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A Method to Assess and Argue for
Practical Significance in Software Engineering

Richard Torkar, Carlo A. Furia, Robert Feldt, Francisco Gomes de Oliveira Neto,
Lucas Gren, Per Lenberg, and Neil A. Ernst

Abstract—A key goal of empirical research in software engineering is to assess practical significance, which answers the question of
whether the observed effects of some compared treatments show a relevant difference in practice in realistic scenarios. Even though
plenty of standard techniques exist to assess statistical significance, connecting it to practical significance is not straightforward or
routinely done; indeed, only a few empirical studies in software engineering assess practical significance in a principled and systematic
way.
In this paper, we argue that Bayesian data analysis provides suitable tools to assess practical significance rigorously. We demonstrate
our claims in a case study comparing different test techniques. The case study’s data was previously analyzed (Afzal et al., 2015) using
standard techniques focusing on statistical significance. Here, we build a multilevel model of the same data, which we fit and validate
using Bayesian techniques. Our method is to apply cumulative prospect theory on top of the statistical model to quantitatively connect
our statistical analysis output to a practically meaningful context. This is then the basis both for assessing and arguing for practical
significance.
Our study demonstrates that Bayesian analysis provides a technically rigorous yet practical framework for empirical software
engineering. A substantial side effect is that any uncertainty in the underlying data will be propagated through the statistical model, and
its effects on practical significance are made clear.
Thus, in combination with cumulative prospect theory, Bayesian analysis supports seamlessly assessing practical significance in an
empirical software engineering context, thus potentially clarifying and extending the relevance of research for practitioners.

Index Terms—practical significance, statistical significance, Bayesian analysis, empirical software engineering
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1 INTRODUCTION

AMAIN goal of research in empirical software engineer-
ing (ESE) is assessing practical significance: what is the

impact of the research findings in realistic scenarios? To this
end, statistical analysis has been used extensively in ESE for
decades. Nonetheless, the bulk of research has focused on
defining and implementing guidelines for experimental de-
sign (from case studies [1] to grounded theory [2] and exper-
iments [3]) and statistical analysis (from statistical testing [4]
to Bayesian modeling [5]). In contrast, practical significance
is rarely discussed explicitly or quantitatively [6].

The most common approach to assessing the significance
of findings is built on top of statistical significance, which
is extended in a quantitative way. A common example
are effect size measures (such as Cohen’s d, or the size of
coefficients in a regression model): if the effect size of a
technique A is markedly bigger than the one of another
technique B, this is taken as an indication that A performs
better than B in practice. This common approach overlooks
the issue that assessing practical significance on statistical
measures such as effect sizes makes it hard to ensure that the
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statistics accurately reflect expert knowledge. In particular,
practitioners (who are the experts) may not be familiar with
the nuances of the various statistical techniques and how
they are used.

Furthermore, showing statistically that one technique
performs better than another one does not automatically
mean that this makes a difference in practice. Using effect
sizes frames practical significance as a general property [7];
however, it is much more likely to be a context-dependent
property, as whether a technique will be better than another
in practice depends on the context where those techniques
will be deployed. Therefore, a quantitative assessment of
practical significance should be expressible in terms of (or,
at least, clearly connected to) measures in the application
domain that are used by the domain experts. For example,
return on investment, time, and personnel costs are all
measures that are appropriate for an evaluation of economic
impact.

Grounding practical significance in domain-specific met-
rics also supports a clear communication of the expected
impact of the solutions that have been empirically assessed;
in other words, how each solution would help practition-
ers [8], and how they could choose the one most appro-
priate for their needs [9], [10]. Establishing such a clear
communication would ultimately enhance research’s long-
term impact [9], [11].

In this paper, we demonstrate how a combination of
Bayesian analysis [5], [12], [13] and cumulative prospect
theory [14], [15] provides a serviceable means of assessing
practical significance in ESE. Using data from a case study
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of testing practices [16] (comparing exploratory testing to
testing based on predefined test cases), we illustrate how
one can formulate and assess different measures of practical
significance, all expressed in terms of metrics that make
sense in the application domain (such as the hourly cost
and seniority of programmers).

We use Bayesian statistics to design and fit a model of
the empirical data. The model is quantitative, incorporates
expert knowledge in the domain metrics of interest, and can
be used to perform predictions. We then use cumulative
prospect theory to connect probabilities in the Bayesian
model to utility metrics of possible outcomes. The connec-
tion is actionable, in that it supports decision making based
on the applicability, risks, and costs of different scenarios.
If one would take this one step further, these costs per
scenario could greatly reduce the need for human subjects
for validating research results as cumulative prospect theory
will provide us with strong indications of what decision a
human will take.

1.1 Cumulative Prospect Theory
Cumulative prospect theory (CPT) is a framework devel-
oped in behavioral economics to model decisions under
risk and uncertainty [14] and has been applied for practical
decision making, e.g. in medicine [17]. CPT models several
aspects of human decision making, such as sensitivity to
how options are framed, non-linear sensitivity to risk, and
loss aversion; based on these factors, a CPT model defines
the utility of a certain decision’s outcome.

Software engineering practitioners are faced with de-
cision making under uncertainty, so CPT is also a useful
framework in this domain. As a simple example, consider a
manager who is organizing a code review. Two options are
available to them: approach A, which guarantees a value
of $940; and approach B, which gives a value of $1000
with 95% probability, and no value ($0) with 5% probability.
CPT indicates that most managers will choose A given its
certainty, even though the expected utility of B is slightly
better (as 0.95 × 1000 = $950 > $940). This behavior is a
manifestation of risk aversion, which may also depend on
how the problem is framed.

CPT can provide a suitable model of how decisions are
made in software engineering practice as well. As we show
in this paper, empirical data can be used to fit probabilistic
models of different outcomes; the probabilities correspond
to risks in a CPT model. The latter also acts as a sort
of “high-level interface” for the practitioners and decision
makers, who do not have to understand the statistical model
but can reason in the more familiar terms of risks and utility
values of each possible outcome. Domain expertise remains
crucial to build a suitable CPT model: in the previous ex-
ample of code review approaches A and B, domain experts
would estimate the profits and costs associated with each
option.

1.2 Proposed Solution
We combine cumulative prospect theory and Bayesian
statistics to assess practical significance of ESE data. Figure 1
gives an overview of our approach. We use CPT to model
the possible decisions, how they are framed, and the risks

associated with them. Then, we use Bayesian statistical
analysis to infer the probabilities that quantify the risk of
each decision. While in principle any statistical approach
could work, Bayesian models are better suited because
they provide a detailed posterior distribution of the possible
outcomes (instead of just point or interval estimates), which
can be seamlessly combined with CPT models. In addition,
Bayesian models are easy to interpret [5] and naturally
incorporate expert knowledge and assumptions through the
use of priors.

Our approach is applicable to many ESE topics and
subject areas, as long as the investigation is suitable for a
quantitative analysis based on statistical methods. In this
paper, we do not investigate the connection between our
proposed framework and qualitative analysis in empirical
software engineering, as both approaches are complemen-
tary. In other words, we assume that there are strategies
to identify and measure values that can be translated into
decisions framed as weighting functions.

As an illustration (Figure 2), consider that we investi-
gate whether to favour the execution of a bigger, costlier,
but more thorough test suite versus smaller, cheaper, and
relatively superficial test suites. Using data collected from
mining software repositories and an expert’s opinion, we
can create a generalized linear model (GLM) to analyze how
the different sizes of test suites affect executions costs, as
well as the number of failures that are revealed and must be
fixed. Ultimately, the model provides input to calculate the
utility of both types of test suites in connection to different
probable scenarios, such as the test execution costs based on
the unlikely situation of revealing too many failures.

We evaluate the feasibility of this approach in three
steps. First, we reanalyze a previously published empirical
study [16] using Bayesian techniques. Second, we combine
the Bayesian model with CPT under plausible practical
application scenarios. Third, we ask practitioners to com-
pare the information provided by the original study [16] to
that derived by our combination of Bayesian statistics and
CPT, and to indicate which better supports their decisions.
Overall, we demonstrate how to build a rigorous model
of practical significance, and the advantages of reporting
significance results in a way that is grounded in concrete
decision-making scenarios—in contrast to the traditional
approach that presents general statistics in a more abstract
form.

In summary, the contributions of this paper are:
• An approach that connects statistical inference and

practical significance to frame empirical findings in a
way that supports practitioners in making decisions.

• A case study of applying cumulative prospect theory in
ESE.

• A reanalysis of previously published data [16], which
revisits the original findings and extends them to a
context of practical significance. Our analysis is repro-
ducible and available online 1.

This paper is structured as follows. Section 2 presents
the background for both Bayesian analysis and CPT, so as
to introduce readers to the essential terminology and steps
of both techniques. We present our analysis in Section 3,

1. https://github.com/torkar/docker-b3

https://github.com/torkar/docker-b3
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Fig. 1. Assessing practical significance using a combination of Bayesian analysis and cumulative prospect theory.
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Fig. 2. An illustration of our approach using BDA and CPT applied to the decision between bigger or smaller test suites for cost-effective testing.
The GLM enables the prediction of failures based on the test suite sizes via a Binomial likelihood. The expert (senior test manager) provides the
cost model of running a test suite (e.g., including costs for both size and fault fixing) that is then framed as choices between test suite sizes with
corresponding utility values. Practitioners then choose the outcome with higher prospect utility.

followed by the application of CPT in Section 4. The results
from the validation of our approach with practitioners are
presented in Section 5. In Section 6 we discuss the impli-
cations of our work, while in Sections 7 and 8 we present
threats to validity and conclude the paper.

2 BACKGROUND AND RELATED WORK

In order to present the background of our research, we intro-
duce the essential terminology and techniques of Bayesian
statistical analysis and CPT. We also discuss related work
in ESE literature that also targets the practical impact of
research findings.

2.1 Bayesian Analysis

Data analysis relies on statistical analysis to infer proper-
ties of a population that follows an underlying probability
distribution. Since the actual underlying distribution is of-
ten unknown, statistical inference estimates probabilities by
generalizing the frequencies observed in finite samples of the
population.

There exist different families of probability distributions,
such as uniform, normal, binomial, Poisson, Beta, etc. Each
distribution in a certain family is characterized by the val-
ues of one or more parameters θ1, . . . , θn, which fix the
distribution’s shape. For instance, a normal (also called
Gaussian) distribution has two parameters: mean µ and
standard deviation σ. The key goal of statistical analysis is
to estimate a distribution parameter θ from sampled data D
that was drawn from the population. In Bayesian statistics,
this is expressed as estimating the probability P (θ | D) of
the parameters given the data, which obeys Bayes’ theorem:

P (θ | D) =
P (D | θ)× P (θ)

P (D)
, where: (1)

• P (θ | D) is the posterior distribution and is what we want
to estimate.

• P (D | θ) is the likelihood that the data was drawn from
a distribution with parameters θ.

• P (θ) is the prior, which encodes prior knowledge by
constraining plausible values for the parameters θ in-
dependent of the data.

• P (D) is simply a normalizing constant.

As a concrete example, imagine that we are investigating
the number of tests failing during a build of a certain
project.2 We would like to infer the failure rate, i.e., the prob-
ability pi of a test failing in an arbitrary build. The binomial
distribution family represents sequences of n events each
with a fixed probability of success p. In our example, the
n events are the tests that are executed in each build, and
pi is the probability of failure for test i. Thus, draws from
the distribution Binomial(n, p) capture the likelihood of
observing a certain number of tests failing given parameters
n and p.

The case study in Section 3 demonstrates these concepts
in greater detail. For additional technical details about how
Bayesian analysis is applied, we refer to [5] and [12]. The
key features of a Bayesian approach, which makes it best
suited to analyze practical significance are:

1) It can incorporate prior knowledge.
2) It produces a posterior predictive distribution (PPD).

a) The PPD is conditioned on the observed data.
b) The conditioning allows us to update our beliefs of

the unknowns.
c) The variation indicates any remaining uncertainty in

our beliefs about the unknowns.

2. For the sake of simplicity, we assume that a test either passes or
fails (no flaky behavior or timeouts are possible).
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d) It produces estimates of the standard deviation of the
marginal posterior distributions.

3) It produces Bayesian uncertainty intervals, which quan-
titatively measure degree of belief after seeing the data.

2.2 Cumulative Prospect Theory
A fitted Bayesian model can be used to simulate new scenar-
ios that generalize those in the observed data. Each scenario
is associated with different outcomes, costs, and potential
benefits. In the example of testing outlined in the previous
section, different testing practices lead to different failure
rates and have different application costs (for example be-
cause they require more developers); on the other hand, fail-
ing tests have to be fixed, which introduces additional costs.
We use cumulative prospect theory (CPT) [14] to support a
decision-making process, which is based on scenarios that
are modeled statistically.

CPT is a widely used decision-making modeling frame-
work, which accounts for experimentally demonstrated fea-
tures of human behavior when making a decision:
• Loss aversion is the preference for avoiding losses over

gaining advantages—even when the latter would out-
weigh the former.

• Framing effects refer to the widespread psychological
phenomenon that the same data may lead to very
different choices according to how (in which scenario)
the data is presented.

• Nonlinear preferences: humans associate risk to the 0–
100% probability scale in a way that is not uniform.
For example, the difference between a 99% and 100%
risk is considered more significant than the difference
between a 10% and 11% risk.

• People tend to be risk averse, except in specific scenarios
where they are more likely to actively seek risks: when
there is a small probability of winning a large prize and
when choosing between a sure loss and a substantial
probability of an even larger loss.

• Source dependence refers to the influence of domain
expertise on preferences. Decision makers usually feel
more confident within their area of expertise even when
they have limited and noisy data—often even more
confident than when they have detailed data about an
area they are not familiar with [18].

Concretely, CPT represents a decision using a function
ν : X → R that maps each possible outcome x ∈ X of the
decision to its value ν(x). A positive value is a gain, and
a negative one is a loss. We associate each outcome x with
a weight that reflects the outcome’s probability corrected
to account for how it is subjectively perceived (according
to the phenomena listed above). More precisely, CPT pro-
vides standard weighting functions that can be applied
to any probability distributions of outcomes to derive the
“subjective” probability associated with any outcome. The
subjective expected utility value EU (X) of the decision is
the weighted average of the value of all possible outcomes—
each weighted by its subjective probability, which in turn
is based on the outcome’s “objective” probability (from a
statistical model).

Continuing the example of the failing tests, we imagine
a manager choosing between two testing approaches A and

B. Each approach leads to a series of outcomes with dif-
ferent probabilities. The probabilities come from a statistical
analysis of the available data from using A and B in the
past. For instance, we may learn that approach A: 1) fails
to produce bug-revealing tests in 3% of its applications;
2) generates too many redundant failing tests in another
3% of applications; 3) and works fairly successfully in the
remaining applications. According to CPT, each outcome’s
probability is weighted so as to reflect loss aversion or other
subjective phenomena. For instance, if the losses associated
with outcomes 1 and 2 above are very large, the overall ex-
pected value of testing approach A should be small because
the person in charge of the decision is more likely to avoid
any risk of large losses.

An additional advantage of using CPT on top of a
pure probabilistic model is that the notion of subjective
expected value of a decision is intuitive and understandable
by decision makers—building a kind of abstraction layer on
top of a harder-to-interpret probabilistic model.

2.3 Practical Significance in ESE

Practical significance is important in an engineering dis-
cipline where research should inform “solutions to prac-
tical problems” [19].3 Indeed, the emergence of empirical
software engineering was driven in part by the desire to
identify effectiveness and significance in practice. For exam-
ple, one of the early guides to ESE research [20] highlights
the need to “differentiate between practical and statistical
significance”.

Despite this early agenda, practical significance is rarely
explicitly discussed in software engineering research pub-
lications [6]. When it is, there is a tendency to conflate it
with statistical measures of strength of evidence. Unfortu-
nately, even when rigorous statistics are applied to carefully
controlled experiments, they may not generalize to realistic
conditions [21]–[23].

Other kinds of evidence (besides controlled experiments)
may also support claims of practical significance. For ex-
ample, case studies support generalization by providing
instances that probe the boundaries of the applicability
domain [24]. Another approach is framing software engi-
neering as a design science [8], [25], which focuses on the
feedback loop between problem space and solution space.
Then, practical significance can be tested when a solution is
deployed in a practical setting.

Another important aspect of generalizability, and hence
practical significance, that can be evaluated empirically is
scalability to realistic settings [25]. Even more fundamental is
that the investigated problem must be important to industry
practitioners. This is tricky because the practitioner’s view
is typically tied to a specific problem context. For example,
[7] mentions the example of a defect prediction study that
focuses on predicting defects. Most of the value for practi-
tioners does not lie in defect prediction per se but rather in
how this information can guide decisions and explain the
origin of defects. In this paper, we use CPT to model such
connections between a technique’s raw performance and its
value in terms of decision making.

3. Still, one’s definition of “practical” may differ from another’s.
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Effect sizes and replications are the main tools of statisti-
cal analysis that can support assessing practical significance.
Effect size measures connect the outcomes of statistical tests
to a measure of real-world impact. There are numerous
effect size approaches, including R2 in regression models
(portion of variance explained), regression coefficients, Co-
hen’s d (standardized mean difference), Hedge’s g, Cliff’s
δ (differences for ordinal data), and odds-ratios to capture
relative effects.4

When researchers translate a raw effect size number into
practical terms (moving from the estimate to population
effects), they often use Cohen’s t-shirt sizing approach (S,
M, L). Correll [26] describes in detail the problems with this
categorical approach to effect size, including inconsistent
bin thresholds, and Cohen himself said binning was a last
resort: “contextual, subjective judgment of observed effect
sizes must be made and a ritualized interpretation avoided”
(emphasis ours, as quoted in [27]). The effect size is impor-
tant, because frequentist analysis uses estimates of expected
effect size to determine the appropriate sample size, given
a particular power threshold (typically 80%). Notwithstand-
ing these existing and well-investigated effect size metrics,
in empirical software engineering research reporting effect
sizes is not widespread [27], albeit, as can be seen from
[6], a positive trend is visible (when not controlling for the
possibility that journals publish more papers on a yearly
basis). More importantly, effect size ignores the context of
decision making. A raw number reflecting (for example) the
standardized difference of means is hard for practitioners
to interpret and must be contextualized. Decision analysis
is the use of results from statistical inference to support
decision-making in a specific context, for which effect size
or, as in this paper, posterior predictive distributions, serve
as inputs.

3 CONNECTING STATISTICAL SIGNIFICANCE WITH
PRACTICAL SIGNIFICANCE

Statistical significance in itself does not imply that an effect
has practical value or utility. Rather, practical significance is
assessed on top of a statistical model that summarizes the
data and its variability. As a concrete case, to show how such
an analysis can be performed, we first analyze a previously
published study on testing practices [16], following the first
four steps in Fig. 1. Below, we provide further details on
this case study, its statistical modeling and significance,
as well as noting differences between different statistical
approaches.

3.1 The Case Study

The study described in [16] compares exploratory testing
and testing based on documented test cases. In exploratory
testing, developers are free to experiment with the system in
an interactive fashion. In test-case based testing, developers
are required to document their work by writing test cases
and oracles, which can be re-executed at any later time.

4. See https://rpsychologist.com/cohend/ for an interesting visual
tool for exploring effect sizes using Cohen’s d.

TABLE 1
Summary statistics about the experimental data. For each category of
developers (low or high): the number of developers, and the median,
mean, standard deviation, minimum, and maximum number of faults

each of them found during the experiments.

faults found through testing

experience n median mean sd min max

low 12 3 4.3 4.3 0 20
high 23 5 6.0 5.3 0 18

any 35 4 4.9 4.7 0 20

The experiment we consider here involved 35 develop-
ers, classified into two categories according to their expe-
rience (years spent as software developers): 12 less expe-
rienced testers, and 23 more experienced ones. The devel-
opers included both industrial practitioners and software
engineering students. Unsurprisingly, on average, members
of the former group had more experience than members of
the latter; but some students were still classified as “more
experienced” and some practitioners as “less experienced”.

Following a 2 × 2 cross-over experimental design, each
developer was randomly assigned to one of the two testing
approaches (exploratory or test-case based), so that each
combination of approach and experience included a similar
number of developers. After the first session the developers
switched techniques.

During the experiment, developers had to apply their
assigned testing approach to find as many faults as possi-
ble when testing an integrated development environment
(jEdit). The number of faults found during the allotted
time (two 90-minute sessions) measured each developer’s
effectiveness—which should reflect, thanks to randomization
and experimental design, the intrinsic effectiveness of differ-
ent testing techniques. Table 1 summarizes the experimental
data.

3.2 Statistical Modeling
The main goal of our statistical analysis is inferring a
probability distribution of the number of faults detected
by developers testing the system. Thus, the outcome is a
natural number (N) faults, which depends on two categorical
predictors capturing the testing approach (exploratory or
test-case based) and the developer’s experience (low or high)
in each trial.

Population-level effects model. Let us first consider a
general linear model M1. Since faults is a non-negative
integer variable representing a count, a Poisson distribution
is a suitable likelihood distribution [12] relating predictors
and outcome, as shown in Eq. (2) inM1’s definition below.
Both faults and λ have a subscript i, which makes it explicit
that we evaluate the model for each subject i among all
35 developers (the dependence on the subject is usually
left implicit; we make it explicit so that it is clear what
depends on the subject and what does not). The Poisson
distribution’s rate λ is the log-linear function (Eq. (3)) of
the predictors approach and experience—each modeled as a
binary indicator variable for the two possible approaches
and experience levels. Finally, to apply Bayes’ theorem we
need to define priors for M1’s parameters α, βa, and βe.
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A standard choice, which works well in most cases, is a
weakly-informative prior such as a normal distribution with
zero mean and moderate standard deviation, as shown in
Eq. (4). This prior does not bias the effect that the predictors
may have towards positive or negative values, and it still
allows for a large range of possible parameter values—even
though extreme values (corresponding to very large effects)
are increasingly unlikely.5 Here is the overall definition of
M1.

faultsi ∼ Poisson(λi) (2)
log(λi) = α+ βa · approachi + βe · experiencei (3)
α, βa, βe ∼ Normal(0, 1.5) (4)

FittingM1 using the data gives a joint probability distri-
bution on the parameters α, βa, βe, which together identify
a posterior probability distribution of faults given the data.
According to Eq. (3), the parameters connecting predictors
to outcome are the same for every subject in the experiment
(that is, they do not depend on i); thus M1 is a population-
level effects model.6

Varying effects model. Bayesian analysis stresses the
importance of modeling data under different assumptions.
Therefore, let us consider ways of extendingM1 into a finer-
grained M2, which may capture additional characteristics
of the data under analysis.

By looking into the data more closely, we note that over
18% of the developers found no faults during the experi-
ments; that is, outcome faults = 0 occurs more frequently
than what a Poisson distribution predicts. To account for
this, we use a zero-inflated Poisson distribution as likelihood
in M2. As shown in Eq. (5), such a distribution depends
on a rate λ, like in a regular Poisson, but it may produce
a count of zero with probability p in each draw. However,
unlike λ, for parameter p we use a logit function. As shown
in Eq. (8), we assume that only variable approach may affect
p since all cases of developers finding zero faults occurred
when using test-case based testing.

The other modeling assumption of M1 that we want
to reconsider are the population-level effects. To account
for the possibility that each subject i may have different
intrinsic skills at finding faults, we add an intercept term
αSUBJECTSi

to our linear regression (Eq. (7)). This term
represents the “baseline” contribution of each subject to the
number of faults that are detected. In summary, this makes
M2 a varying effects model.7

As in M1, M2’s priors are weakly informative; the
standard deviation σs, for the subject-specific intercept
αSUBJECTSi

, follows a half Cauchy distribution (Eq. (9)),
which is a common choice [28] for a standard deviation (a
non-negative real value). Here is the overall definition of
M2:

5. Choosing even weaker priors, such as completely flat ones, would
not affect the overall inference but may make sampling less efficient.

6. Population-level effects are often known as “fixed” effects.
7. Varying effects are often known as “random” effects.

faultsi ∼ ZIPoisson(pi, λi) (5)
log(λi) = α+ βa · approachi + βe · experiencei (6)

+ αSUBJECTSi
(7)

logit(pi) = αp + βp · approachi (8)
αSUBJECTS ∼ Normal(µs, σs) (9)
α, βa, βe ∼ Normal(0, 1.5) (10)
αp, βp, µs ∼ Normal(0, 1.5) (11)

σs ∼ Cauchy+(0, 1) (12)

As for M1, fitting M2 using the data gives
a joint probability distribution on the parameters
α, βa, βe, αSUBJECTS, αp, βp, which together identify a pos-
terior probability distribution of faults given the data.

More precisely, the posterior is derived using statistical
frameworks such as Stan [29], which work by sampling nu-
merical approximations. Therefore, in practice, the posterior
is not an analytical expression but rather a computational
object.

Model comparison. We introducedM2 as a refinement
of M1 based on some features of the data under analysis.
This should make M2 fit the data better, but it may also
increase the risk of overfitting. Fortunately, Bayesian analysis
offers techniques to quantitatively compare models selecting
those that achieve the “best” trade-off between fitting the
data accurately while avoiding overfitting.8 To this end, we
use an information criterion. An information criterion is
a relative measure of how well a model performs out-of-
sample predictions compared to other competing models.

In our case, the PSIS-LOO state-of-the-art information
criterion [30] indicates thatM2 outperformsM1 in out-of-
sample prediction (see the replication package for a thor-
ough explanation of this part of the analysis). Therefore, we
use M2 in the rest of our analysis, since it captures trends
in the data better, while avoiding overfitting.

3.3 Statistical Significance

The posterior is a probability distribution over the param-
eter space, which quantifies the degree of belief in each
possible combination of parameter values. Therefore, it cap-
tures probabilistic features of the process we are analyzing,
namely how fault detection is affected by the chosen testing
approach and the developer’s experience.

From the posterior’s joint probability distribution we can
compute the marginals for the parameters of interest. For
example, Fig. 3 displays the marginals of coefficients βa and
βe. Parameter βa models the effects of the testing approach
used by each developer (named ‘Technique’ in the figure)9.
Since βa is estimated to be very clearly negative, it means
that the chosen testing approach consistently correlates with
the number of faults that are found. Since approach is a
binary variable, with 0 corresponding to exploratory testing
and 1 corresponding to test-case based testing, a negative
coefficient βa means that exploratory testing is associated

8. Posterior predictive checks were conducted for each model to
judge the degree of fit.

9. Note that we use 94% rather than 95% intervals in the figure since
the former is customary in the field of CPT.
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Technique

Experience
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Fig. 3. Posterior marginal probability distributions of βe (experience, top)
and βa (approach, bottom named ‘Technique’). The thick lines mark the
medians, and the yellow areas cover 94% of probability.

TABLE 2
Summary statistics of all population-level parameters in M2: mean

(estimate), standard deviation (error), and lower and upper endpoint of
the 94% probability interval (credibility interval) of the parameter’s

posterior.

parameter mean std. dev. 94% CI

α 1.95 0.10 1.75, 2.13
βa -1.47 0.18 -1.83, -1.13
βe 0.33 0.15 0.03, 0.63
αp -4.61 1.35 -7.75, -2.56
βp 3.39 1.61 0.56, 6.80
σs 0.29 0.09 0.10, 0.45

with more faults being detected. In contrast, parameter βe
is likely positive. Since it models the effects of developer
experience (another binary variable with 0 corresponding to
low experience) it means that more experienced developers
tend to find more faults. However, βe’s distribution in Fig. 3
has a non-negligible overlap with zero. Hence, we have
weaker confidence in the significance of experience than we
have in the significance of the testing approach.

Table 2 summarizes the posterior of all population-level
parameters ofM2. Through them, we can analyze other fea-
tures of our fitted model. For instance, βp is clearly positive,
which means that test-case based testing is associated with
a higher probability of detecting no faults.

Towards practical significance. By analyzing a posterior
probability distribution we can move from statistical sig-
nificance to practical significance. Since a full distribution
is available, we are not limited to measuring probability
intervals of the model’s parameters, but we can also cal-
culate probabilities of outcomes—that is what is the expected
number of detected faults in different scenarios.

Concretely, we derive different marginal distributions
from the posterior according to specific usage scenarios
that we may want to analyze. For example, to estimate
the expected number of faults that would be detected by
a developer using exploratory testing (approach = 0) or by
one using test-case based testing (approach = 1). Figure 4
(left figure) shows the ranges spanning a 94% probability
interval, which not only confirm that exploratory testing
is expected to be more effective but quantify the expected
difference (roughly three times as many faults found).

A similar analysis comparing developers with different
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Fig. 4. Left: expected number of detected faults with 94% probability for
developers using exploratory testing and test-case based testing. Right:
expected number of detected faults with 94% probability for developers
with low experience and high experience.

TABLE 3
Expected number of faults detected for different combinations of

predictors in M2. Each row reports the range of faults corresponding
to 94% probability and the mean on the posterior.

developers fixed predictors 94% CI mean

low experience experience = 0 1, 8 4.02
high experience experience = 1 1, 11 5.67
exploratory testing approach = 0 6, 11 8.27
test-case testing approach = 1 1, 2 1.42

exploratory and low approach = 0
experience = 0

6, 8 6.92

exploratory and high approach = 0
experience = 1

8, 12 9.61

experience, in Fig. 4 (right figure), suggests instead that
the fault-detection performance of developers with different
experience can still be very similar as the two intervals
have a large overlapping—even though more experienced
developers are slightly more effective on average.

Table 3 reports the same information numerically, and
extends the analysis to other scenarios such as comparing
the effects of developer experience on the number of faults
detected using exploratory testing. In Sect. 4 we will show
these probabilities buttress a rigorous analysis of practical
significance.

3.4 Bayesian vs. Frequentist Analysis of Significance

Overall, the high-level results of our Bayesian reanalysis are
consistent with those of the original study [16]: exploratory
testing performs significantly better than test-case based
testing when looking at the number of faults found; the
impact of experience is ’clearly’ significant in the origi-
nal study, while in the reanalysis one can question that.
Unlike our reanalysis, the original study used frequentist
statistics—similarly to previous analyses of the same pro-
cesses [31], [32].

Even though the big picture does not change—and there
is no reason it should—the distinctive features of Bayesian
statistics make our reanalysis results more directly useful
to assess practical significance in a robust and insightful
way. The Bayesian emphasis on modeling entails that we
could consider and compare different competing statistical
models on the grounds of their characteristics and perfor-
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mance. More important, features of the chosen model M2

strengthen our understanding of the studied phenomenon:
zero-inflation indicates that a significant portion of the trials
found no faults; a varying-effects term accounts for the
significant individual differences among developers. These
model features do not affect the conclusion that one testing
approach performs significantly better than the other; but
they help quantify the relative weight of different factors
more precisely and in terms of phenomena in the actual
problem domain.

The other key feature of Bayesian analysis that strength-
ens our understanding of the studied phenomena is the ca-
pability of deriving probability distributions of the outcome
variables. In our case, we derived the expected number of
faults a pool of developers with certain characteristics would
find. This expresses the “significance” of a certain difference
between treatments in terms of measures that are relevant
in practice in the domain of testing processes.

As we show in the next section, this feature is also the
basis to combine a statistical model of the data with features
of how humans assess probabilities and make decisions—
leading to an all-round assessment of practical significance.

4 ARGUING PRACTICAL SIGNIFICANCE

We want to frame practical significance in a way that it
supports choices between alternatives. Based on our case
study, we imagine a manager who can select a testing
approach (exploratory or test-case based) and developers
with lower or higher experience. To support the manager’s
choices, we quantify the expected utility of each choice: a
monetary value that approximates the gains (if positive) or
losses (if negatives) that are likely to derive from that choice.

Even though our example can be seen as simplistic, it
is grounded on a need that partners in industry had, when
deciding between two test techniques [16]. However, more
complex decisions can also be made, in particular when
involving multiple stakeholders with conflicting views. But,
in those cases one would need to look at game theory as the
underlying decision-making framework [33]. In our case,
one could rather see an alternative, and if you will, more
straightforward, approach.

4.1 Value and Weight Functions
A simple approach would just use the probabilities of dif-
ferent outcomes (computed fromM2) to average the value
ν(x) of each possible outcome x of decision X . Instead,
we use cumulative prospect theory (CPT) to “adjust” the
probabilities so that they reflect how humans are likely
to perceive alternatives. The expected “subjective” utility
EU (X) of decision X is given by the weighted average,10

EU (X) =
∑
x∈X

w(P (x)) · ν(x). (13)

where w is a weight function that adjusts the probability P (x)
of each outcome.

In Eq. (13) above, P can be computed from our posterior
probability distribution. As weight function we can use a

10. If the outcomes are a continuum, the average should be computed
using an integral and cumulative probabilities.

standard function proposed by Tversky and Kahneman [14].
The idea of this function is that intermediate probabilities
are flattened as if they were similar, whereas probabilities
closer to the extremes are accentuated. This reflects the
human perception that tends to conflate small probabilities
with impossibility, and large probabilities with certainty.

We are left with providing a definition of ν(x) for each
possible outcome x. In our case study, outcome x corre-
sponds to faults = x, that is x faults detected during a testing
session. We can associate a monetary value to each outcome
based on the costs and benefits that come with it:

ν(faults = x) = (S · x)− (C · h) (14)

where S are the savings for each fault found, C is the hourly
pay of a developer, and h is the number of hours of a
testing session. Since our study’s experiment involved 2×90
minute sessions, we set h = 3. The manager of a company
could suggest values for S and C . In this section, we take
S = $150, C− = $100 for low-experience developers, and
C+ = $200 for high-experience developers. These values
are realistic values for a small software company in Sweden.

4.2 Utility of Different Choices

Consider three possible choices a manager has to make, and
compute the expected utility according to Eq. (13).
approach: the manager chooses whether developers use

exploratory testing or test-case based testing; the avail-
able developers are a mix of low-experience and high-
experience

experience: the manager chooses whether to hire low-
experience or high-experience developers to do testing;
they will use a mix of exploratory and test-case based
testing

exploratory: the manager chooses whether to hire low-
experience or high-experience developers to do ex-
ploratory testing

Whenever there is a mix of options, we assume it reflects
averages in our data (i.e., the sample is representative of the
population).

4.2.1 Choosing the Approach

In this scenario, approach is the choice is between us-
ing exploratory testing or test-case based testing. We use
C− = $134.38 as hourly developer cost. This is the average
per-person cost in a pool of 35 developers—23 with low
experience and 12 with high experience as in the dataset.

According to Eq. (13), the expected utility of choosing ex-
ploratory testing is EU (exploratory) = $454.3; the expected
utility of choosing test-case based testing is EU (test-case) =
$8.0. Hence, it is clear exploratory testing is likely to bring
a much higher value.

In addition to expected utility, we can compute the utility
value associated with outcomes with a certain probability.
As is customary in CPT, we split the probability unit interval
into three parts 3%, 94%, 3% and compute utility for each
sub-interval.11 Figure 5 shows the results for the scenario’s

11. We like to present the tails of a distribution, and the tails should
be much smaller than the bulk of the distribution.
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Fig. 5. Utility for different choices in scenario approach: the manager
chooses whether developers use exploratory testing (ET) or test-case
based testing (TCT).
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Fig. 6. Utility for different choices in the scenario for experience: the
manager chooses whether to hire developers with low (LE) or high (ME)
experience.

approach: using test-case based testing would lead to sig-
nificant gains ($315.71) with 3% probability; to significant
losses (−$134.29) also with 3% probability; and to modest
gains ($15.71) in the vast majority of cases (94% probability).
In contrast, using exploratory test-case based testing makes
any losses vanishingly unlikely to happen.

4.2.2 Choosing the Experience

In this scenario, experience is the choice between using de-
velopers with low or high experience. According to Eq. (13),
the expected utility of hiring low-experience developers is
EU (low) = $304.50, and the expected utility of hiring high-
experience developers is EU (high) = $18. This means that,
with the combination of exploratory and test-case based
testing seen in the case study, high-experience developers
are not worth what they cost; low-experience developers
achieve a more favorable trade-off. Figure 6 shows the
breakdown of utility for different ranges of probability in
the scenario regarding experience.

Remember that these results depend on the assumptions
about the cost of undetected faults and the hourly cost of
developers. If, for example, each detected fault would bring
a gain of $1000—rather than $150 as we have assumed
so far—the expected utility of hiring low-experience de-
velopers would become $6700, smaller than the expected
utility $9400 of hiring high-experience developers. In other
words, if finding as many faults as possible is critical,
even the modest performance advantage of high-experience
developers may be worth the higher costs.
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0.94 900

0.03 450

0.03 1050

0.94 750

0.03 450

ME

LE

E & T

Fig. 7. Utility for different choices in the scenario exploratory: the
manager chooses whether to hire developers with low (LE) or high
experience (ME) to perform exploratory testing.

4.2.3 Choosing the Experience, Given Exploratory Testing
In this scenario, exploratory is the choice, again, between
using developers with low or high experience, but all of them
use exploratory testing. In this case, the expected utility of
hiring low-experience developers is EU (low + exploratory) =
$750; the expected utility of hiring high-experience devel-
opers is EU (high + exploratory) = $900. More experienced
developers are worth their higher pay in this scenario; but
the difference is small, and hence a manager may also
include low-experience developers if high-experience ones
turn out to be hard to find or unavailable. Figure 7 shows
the breakdown of utility for different ranges of probability
in the scenario of experience.

4.3 Usage of CPT to Foster Practical Significance
In summary, we used CPT to evaluate the practical impact of
our investigation with respect to both the testing approach
and the experience of testers. We designed three choice
problems related to the factors investigated in our exper-
iment, and provided different outcomes for each choice
problem, along with a suggested decision based on the
utility of those choices.

Cumulative prospect theory allows us to explicitly dis-
cuss and present practical significance by creating choice
problems based on Bayesian analysis. The original study
did not include a discussion about the practical impact of
its results in connection to the costs of a fault or other
contextual data from industry. Using our approach in a
hypothetical context with costs for faults and salaries, we
could instead illustrate how statistical predictions and CPT
support decision making.

We should be clear that our values for costs of faults and
salaries are arbitrarily chosen—though based on estimates
of the Swedish job market—and could change dramatically
according to the software’s domain, the characteristics of the
company, and many other factors [34]. Our only assumption
is that it is somewhat possible to estimate such costs by col-
lecting the necessary information from research, practition-
ers, and common knowledge.12 Whenever this assumption
is satisfied, this approach is applicable.

12. When a precise estimate is unavailable, the model could also
incorporate uncertainty in the estimates as probability intervals, and
calculate how the uncertainty in the estimates translates to uncertainty
in the outcomes. Interested readers can try this out in our analysis using
the supplementary material.
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5 VALIDATION WITH PRACTITIONERS

Section 4 demonstrated our approach of applying cumu-
lative prospect theory (CPT) on a posterior probability
distribution to argue significance in terms of costs and
benefits in practice. On the other hand, statistics alone can—
and often is—used to discuss significance from a statistical
perspective. To ascertain whether practitioners and domain
experts do indeed find a presentation of significance in
terms of utility clearer than a traditional statistical analysis,
we conducted a qualitative empirical validation. The rest of
this section describes its design and results.

5.1 Validation Design

The overall goal of the validation is to compare two differ-
ent ways of framing significance results: 1) using standard
(frequentist) statistical techniques; and 2) using our com-
bination of Bayesian analysis and CPT. The comparison is
from the point of view of stakeholders using statistically
significant results to make a decision.

Participants. We contacted 22 managers working at two
large companies in Sweden who agreed to participate in
this validation. The participants are a convenience sampling,
and come from both middle (15 participants) and upper
(7 participants) management positions. None of the par-
ticipants were involved in this research, or in the original
analysis of testing approaches [16].

Instruments. We provided all participants with two
summaries of the comparison between exploratory and test-
case based testing: 1) a summary based on the statistics and
results of the original study [16] (using frequentist statistics);
2) a summary based on the statistics and results of the
present paper’s re-analysis (using Bayesian statistics and
CPT). Participants were asked to read the summaries and
answer two yes/no questions about each of the summaries:
approach: Based on the presented information, would you

use exploratory testing?
experience: Based on the presented information, would you

use more experienced testers?
After answering each question with yes or no, partici-

pants also rated, on a 1–5 Likert scale, how confident they
were in their answer (1: not confident at all; 5: completely
confident), i.e., the construct used to assess which approach
was better.

The questionnaire material was prepared by two of the
authors and validated by two other authors.13 The hourly
costs for junior/senior developers and the costs for a bug
was set according to the participating companies’ input,
i.e., $60, $70, and $10, 000, respectively. The questionnaire
was then used at two workshops. One of the authors was
available to answer any questions about the questions or the
summaries.

We only retained 18 questionnaires out of 22—those that
had all required information filled in.

5.2 Validation Results

The results of the questionnaires are summarized using
diverging bar charts in Figs. 8–9. Each horizontal bar is

13. The questionnaire is available in the replication package.
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Fig. 8. Responses from 18 subjects about question approach: “Would
you use exploratory testing?”
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Fig. 9. Responses from 18 subjects about question experience: “Would
you use more experienced testers?”

centered on the middle point of the Likert scale (value 3)
and spans the percentage of participants answering with
low (values 1 and 2 on the Likert scale spanning the left of
the middle point) or high (values 4 and 5 on the Likert scale
spanning the right of the middle point).

Figure 8 summarizes the results concerning approach. In
this case, the decisions made by participants do not depend
on how the data is presented. However, the summary based
on our approach combining Bayesian models and CPT tends
to increase the confidence in the decision: 61% of partici-
pants were fairly or completely confident—instead of 39%
with the “traditional” summary.

Figure 9 summarizes the results concerning experience.
In this case, the summary based on our approach convinced
all participants to choose more experienced testers, whereas
the “traditional” statistical summary convinced only 78%
of them. As in the answer to the other question, Bayesian
models and CPT tend to increase the confidence in the
decision: 39% of participants were completely confident—
instead of 6% with the “traditional” summary. In both cases,
confidence in answering this question was higher than in
answering question approach.

By analyzing the recorded discussions after the session
we received a qualitative, richer, view on the perception
the subjects had concerning the two approaches, which we
define as Case 1 (the original study’s results) and Case 2 (the
results we propose in this paper).

First, it is worthwhile to note that the subjects were only
asked, in a group session, two questions to start the discus-
sions concerning Case 1 and 2: How do you make sense of
the results in [Case 1 or Case 2]? Second, the subjects spent
approximately twice as much time discussing Case 2. Quite
simply, the subjects exhausted Case 1 much sooner. If we
consider two very representatives quotes concerning Case
1, we will see why this could be the case:
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Quite difficult to understand. In particular the dif-
ference between more or less experienced develop-
ers was very unclear in [Case 1].

and,
I was more looking into the summary [the con-
clusion] . . . it said it was no significant difference
[between more or less experienced developers].

The first quote, which is representative of many com-
ments, indicates that Case 1 is more difficult to understand.
The second quote could be an indication that Case 1’s use of
frequentist statistics, where we fall back on the arbitrary 95%
significance level, did not encourage them to look further.

Concerning Case 2 the following quotes paint another
picture:

Very clear. It becomes so easy [. . . ] makes me
instead think about other things [. . . ] how was data
collected?

,
The example [Case 2] made me start thinking more
about other things that could affect the effective-
ness [of the two techniques].

, and
We can look at a research paper and interpret it
from our [the company’s] perspective.

This validation provides some preliminary evidence
that presenting significance results using a combination
of Bayesian statistics and cumulative prospect theory
might help increase the confidence in a decision between
alternatives—even when the outcome of a decision is not
greatly affected since the underlying data remains the same.

6 DISCUSSION

We have presented a method for how to assess and argue
for the practical significance of empirical software engineer-
ing results. By combining Bayesian Data Analysis (BDA)
with systematic evaluation of outcomes, using Cumulative
Prospect Theory (CPT), different scenarios can be simulated
and compared. While the posterior probability distribution
from BDA summarizes the (scientific) knowledge gained by
the research, the scenario simulation can help practitioners
connect to concrete situations and, thus, increases the prac-
tical significance of the research while also informing deci-
sions. This is supported by our evaluation with managers at
two companies in the software industry.

Applying this approach in other settings is straightfor-
ward. It applies anywhere there is a quantifiable outcome
for a technique, e.g., effort estimation or bug detection.
The caveat is that measurements are only as good as their
construct validity and the precision of the measurement. In
situations where it is very hard to quantify the value of
different outcomes it will be hard to apply the technique.

To apply the approach, we follow the steps outlined in
Fig. 1. To choose value and weighting functions, an initial
approach is to choose a function that is a simple linear/
exponential/sigmoid, as these three categories capture most
of the valuation functions we have seen. Asking practition-
ers for three or four values and selecting between these three
categories should then allow a suitable value function to be

fitted. Other approaches are beyond the scope of this article
but could include fuzzy logic, for example [35].

In situations where the data and/or model is more
complex than the case we re-analyzed here, e.g. when there
are more factors or they interact in affecting the dependent
variable(s), we argue that the proposed methodology should
be relatively more valuable. This is because humans would
have a relatively harder time judging the scenarios or un-
derstanding the effects if there are complex or non-linear
interactions. Simulation and concrete metrics as a basis for
comparison thus will be more important.

There is a risk that the simplicity encouraged by the use
of CPT or, really, any method that considers few factors and
assigns them simple numerical values, would lead software
engineers and managers to not consider the many factors
that are critical to real-world decision making [36]. For an
obvious example, in the case studied here, it would not be
wise for a manager to simply prefer a more experienced
engineer over a less experienced, without considering how
they would fit into the development team. However, we
argue that practitioners understand this and do not expect
research to fully cater to their everyday situation. Also, we
argue that this is a risk with the underlying study itself
regardless of the way the collected data is then analyzed.
However, we still advise caution in the claims that one
makes based on the type of analyses proposed here; the
additional clarity offered by summarizing specific outcomes
in simple numerical values should not be misused.

In closing, we note that there is research on how to
present probabilities and research results for better ef-
fect [37] and that there has also been several criticisms
of CPT [36], [38]. We leave it to future work to explore
alternatives to CPT, in this regard.

7 THREATS TO VALIDITY

The canonical structure used to discuss threats to validity
mainly targets experimental design and sub-sequence sta-
tistical analysis; hence it does not fit this work very well.
Instead, we present our analysis of threats to validity as
“bad smells” of analysis work [39].

1) Not interesting. (Research that has negligible software
engineering impact.) The problem of analyzing practi-
cal significance is itself relevant and significant in prac-
tice, as demonstrated by previous work on statistical
analysis that we summarize in Sect. 2.

2) Not using related work. (Unawareness of related work
concerning RQs and SOA.) Section 2 also discusses the
previous approaches to arguing practical significance,
and their limitations.

3) Using deprecated and suspect data. (Using data out of
convenience.) Our case study is a reanalysis of existing
data, which was recently analyzed in a peer-reviewed
publication [16].

4) Inadequate reporting. (Partial reporting, e.g., only
means.) One of the key features of Bayesian statistics,
which we propose as a basis for a more thorough anal-
ysis of practical significance, is its focus on modeling
complete probability distributions instead of only point
estimates.
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5) Under-powered experiments. (Small effect sizes and
little theory.) While we did not perform power analysis
explicitly, model comparison and other diagnostic tech-
niques of Bayesian data analysis are useful to choose
models based on their effectiveness in practice and in
theory.

6) p < 0.05 and all that. (Abuse of null hypothesis test-
ing.) Null-hypothesis testing is manifestly in contrast to
the statistical modeling approach we propose.

7) Assumptions of normality and equal variances. (Im-
pact of outliers and heteroscedasticity.) In our case
study, we use a (multi-level) generalized linear model
with a Poisson likelihood. Additionally, we employed
multi-level modelling, which helps avoid overfitting
and handle outliers appropriately.

8) Not exploring stability. We did not discuss them in
the paper for brevity, but we ran all recommended
diagnostics of Bayesian analysis to ensure that there are
no stability problems in the fitted models used in our
study, this includes prior predictive checks.

9) No data visualization. We used data visualization to
complement numeric data—focusing on the key mea-
sures of interest.

10) Not tuning, not exploring simplicity, and not justify-
ing choice of learner (overfitting). In our case study, we
explored two competing models, and chose one based
on both theoretical considerations and the information
criterion concerning out-of-sample predictive perfor-
mance. Thus, when tuning our models, we considered
models of different complexity, and we employed tech-
niques to reduce the risk of overfitting.

8 CONCLUSIONS

We presented an approach to argue practical significance
in empirical software engineering. Our approach develops
a Bayesian model of the data, then it applies cumulative
prospect theory on top of the model to incorporate a quanti-
tative notion of utility and how probabilities are subjectively
perceived by humans facing a decision. We demonstrated
the approach on data from a previously published study
comparing exploratory testing to test-case based testing [16].

To ascertain whether our presentation of statistically sig-
nificant results is indeed accessible to practitioners, we con-
ducted a small-scale empirical validation where we asked
managers to report their confidence in decisions concerning
the study’s results. More precisely, we compared decisions
informed by our presentation of practical significance to
decisions based on the original frequentist statistical anal-
ysis [16]. Our combination of Bayesian statistics and cumu-
lative prospect theory tends to increase the decision makers’
confidence.

In future work, we plan to demonstrate our approach on
larger case studies, and to perform more extensive valida-
tions of its usefulness in practice.

REPLICATION PACKAGE

A replication package—including all data analyzed in the
paper, scripts used to perform the analysis, and a Docker
image with the tools to run the scripts—is available at:

https://github.com/torkar/docker-b3
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