null hy-
pothesis testing—which can be used largely as a black
box—applying Bayesian statistical techniques requires some
modeling effort. Modeling means more than just following
a ready-made recipe, and should be based on an under-
standing of the data domain. This does not mean that
Bayesian statistics cannot be used for exploratory studies;
in fact, the transparency of Bayesian statistical models helps
understand the role and impact of every assumption in
our analysis, which involves more effort but is ultimately
beneficial to achieving clear results.

Like with every powerful analysis technique, it takes
some practice to become familiar with Bayesian techniques
and tools, and to fully appreciate how they can be applied
to the kinds of problems a researcher encounters most
frequently. To help this process, Sect. 5 discussed some basic
guidelines that should be applicable to a variety of common
analyses. We plan to come up with a more comprehensive
set of guidelines in future work.

Very practical limitations of Bayesian statistics in em-
pirical software engineering may derive from the mere
fact that frequentist statistics are currently dominating the
research practice (see Sect. 1.1). This implies that it may
be harder to publish analyses based on Bayesian statistics
simply because the research community expects frequentist
statistics (e.g., “statistical significance”) and is unfamiliar
with Bayesian techniques as best practices. We are con-
vinced these challenges will be only temporary; and hope-
fully the research community will be receiving favorably
the usage of Bayesian statistics. Some of Bayesian data
analysis’s fundamental features can be key to its practical
acceptance—in particular, its focus on practical significance,
and the flexibility and understandability of its models and
techniques.

7 DISCUSSION

Frequentist statistics remain the standard choice for data
analysis in empirical software engineering, as it offers
frameworks that are easy to apply and widely accepted
as good practices. This situation is unfortunate, because
frequentist techniques, as applied in practice, are plagued
by a number of issues that undermine their effectiveness in
practice:
• statistical hypothesis testing over-simplifies complex

analyses by phrasing them as binary choices between a
straw-man null hypothesis and an alternative hypothe-
sis;

• p-values are, in general, unsound to assess statistical
significance;

• multiple tests further challenge null-hypothesis testing,
and there is no consensus on how to deal with them in
a way that is safe and consistent;

• effect sizes and confidence intervals are useful mea-
sures, but can be surprisingly tricky to interpret cor-
rectly in terms of practically significant quantities.

In this paper, we illustrated concrete instances of the
above issues from an empirical software engineering per-
spective. By using Bayesian statistics instead, we demon-
strated gains in the rigor, clarity, and generality of the
empirical analyses of Ceccato et al. [18] and Nanz and
Furia [71]:

• Bayesian analysis stresses precise modeling of assump-
tions, uncertainty, and domain features, which help
gain a deep understanding of the data;

• applying Bayes’ theorem gives a full posterior distribu-
tion of each estimated parameter, which quantifies the
imprecision of the estimate and supports both visual
inspections and numerical analyses;

• the problem of multiple testing is immaterial, both
because there is no “hypothesis testing” as such and
because Bayesian analysis’s quantitative posteriors sup-
port reasoning about the actual sign and magnitude of
an effect rather than about possible compounding of
errors that may or may not matter in practice;

• priors naturally incorporate assumptions and expec-
tations (including from previous studies), and help
understand to what extent analysis results depend on
specific assumptions;

• the numeric simulation-based tools implementing
Bayesian analysis techniques offer a great flexibility and
support predictions in a variety of complex scenarios.

Based on these results, we recommend using Bayesian
statistics in empirical software engineering data analysis.
Besides supporting nuanced analyses in a variety of do-
mains, they have the potential to step up generality and
predictive ability, thus making progress towards the ulti-
mate goal of improving software engineering practice in
terms of effectiveness and efficiency. By using informed
priors based on previous, related work they can further help
link several empirical software engineering studies together,
and show what we currently can conclude based on them
taken as a whole. This could help develop fruitful scientific
practices where each research contribution builds on the
others, and they collectively make progress towards settling
important problems. By simulating real-world scenarios that
are relevant for practitioners such practices could also help
better connect software engineering research to practice—
thus fostering a greater impact of the former on the latter.
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