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Contract-Based Program Repair
without The Contracts: An Extended Study

Liushan Chen, Yu Pei, Carlo A. Furia

Abstract—Most techniques for automated program repair (APR) use tests to drive the repair process; this makes them prone to
generating spurious repairs that overfit the available tests unless additional information about expected program behavior is available.
Our previous work on JAID, an APR technique for Java programs, showed that constructing detailed state abstractions—similar to those
employed by techniques for programs with contracts—from plain Java code without any special annotations provides valuable
additional information, and hence helps mitigate the overfitting problem.
This paper extends the work on JAID with a comprehensive experimental evaluation involving 693 bugs in three different benchmark
suites. The evaluation shows, among other things, that: 1) JAID is effective: it produced correct fixes for over 15% of all bugs, with a
precision of nearly 60%; 2) JAID is reasonably efficient: on average, it took less than 30 minutes to output a correct fix; 3) JAID is
competitive with the state of the art, as it fixed more bugs than any other technique, and 11 bugs that no other tool can fix; 4) JAID is
robust: its heuristics are complementary and their effectiveness does not depend on the fine-tuning of parameters. The experimental
results also indicate the main trade-offs involved in designing an APR technique based on tests, as well as possible directions for
further progress in this line of work.
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1 INTRODUCTION

Every general software analysis technique based on a finite
collection of tests is prone to overfitting them. In automated
program repair (APR), overfitting is likely to cripple the
performance of tools following the popular generate-then-
validate paradigm [1]–[3], since passing validation against
a finite—often small—number of tests does not guarantee
that a repair is genuinely correct from a programmer’s
perspective.

Leveraging additional information about a program’s
intended behavior is key to mitigating the risk of overfitting.
The AutoFix technique for APR [4] used contracts, made of
assertions such as pre- and postconditions, as a source of
additional information; but support for contracts is limited
or non-existent in the most widely-used programming lan-
guages. Nonetheless, our previous work [5] showed that
it is still possible to generalize some of the techniques for
automated program repair based on contracts so that they
work on plain object-oriented code (without any contracts).
To this end, we introduced JAID: a technique and tool
for automated program repair of Java programs is based on
detailed, state-based dynamic program analyses, which can
extract information from regular code that helps construct
high-quality fixes. JAID was the first generate-then-validate
APR technique that achieved high levels of precision without
relying on additional input other than tests and faulty code; in
contrast, other high-precision APR techniques following the
same paradigm [6], [7] analyze a large number of project
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repositories to collect additional information that guides
fixing.

The present paper extends the previous work on JAID [5]
with a thorough experimental evaluation of its capabilities
based on a revised implementation of the tool. The key
novel contributions include:

• an experimental evaluation of JAID on 693 bugs from
three different benchmark suites;

• a detailed assessment of JAID’s effectiveness (how many
bugs it can fix), efficiency (how quickly it runs), and
used heuristics (for fault localization, fix generation,
and ranking);

• a quantitative comparison of JAID with all automated
program repair tools for Java that are available at the
time of writing;

• a revised implementation of JAID, which remains avail-
able as open source.

JAID’s revised implementation does not change the tech-
nique’s fundamentals and its overall design (which we sum-
marize in Sec. 2) but improves several details of the tool that
collectively make it more widely applicable: 1) JAID now
supports some exception-related Java language behavior
that were not handled correctly in earlier versions; 2) it
avoids crashes in the program state monitoring stage that
led to blocking or failed expression evaluation in earlier
versions; 3) it performs validation more efficiently, by de-
tecting duplicate (identical) fixes. Sec. 2.7 provides details
about these improvements to JAID’s implementation.

These changes helped extend the programs JAID can
actually handle, as demonstrated in the extensive experi-
mental evaluation of Sec. 3 whose results include:

• JAID produced correct fixes for over 15% of the bugs;
• on average, JAID took less than 30 minutes to produce

a correct fix;
• JAID could correctly fix more bugs than any other APR
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tool for Java at the time of writing, including 11 bugs
that no other tool can fix;

• JAID’s heuristics are effective and fairly robust (that
is, JAID’s behavior does not depend on fine-tuning its
parameters).

These results indicate that JAID is a competitive tool at the
time of writing, achieving a combination of effectiveness,
efficiency, and applicability that often compares favorably
to the state of the art. They also outline directions to fur-
ther improve the overall performance of JAID’s algorithm:
improve the precision of fault localization and fix ranking,
and reduce analysis times.

Outline. Reflecting the focus on empirical analysis, the
bulk of the paper describes the design of the experimental
evaluation (Sec. 3), its detailed results (Sec. 4), and threats
to validity (Sec. 5). To make the paper self contained, Sec. 2
gives a high-level view of JAID’s techniques; the conference
paper [5] provides more details about how JAID works.

Terminology. In this paper we use the nouns “defect”,
“bug”, “fault”, and “error” as synonyms to indicate errors in
a program’s source code; and the nouns “fix”, “patch”, and
“repair” as synonyms to indicate source-code modifications
that ought to correct errors. For simplicity, JAID denotes both
the APR technique and the tool implementing it.

Availability. JAID and all the material of the experiments
described in this paper is available as open source at:

https://bitbucket.org/maxpei/jaid

2 HOW JAID WORKS

JAID follows the popular “generate-then-validate” ap-
proach, which first generates a number of candidate fixes,
and then validates them using the available test cases; Fig. 1
gives an overview of the overall process. Inputs to JAID

are a Java program, consisting of a collection of classes,
and test cases that exercise the program and expose some
failures. Since JAID’s approach has not changed but in minor
implementation details since its conference publication [5],
this section makes the present paper self-contained but does
not introduce major novel concepts or techniques.

One key feature of JAID is how it abstracts and monitors
program state in terms of program expressions; all stages of
JAID’s workflow rely on the abstraction derived as described
in Sec. 2.1. The rest of this section gives some details of how
JAID works; the presentation targets the repair of a generic
method fixMe of class FC, with tests T that exercise fixMe in
a way that at least one test in T is failing.

2.1 Program State Abstraction
JAID bases its program analysis and fix generation processes
on a detailed state-based abstraction of the behavior of method
fixMe. For every location ` in fixMe, uniquely identifying a
statement in the source code, JAID records the values of a set
M` of expressions during each test execution: 1) the exact
value of expressions of numeric and Boolean types; 2) the
object identifier (or null) of expressions of reference types,
so that it can detect when a reference is aliased, or is null.

JAID builds the set M` of expressions so that it includes:
1) all basic expressions from fixMe (variables and complete
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Fig. 1: An overview of how JAID works. Given a Java
program and a set of test cases, including at least one failing
test, JAID identifies a number of suspicious snapshots, each
indicating a location and an abstraction of the program
state at that location that may be implicated in the failure;
based on the snapshot information, JAID generates a number
of candidate fixes, which undergo validation against all
available tests for the method under repair; fixes that pass all
available tests are considered valid; JAID finally heuristically
ranks the valid fixes, and presents the valid fixes to the user
in ranking order.

expressions used in the method body) that are visible at
`; and 2) all extended expressions obtained by performing
argumentless calls on basic expressions of reference type.
While monitoring the value of expressions in M`, JAID

identifies which are pure—that is, their evaluation does not
obviously change the program state. Only expressions that
are pure according to this dynamic analysis are retained in
M` and used for state abstraction and monitoring.

2.2 Fault Localization
The goal of fault localization is to identify suspicious snap-
shots indicating locations and states that are likely to be
implicated in a fault. A snapshot is a triple 〈`, b, ?〉, where
` is a location in method fixMe under repair, b is a Boolean
expression, and ? is the value (true or false) of b at `. JAID

includes snapshots for Boolean expressions that can be built
from expressions in M` as well as comparison and logical
operators like ==, <=, and &&.

Snapshot suspiciousness. The suspiciousness value
susp(s) of a snapshot s = 〈`, b, ?〉 combines two sources
of information: 1) a syntactic analysis of expression de-
pendence, which gives a higher value eds to s the more
subexpressions b shares with those used in the statements
immediately before and immediately after ` (this estimates
how much s is relevant to capture the state change at `); 2) a
dynamic analysis, which gives a higher value dys to s the
more often b evaluates to ? at ` in a failing test, and a lower
value to s the more often b evaluates to ? at ` in a passing
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dynamic analysis, which gives a higher value dys to s the
more often b evaluates to ? at ` in a failing test, and a lower
value to s the more often b evaluates to ? at ` in a passing
test (this collects the evidence that comes from monitoring
the program during passing and failing tests). The overall
suspiciousness susp(s) = 2/(ed−1s + dy−1s ) is the harmonic
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mean of these two sources, but the dynamic analysis has a
greater impact—because eds is set up to be a value between
zero and one, whereas dys is at least one and grows with
the number of passing tests.

Since this proved to work well in practice, JAID’s fault lo-
calization algorithm follows Heuristic III from Wong et al.’s
approach [8], and applies it to the localization of snapshots.
However, we have evidence that JAID’s overall effectiveness
is largely independent of the details of how fault localization
is done: Sec. 4.5 discusses the results of replacing JAID’s
fault localization algorithm with five other “off-the-shelf”
techniques, showing that the number of bugs that JAID can
fix barely changes.

2.3 Fix Generation: Fix Actions

A snapshot s = 〈`, b, ?〉 with high suspiciousness indicates
that the program is prone to triggering a failure when the
program state in some execution is such that b evaluates to
? at `; correspondingly, JAID builds a number of candidate
fixes that try to steer away from the suspicious state in the
hope of avoiding the failure. To this effect, JAID enumerates
three kinds of fix actions:

Semantic actions are based on JAID’s rich state-based ab-
stractions, and build patches that modify the state
(directly or indirectly) using the expressions captured
by snapshots and ranked by dynamic analysis; they
include assignments (which mutate the state directly)
and modifications of existing expressions (which affect
the state indirectly).

Mutation actions are simple, “syntactic” mutations of an
existing statement that capture common sources of
programming mistakes such as off-by-one errors.

Control-flow actions modify the program’s control flow by
changing a branching condition or by adding an abrupt
termination statement (break or return).

By using the information of suspicious snapshots, JAID

can generate many different concrete fix actions in the same
category. This gives JAID the flexibility needed to be able
to fix a variety of different bugs; Sec. 4.4 describes which
actions turned out to be most useful in the experiments.
Following are the details of how JAID builds fix actions.

Derived expression. Given an expression e, ∆`,e denotes
all derived expressions built from e as follows: 1) if e
has integer type, ∆`,e includes e, e + 1, and e - 1; 2) if
e has Boolean type, ∆`,e includes e and !e; 3) ∆`,e also
includes t and t.f( · · · ), for every t ∈M` of reference type,
where f is a function of the class t belongs to—possibly
called with actual arguments chosen from the monitored
expressions M` of suitable type. Given an expression e, its
top-level subexpressions Se are the expressions corresponding
to the nodes at depth 1 in e’s abstract syntax tree—namely,
the root’s immediate children. For example, the top-level
subexpressions of (a + b) < c.d() are a + b and c.d().
Then, ∆′`,e =

⋃
s∈Se ∆`,e denotes all expressions derived

from e’s top-level subexpressions.

Modifying the state. For every top-level subexpression
e of b, if e is assignable to, JAID generates the fix action e = δ
for each δ ∈ ∆′`,b whose type is compatible with e’s.

Modifying an expression. For every top-level subex-
pression e of b that is not assignable to, but appears
in the statement S at `, JAID generates the fix action
tmp_e = δ; S[e 7→ tmp_e] for each δ ∈ ∆′`,b whose type
is compatible with e’s; tpm_e is a fresh variable with the
same type as e, and S[e 7→ tmp_e] is the statement at ` with
every occurrence of e replaced by tmp_e—which has just
been assigned a modified value.

Mutating a statement. “Semantic” fix actions—based
on the information captured by the state in suspicious
snapshots—are usefully complemented by a few “syntac-
tic” fix actions—based on simple mutation operators that
capture common sources of programming mistakes such as
off-by-one errors. Following an approach adopted by other
APR techniques [6], [9], JAID generates mutations mainly
targeting conditional expressions. Precisely, if the statement S
at ` is a conditional or a loop, JAID generates fix actions
for every Boolean subexpression e of b that appears in the
conditional’s condition or in the loop’s exit condition: 1) if
e is a comparison x1 ./ x2, for ./ ∈ {<, <=, >=, >}, JAID

generates the fix action S[e 7→ (x1 ./′ x2)], for every
comparison operator ./′ 6= ./; 2) JAID also generates the
fix actions S[e 7→ true] and S[e 7→ false], where e is
replaced by a Boolean constant. In addition to targeting
Boolean expressions, if the statement S at ` includes a method
call t.m(a1, . . . , an), JAID generates the fix action S[m 7→ x],
which calls any applicable method x on the same target and
with the same actual arguments as m in s.

Modifying the control flow. Even though fix actions
may indirectly change the control flow by modifying the
state or a branching condition, a number of bugs require
abruptly redirecting the control flow. To achieve this, JAID

also generates the following fix actions independent of the
snapshot information: 1) if method fixMe is a procedure (its
return type is void), JAID generates the fix action return;
2) if method fixMe is a function, JAID generates the fix
action return e, for every basic expression of suitable type
available at `; 3) if ` is a location inside a loop’s body, JAID

generates the fix action break.

2.4 Fix Generation: Candidate Fixes

Each fix action—built by JAID as described in Sec. 2.3—is a
statement that modifies the program behavior at location `
in a way that avoids the state indicated by some suspicious
snapshot s = 〈`, b, ?〉. In several cases, a fix action should not
be injected into the program under repair unconditionally,
but only when state b == ? is actually reached during a
computation.

To implement such conditional changes of behavior, JAID

uses the schemas in Fig. 2 to insert fix actions into the method
fixMe under repair at location `. In addition to a fix action,
some schemas also include the oldStatement at location ` in
the faulty method fixMe and the condition b == ? that comes
from a snapshot’s program state abstraction. Together, the
five schemas cover all possible ways of conditionally execut-
ing an action, conditionally executing an existing statement,
and conditionally executing an action instead of an existing
statement. Sec. 4.4 discusses which schemas turned out to
be more useful to build correct fixes in our experiments.
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During fix generation, JAID first instantiates every appli-
cable schema with a fix action, the oldStatement, and the
condition determined by the corresponding snapshot; then,
it builds fix candidates by replacing the statement at ` in fixMe

with each instantiated schema.1

Schema A: action; oldStatement;

Schema B: if (suspicious) { action; } oldStatement;

Schema C: if (suspicious) { oldStatement; }

Schema D: if (suspicious) { action; }

else { oldStatement; }

Schema E: /* oldStatement; */ action;

Fig. 2: Schemas used by JAID to build candidate fixes

2.5 Fix Validation
Even if JAID builds candidate fixes based on a semantic
analysis of the program state during passing vs. failing tests,
the candidate fixes come with no guarantee of satisfying
the tests. To ascertain which candidates are suitable, a fix
validation process, which follows fix generation, runs all
tests from T that exercise the faulty method fixMe against
each generated candidate fix. Candidate fixes that pass all
the tests are classified as valid (also “test-suite adequate” [2]
or “plausible” [1]) and retained; other candidates, which fail
some tests, are discarded—as they do not fix the fault, they
introduce a regression, or both.

2.6 Fix Ranking
Like most generate-then-validate APR techniques, JAID’s
process is based on heuristics and driven by a finite col-
lection of tests, and thus is ultimately best effort: a valid
fix may still be incorrect, passing all available tests only
because the tests are incomplete pieces of specification.
JAID mitigates this problem by ranking valid fixes using the
same heuristics that underlies fault localization. Every fix
includes one fix action, which was derived from a snapshot
s; the higher the suspiciousness of s, the higher the fix is
ranked; fixes derived from the same snapshot are ranked
in order of generation, which means that “semantic” fixes
(modifying state or expressions) appear before “syntactic”
fixes (mutating statements or modifying the control flow),
and fixes of the same kind are enumerated starting from the
syntactically simpler ones.

2.7 Revised JAID Implementation
This paper’s release of JAID—called “new JAID” in this
section—uses the same fundamental techniques and overall
design as the previous release [5]—called “old JAID” in this
section—but improves several implementation details that
help make the tool more widely applicable.

JAID instruments the source code of programs under
analysis both to monitor program states and to validate
candidate fixes. Old JAID’s instrumentation did not work
correctly on methods with a throws clause, which prevented
programs using such methods from being analyzed. New

1. Since each fix generated by JAID combines one fix action and one
schema, it adds at most 4 new lines of codes to a patched method.

JAID extends the instrumentation generation process so that
it handles correctly all methods—including those with a
throws clause.

JAID extensively relies on the Java Debug Interface (JDI)
to retrieve the value of snapshot expressions (Sec. 2.1) at
different program states. To this end, old JAID entirely relied
on JDI’s string-based expression evaluation methods. The
advantage of the string-based interface is that it is easier
(more uniform) to access since it directly inputs source-
code expressions in string form; the disadvantage is that
it has some glitches that make expression evaluation crash
occasionally—leading old JAID to fail to generate some fixes.
To avoid these problems, new JAID primarily uses JDI’s
programmatic API, which supports retrieving object states
and evaluating expressions on them directly without going
through a string representation. The string-based approach
is still available to new JAID, but it is only used as a fallback
mechanism for the few cases that cannot be easily handled
through the programmatic interface. This makes new JAID’s
snapshot expression evaluation more robust overall, and
hence applicable to more examples.

Finally, new JAID identifies, using hashing, (syntactic)
duplicate candidate fixes and immediately discards them,
so that the same candidate is not validated twice. This helps
trim down validation time by avoiding wasteful effort.

3 EXPERIMENTAL EVALUATION: DESIGN

We experimentally evaluated JAID on 693 faults from three
curated collections often used in automated program re-
pair research. These faults come from Java applications
and libraries of different size and complexity in disparate
domains; this makes the results of JAID’s evaluation more
likely to be representative of its general behavior. At the
same time, using faults from standard benchmarks makes it
possible to meaningfully compare JAID with the other state-
of-the-art APR tools for Java.

3.1 Research Questions
The experiments address the following research questions.
RQ1: How effective is JAID? In RQ1, we evaluate the effec-

tiveness of JAID from a user’s perspective—in terms of
the number of faults that JAID can fix.

RQ2: How efficient is JAID? In RQ2, we examine the running
time of JAID on different bugs.

RQ3: How effective is JAID in comparison to other APR
techniques for Java? In RQ3, we directly compare JAID

to several other state-of-the-art APR tools for Java.
RQ4: Do all templates and heuristics have an impact on

JAID’s effectiveness? In RQ4, we zoom in on the relative
usefulness of various kinds of templates and heuristics
used by JAID’s APR algorithm.

RQ5: How sensitive is JAID’s behavior to the choice of fault
localization algorithm? In RQ5, we assess whether re-
placing JAID’s custom fault localization algorithm with
a different one affects its overall effectiveness.

3.2 Subjects
Our evaluation uses 693 faults from three widely used
benchmarks of Java bugs: DEFECTS4J [2], INTROCLASS-
JAVA [10], and QUIXBUGS [11].
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TABLE 1: DEFECTS4J benchmark: how many BUGS, TESTS,
and thousands of lines of code (KLOC) DEFECTS4J includes
from each PROJECT.

PROJECT DESCRIPTION KLOC TESTS BUGS

Chart JFreechart 96 2205 26
Closure Closure Compiler 90 7927 133
Lang Apache Commons-Lang 22 2245 65
Math Apache Commons-Math 85 3602 106
Time Joda-Time 27 4130 27
Mockito Mockito 43 1161 38

TOTAL 320 20109 395

TABLE 2: INTROCLASSJAVA benchmark: for each PROGRAM,
how many black-box and white-box TESTS exercise it, and
how many of its BUGS are triggered by the black-box and
the white-box tests.

TESTS BUGS

PROGRAM DESCRIPTION LOC b w b w

checksum checksum of a string 18 6 10 7 11
digits digits of a number 13 6 10 51 60
grade grade from score 22 9 9 89 88
median median of 3 numbers 24 7 6 51 48
smallest min of 4 numbers 24 8 8 47 45
syllables count vowels 17 6 10 13 12

TOTAL 118 42 53 258 264
detectable unique bugs in b ∪w: 297

TABLE 3: QUIXBUGS benchmark: the MIN, MEDIAN, MAX,
and TOTAL size of the faulty methods (in lines of code), and
number of tests targeting each method.

MIN MEDIAN MAX TOTAL

Size (LOC) 2 17 45 717
Tests 3 6 13 259

DEFECTS4J (revision #895c4e6) includes 395 bugs from
6 projects: Chart, Closure, Lang, Math, Time, and Mock-
ito; Tab. 1 displays basic statistics about these projects in
DEFECTS4J. The bugs included in DEFECTS4J are a diverse
sample of real-world bugs, and as such they include both
several that admit simple fixes and others that require
changes that span multiple methods or even multiple files.

Each bug in DEFECTS4J has a unique identifier, corre-
sponds to a buggy version and a programmer-fixed version
of the code, and is accompanied by some programmer-
written unit tests that exercise the code—in particular, at
least one test triggers a failure on the buggy version. Our
experiments used all the 395 bugs in DEFECTS4J.

Our previous work [5] ran JAID on a pre-selected subset
of DEFECTS4J bugs, excluding for simplicity those that were
likely outside JAID’s capabilities. In the present paper, we
use instead all the bugs in DEFECTS4J as our subjects. The
main reason for doing so is that using all available bugs
in a benchmark provides the most comprehensive data
about JAID’s performance, and hence makes for a fairer
comparison with other tools evaluated on the same bench-
mark. For example, measures such as average running time
should uniformly include the time to run a tool on all bugs,
including those where the tool will fail to produce any fixes.

Including all bugs is also the recommendation of all large-
scale replication studies [2], [12], [13]. A more specific reason
for not pre-selecting bugs is that sometimes there is no
sure way to know in advance on which bugs JAID will be
successful. For example, Sec. 4.1 examines five “hard” bugs
that JAID unexpectedly managed to fix with fixes that were
semantically equivalent to syntactically much more complex
fixes written by developers.

INTROCLASSJAVA is a direct Java translation [10] of the
IntroClass benchmark [14], which collects several buggy
student-written solutions to six small assignments given
in an introductory, undergraduate programming course.
As such, programs in INTROCLASSJAVA are a meaningful
sample of the kinds of mistakes commonly made by novice
programmers writing small programs. Tab. 2 displays basic
statistics about the 297 buggy programs translated to Java
in INTROCLASSJAVA.

Each program in INTROCLASSJAVA comes with two JUnit
test suites (also translated from C): a black-box one written
by the instructor based on the program’s specification, and
a white-box one generated using a symbolic execution tool.
Following the practice of other studies [14]–[16], JAID had
access only to the black-box tests; the white-box tests feature
only in the experimental evaluation, where we used them
to determine which of the fixes outputted by JAID were
correct. Since 39 buggy programs in INTROCLASSJAVA do not
cause any black-box tests to fail (that is, only white-box tests
trigger failures), we excluded them from the experiments
and used the remaining 258 program variants as subjects in
the experiments.

QUIXBUGS contains 40 faulty programs taken from the
Quixey Challenge [11], where programmers had one minute
to produce a fix given an implementation of a classic algo-
rithm with a bug on a single line. The algorithms include
classics such as Dijkstra’s shortest path on a graph, building
the minimum spanning tree, and sorting algorithms; there-
fore, the buggy programs in QUIXBUGS are representative
of programming mistakes that are commonly made when
implementing algorithms that are challenging to get right.
Tab. 3 displays basic statistics about the programs in QUIX-
BUGS.

Each faulty program in QUIXBUGS comes with a correct
reference implementation, as well as passing and failing
tests; thus, the textual diff between a buggy program and
the corresponding reference implementation plays the role
of the programmer-written fix for the bug. Our experiments
used all the 40 bugs in QUIXBUGS, together with all available
tests.

3.3 Other Automated Program Repair Tools for Java
We quantitatively compared JAID to 16 tools for APR of Java
programs; we considered all tools working on Java that used
at least one of the three benchmarks (DEFECTS4J, INTRO-
CLASSJAVA, and QUIXBUGS) in their published experimental
evaluation. Tab. 4 lists the 16 tools;2 if an experimental
evaluation of tool T on benchmark B is publicly available,
the table indicates, at row T and column B, the source of

2. SketchFixPP is a variant of the SketchFix technique discussed in
the same paper [17]
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the experimental results that we used in the comparison
with JAID.

While most tools use DEFECTS4J as benchmark in their
experiments, it is possible that the experimental evalua-
tions of different tools select different subsets of bugs in
DEFECTS4J. This may happen for two reasons: first, since the
DEFECTS4J benchmark is occasionally extended with new
projects, it may happen that an experimental evaluation
on an older version of DEFECTS4J simply did not have
access to some bugs that are available in DEFECTS4J at the
time of writing. Second, an experimental evaluation may
deliberately exclude some bugs from the experiments if the
technique being evaluated or its implementation are not
easily applicable to those bugs. For example, [2] excludes
project Closure because of difficulties in executing its tests;
and the experiments in the original paper on JAID [5] in-
cluded only bugs whose programmer-written fix modifies
at most 5 consecutive lines of code—since JAID was unlikely
to succeed on bugs requiring more complex fixes.

Despite these discrepancies, our quantitative comparison
with other tools is sound:
• Since bugs that are excluded a priori from an evaluation

can normally be considered beyond a tool’s current
capabilities, we compute recall relative to the same
largest set of DEFECTS4J bugs, which is a superset of
all those used in any evaluations. In contrast, excluding
bugs from an evaluation does not negatively affect a
tool’s precision—in fact, it puts JAID at a disadvantage
because we insisted on running it on every available
bug in DEFECTS4J.

• We report absolute numbers of valid and correct fixes,
as well as the bugs that each tool uniquely fixes.

• We ascertain that the version of DEFECTS4J used in our
experiments does not differ substantially, on the same
bugs, from those used in the other tools’ experiments.

We did not perform any quantitative comparison of
other measures, running time in particular, as these would
require to replicate experiments with other tools with com-
mon settings—which is not always possible or easy, since
not all publications come with a complete replication pack-
age. Since improving performance is not a primary concern
in automated program repair research at the moment, and
publications rarely emphasize performance data, the com-
parison of JAID with other tools focuses on metrics that are
generally accepted as practically interesting.

3.4 Fault-localization techniques
JAID employs a custom spectrum-based [24] fault localiza-
tion technique, while most other APR tools directly reuse
standard fault localization approaches. To find out whether
JAID’s behavior depends significantly on how fault localiza-
tion works (and hence to answer RQ5), we ran experiments
where JAID uses other well-known spectrum-based fault
localization techniques instead of its custom algorithm.

Tab. 5 lists the five spectrum-based techniques [25] used
to replace JAID’s. All of them work by computing a suspi-
ciousness score of each program entity (in the case of JAID,
snapshots which include a location and part of the state—as
described in Sec. 2.2) based on its coverage by passing and
failing tests.

TABLE 4: Automated program repair tools for Java used in
the comparison with JAID. For each benchmark, the table
reports the source of a tool’s evaluation results used for a
quantitative comparison with JAID; no reference means the
tool has not been evaluated on the benchmark.

TOOL DEFECTS4J INTROCLASSJAVA QUIXBUGS

ACS [7]
Astor [18]
CapGen [16] [16]
Elixir [19]
HAD [6]
JFix [15]
jGenProg [2]
jKali [2]
Nopol [2] [20]
S3 [21]
SimFix [22]
SketchFix [17]
SketchFixPP [17]
ssFix [23]
xPar [6], [7]

TABLE 5: Spectrum-based fault localization ALGORITHMs
used to replace JAID’s. Each algorithm defines a formula
to compute the SUSPICIOUSNESS of any state snapshot s as
a function of P(s) (the number of passing tests where s is
observed) and F(s) (the number of failing tests where s is
observed), and relative to the total number of passing (P)
and failing (F) tests.

ALGORITHM SUSPICIOUSNESS OF SNAPSHOT s

Tarantula [26] F(s)/F
F(s)/F + P(s)/P

Ochiai [27] F(s)√
F·(F(s) + P(s))

Op2 [28] F(s)− P(s)
P+1

Barinel [29] 1− P(s)
P(s) + F(s)

DStar [30] (with ∗ = 2) F(s)∗

P(s) + F − F(s)

3.5 Experimental Setup

All the experiments ran on a cloud infrastructure, with each
run of JAID using exclusively one virtual machine instance,
configured to use one core of an Intel Xeon Processor E5-
2630 v2, 8 GB of RAM, Ubuntu 14.04, and Oracle’s Java
JDK 1.8.

Each experiment targets one subject bug k, and runs JAID

with buggy code bugk and tests Tk as input; the output
is a ranked list of valid fixes for the bug. The process to
determine which of JAID’s fixes are correct follows standard
research practices:

• The fix of a bug in DEFECTS4J or QUIXBUGS is correct
if manual inspection convincingly indicates that it is
semantically equivalent to the programmer-written fix
correctk. We allot around 5 minutes per fix to determine
semantic equivalence; if we cannot conclude that the fix
is equivalent after 5 minutes, we classify it as incorrect.
This conservative assessment implies that a fix classi-
fied as correct is a fix suggestion that could have been
deployed (or is very close to one that could have been
deployed).

• The fix of a bug in INTROCLASSJAVA is correct if it
passes all available white-box tests (which JAID had
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not access to), in addition to the black-box tests that
JAID uses directly for validation. Programs and bugs
in INTROCLASSJAVA are sufficiently simple that passing
all white-box tests provides high confidence in their
correctness.

We did not set a time limit in our experiments: since JAID

ranks all generated snapshots according to their suspicious-
ness (see Sec. 2.2), and depends on the ranking to guide
the following stages, setting an arbitrary cutoff time may
prevent JAID from generating a complete ranking. Instead,
we limited the search space in our experiments by config-
uring JAID so that it uses at most 1500 snapshots in order
of suspiciousness; then, the following stages (Fig. 1) all run
to completion. The number 1500 was chosen heuristically;
some of the experiments reported in Sec. 4.4 indicate that
this choice achieves a reasonable trade-off, but also that
JAID’s overall performance is fairly robust with respect to
the choice of how many snapshot to process.

4 EXPERIMENTAL EVALUATION: RESULTS

This section presents the results of the experimental evalu-
ation of JAID carried out according to the design of Sec. 3.
Averages are measured using the median by default, with
exceptions explicitly pointed out.

4.1 RQ1: Effectiveness
Tab. 6 displays the key results of the experimental evalua-
tion of JAID’s effectiveness. As shown there, JAID produced
valid fixes for 189 bugs in total: 94 bugs in DEFECTS4J,
84 bugs in INTROCLASSJAVA, and 11 bugs in QUIXBUGS.
More significantly, it produced correct fixes for 113 bugs: 35
in DEFECTS4J, 69 in INTROCLASSJAVA, and 9 in QUIXBUGS.
These numbers correspond to an overall:
precision: 59.5% the percentage of bugs with a valid fix for

which JAID outputs at least a correct fix
recall: 15.4% the percentage of all bugs for which JAID

outputs at least a correct fix
As we discuss in Sec. 4.3, JAID’s effectiveness is competitive
with the state of the art; JAID is capable of producing fixes
of high quality in a significant number of cases on code of
various complexity and maturity level.

Precision and recall are much higher with benchmarks
INTROCLASSJAVA and QUIXBUGS than with DEFECTS4J. This
difference is likely the result of two aspects. First, DEFECTS4J
programs are often larger and require more complex fixes
than those in the other two benchmarks. Second, tests in
INTROCLASSJAVA and QUIXBUGS are more thorough, and
hence provide stronger specifications of the intended pro-
gram behavior, and support a more effective test-based
validation that prunes out valid but incorrect fixes.

Still, JAID can be effective even with weak oracles: it
correctly fixed 5 bugs in DEFECTS4J that include only one
failing test (and no passing tests), ranking the correct fix
first in two cases.

Among the 35 bugs from DEFECTS4J that JAID correctly
fixes, 5 are from project Chart, 13 from project Closure, 6
from project Lang, 9 from project Math, 1 from project Time,
and 1 from project Mockito. In particular, Mockito bugs
were not used to evaluate most other APR tools. A recent

study [31] shows that Nopol can correctly fix 1 bug while
SimFix and CapGen cannot propose any valid fix to bugs
in Mockito even if all the buggy locations are analyzed.
Compared with that, JAID generated valid fixes to 4 Mockito
bugs (and correct fixes to 1).

When JAID is ineffective. To better understand the
limitations of JAID, we manually analyzed the bugs where
JAID failed to produce any valid fix. In the analysis, we re-
strict ourselves to the faults from DEFECTS4J and QUIXBUGS,
since only bugs in these two benchmarks are accompanied
by programmer-written fixes. We also excluded from this
manual analysis faults whose programmer-written fixes:
• modify more than one method (108 bugs excluded);
• modify source code outside the only buggy method

(e.g., class fields and/or import statements) (13 bugs
excluded); or

• modify more than four lines of code, according to the
dissection data of DEFECTS4J [32] (99 bugs excluded).

Faults whose fixes have these characteristics are clearly
outside the current capabilities of JAID’s algorithm,3 and
hence it is unsurprising that JAID failed to produce any fix
for them.

Examining the remaining 104 bugs that JAID could not
fix, we identified three phases from which JAID’s ineffec-
tiveness commonly originates (see Tab. 7 for a summary of
the number of bugs in each category):
Setup: JAID uses a simple Python script to automatically

extract project configuration information from the DE-
FECTS4J framework. The script works well on most DE-
FECTS4J bugs, but when it fails to properly setup the
environment it prevents JAID from running at all.
An unsuccessful setup prevented 36 bugs from being
fixed; these failures are the result of practical limitations
of the current implementation of JAID, but they do not
reflect any fundamental limitation of JAID’s approach.

Fault localization: JAID’s repair process uses fault local-
ization as a crucial starting point: when the fault lo-
calization algorithm fails to track the relevant failing
condition in a snapshot expression, or ranks the cor-
responding snapshot past the cutoff, the following fix
generation step cannot be successful because it does not
have the necessary ingredients.
Ineffective fault localization prevented 49 bugs from
being fixed. Even though JAID uses only the 1500 most
suspicious snapshots for fix generation, the cutoff is not
a significant limitation in practice: if we increase it to
allow 3000 snapshots, JAID correctly fixes 1 more bug
(Lang39); if we remove the cutoff entirely, JAID correctly
fixes 2 more bugs (Closure104 and Lang24). Thus, the
current cutoff value is a reasonable balance between
costs and effectiveness; and improving the effectiveness
of fault localization in JAID is likely to require more
radical changes to the kind of information it uses. We
discuss further details about the effectiveness of fault
localization in JAID in Sec. 4.5.

3. We could trivially lift some of these limitations, for example
by supporting the generation of fixes that combine multiple actions.
However, such changes would make the fix space much larger, without
also providing a scalable mechanism to explore it efficiently. Thus,
effectively lifting these limitations would require modifications of the
approach that go beyond simple extensions of the search space.
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TABLE 6: Effectiveness of JAID: main experimental results for each benchmark DEFECTS4J, INTROCLASSJAVA, and QUIXBUGS,
as well as OVERALL (bottom rown in each table).

(a) Number of BUGS for which
JAID produced VALID FIXES; num-
ber of ALL valid fixes produced
for all bugs; and MEDIAN number
of valid fixes produced per bug
for which at least a valid fix was
produced.

VALID FIXES

BENCHMARK BUGS ALL MEDIAN

DEFECTS4J 94 16762 23.5
INTROCLASSJAVA 84 4243 28.5
QUIXBUGS 11 2187 10.0

OVERALL 189 23192 22.0

(b) Number of bugs for which JAID produced
CORRECT FIXES in ANY position, FIRST position,
a TOP-10 position; median POSITION of the first
correct fix in JAID’s output; and number of ALL
correct fixes produced for all bugs; and the ME-
DIAN number of correct fixes produced per bug
for which at least a correct fix was produced.

CORRECT FIXES

BENCHMARK ANY FIRST TOP-10 POSITION ALL MEDIAN

DEFECTS4J 35 14 25 3 139 2
INTROCLASSJAVA 69 30 43 2 829 5
QUIXBUGS 9 4 9 2 22 2

OVERALL 113 48 77 2 990 3

(c) Precision and recall obtained
by JAID. PRECISION is the ratio
100·ANY/BUGS denoting the per-
centage of bugs with a valid fix
that is also correct; and RECALL
is the ratio 100 · ANY/TOTAL de-
noting the percentage of TOTAL
bugs with a correct fix.

BENCHMARK PRECISION RECALL

DEFECTS4J 37.2 8.9
INTROCLASSJAVA 82.1 26.7
QUIXBUGS 81.8 22.5

OVERALL 59.5 15.4

TABLE 7: Bugs in DEFECTS4J and QUIXBUGS for which JAID

failed to produce any valid fix. The total number of such
bugs (ALL) is split according to where JAID’s ineffectiveness
originates: in an unsuccessful SETUP, in an ineffective FAULT
LOCALIZATION, or in a limited FIX SPACE. Some bugs are the
combined result of ineffective fault localization and limited
fix space, and thus are counted in both columns.

FAULTS NOT FIXED

ALL SETUP FAULT LOCALIZATION FIX SPACE

DEFECTS4J 104 33 41 63
QUIXBUGS 29 3 8 24

TOTAL 133 36 49 87

Fix space: even with perfect fault localization, some fixes
may require program modifications that are inexpress-
ible using JAID’s fix actions and schemas, and hence fall
outside its fix space.
A limited fix space prevented 87 bugs from being
fixed. Examples of features outside JAID’s fix space
that were used in some human-written fixes include:
new expressions with type casting; calls to methods
with arguments; constants declared in specific classes;
adding a case to an existing switch statement; adding
an if with a compound then or else block; adding a
compound statement (such as a try/catch block, or a
loop).
While extending JAID so that it generates such complex
statements as fix actions is not technically complex,
the expanded fix space would become too large to
effectively search in a reasonable time using JAID’s
heuristics. Extending JAID’s search space selectively—
focusing on fixing only certain categories of bugs—is an
interesting direction for future work; but JAID’s current
focus is on being “general-purpose”.

Ranking of fixes. When it is successful, JAID often
produces several valid fixes—122.7 (= 23192/189) per fixed
bug on average in our experiments—and a much smaller
number of correct fixes—8.8 (= 990/113) per fixed bug
on average in our experiments. When JAID outputs several
valid fixes for the same bug, it ranks them according to a

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0
>20

0

Top rank of correct fixes

0

10

20

30

40

50

60

70

80

#B
ug

s

Defects4J
IntroClassJava
QuixBugs

Fig. 3: Distribution of the top rank of correct fixes of bugs.

simple heuristics that tries to put on top those that are more
likely to be correct.

The stacked histogram in Fig. 3 depicts the distribution
of the top ranks of correct fixes. Among the 113 bugs that
JAID correctly fixed, the median position of the first correct
fix was 2 (from the top); the correct fix appeared at the
top position in 48 bugs; and among the top-10 valid fixes
for 77 bugs. For the remaining 36 bugs that were correctly
fixed, the correct fix appears further down in the output
list; in 26 of these cases, the correct fix turns out to be a
“syntactic” one, but several valid, incorrect “semantic” fixes
are generated and ranked higher.4

These results indicate the importance of ranking to en-
sure that the correct fixes are easier to spot among several
valid but incorrect ones. JAID’s ranking heuristics often do a
good job, but there is room for improvement. In particular,
ranking may benefit from mining additional information
about common features of programmer-written fixes, as was
done in the other repair tools like ACS, HDA, SimFix, and
CapGen.

Syntactic complexity of fixes. In DEFECTS4J and QUIX-
BUGS, we classify a fix as correct if it is semantically equiv-
alent to the fix written by programmers for the same

4. Sec. 2.3 explains what syntactic and semantics fix actions are.
Sec. 4.4 gives detailed statistics on the usage of different types of fix
actions in generated correct fixes.
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bug. A potential risk is that JAID generates fixes that are
semantically equivalent but syntactically very different—in
particular, needlessly complex and less readable. In practice,
this is unlikely to happen because JAID cannot generate fixes
that are syntactically very complex; for the simpler fixes it
can generate, semantic and syntactic equivalence tend to
coincide.

There are a few exceptions to this general observation:
the programmer-written fixes for 5 of the 35 DEFECTS4J
bugs that JAID can correctly fix involve modifications of
multiple lines at one or several locations, or even deletion
of a whole method. Thus, JAID’s correct fixes for these bugs
were syntactically much simpler than, but still semantically
equivalent to, the programmer-written fixes. On the one
hand, this is encouraging because it proves the flexibility of
JAID’s repair algorithm. On the other hand, one could argue
that the more complex programmer-written fixes are in
some cases preferable because they are refactoring aspects of
the program’s design in order to improve the code beyond
the single functionality that is being repaired.

For example, the programmer-written fix of bug Clo-
sure 46 involves deleting a 17-line long method getLeast-

Supertype from class RecordType. Method getLeastSuper-

type overrides the method with the same name in super-
class PrototypeObjectType, so the fix replaces, implicitly
by inheritance, all invocations to the overriding method
RecordType.getLeastSupertype with calls to the overridden
one PrototypeObjectType.getLeastSupertype. Instead of re-
moving method RecordType.getLeastSupertype, JAID fixes
the same bug by changing RecordType.getLeastSupertype’s
body so that it explicitly calls the overridden method Pro-

totypeObjectType.getLeastSupertype as super.getLeastSu-

pertype and just returns the call’s result. In this case, the
programmer-written fix has a better design since it does
not leave dead code in the repaired program, but the fix
produced by JAID is still completely behaviorally correct and
hence practically useful.

JAID produced a correct fix for over 15% of all bugs it analyzed,
achieving a precision of nearly 60%. It ranked most correct

fixes high in the output list (in position 2 on average).

4.2 RQ2: Efficiency

We measure the efficiency of JAID in terms of running time:
overall running time, and running time until the first fix is
generated.

Overall running time. Fig. 4 shows the distribution
of JAID’s overall running time in every experiment. The
distribution is clearly skewed to the left, indicating that the
running time of JAID on most bugs is limited. For example,
JAID ran for up to 60 minutes on about 43% of all bugs, and
for up to 240 minutes on about 89% of all bugs.

JAID’s running time distribution for the INTROCLASSJAVA

benchmark looks different from the other benchmarks: in
the latter, JAID ran for less than 60 minutes on the majority
of bugs; but in INTROCLASSJAVA, the most frequent running
times are between 60 and 120 minutes. This is counterintu-
itive given that programs in INTROCLASSJAVA are generally
simpler and smaller than those in the other benchmarks. We
found out this behavior is due to a feature of programs in
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Fig. 4: Distribution of JAID’s running time per bug. The
height of each bar spanning x coordinates a and b marks the
total number of bugs whose overall fixing time was between
a and b minutes. Segments of different hatch partition the
number of bugs into those for which JAID produced no fixes,
only valid fixes, or correct fixes.

TABLE 8: Statistics on JAID’s overall running time per
bug (in minutes): MINimum, MAXimum, MEAN, MEDIAN,
STandard DEViation, and SKEWness. Each statistics is com-
puted over ALL bugs, bugs with a VALID fix, and bugs with
a CORRECT fix.

MIN MAX MEAN MEDIAN STDEV SKEW

ALL 0.0 3403.6 136.3 76.3 283.8 6.3
VALID 0.6 3403.6 194.0 95.3 356.4 5.5
CORRECT 2.1 1777.7 154.5 92.8 252.0 4.7

INTROCLASSJAVA, which all use a Scanner object to read user
input from the console. Since the Scanner class defines many
observer methods of the kinds used by JAID’s heuristics to
construct snapshot expressions and to generate fix actions
(see Sec. 2.1 and Sec. 2.3), JAID generated more than 10,000
candidate fixes for several bugs in INTROCLASSJAVA, thus
leading to a longer cumulative running time.

The overall running times of JAID are not short in abso-
lute terms, but they are to be expected in a tool that relies
extensively on dynamic analysis, which requires to repeatedly
execute several variants of heavily instrumented programs.
JAID’s performance is consistent regardless of whether the
bugs will eventually be fixed: if we look at only bugs that
JAID could correctly fix, it ran for up to 100 minutes on
about 55% of them, and for up to 200 minutes on about 88%
of them. In all, these running times are suitable for JAID’s
intended mode of usage as a batch (not interactive) analysis
tool.

Tab. 8 breaks down statistics on the overall running time
per bug into all sessions, those that produced a valid fix,
and those that produced a correct fix. JAID ran in around 76
minutes per any bug on average; and in around 95 minutes
per bugs on which it is successful (producing a valid or
correct fix). JAID is unsurprisingly significantly slower than
tools based on constraint solving and other static techniques
(see Sec. 6); for example, Nopol [9] takes around 22 minutes
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Fig. 5: Distributions of JAID’s running time per bug in
each main phase of the fixing process (fault localization, fix
generation, and fix validation). The height of a bar spanning
x coordinates a and b denotes the number of bugs whose
running time in that phase (fault localization, fix generation,
and fix validation) was between a% and b% of the overall
running time. The 36 faults whose fixing failed during setup
phase (Sec. 4.1) are excluded from the figure.

per bug on average—on what, we assume, is comparable
hardware. JAID’s running time are, however, in line with
other techniques mainly based on dynamic analysis—such
as jGenProg [2] which takes about one hour per bug.

There is room for improving JAID’s performance by fine-
tuning its implementation. To better understand the main
performance bottlenecks, Fig. 5 breaks down the running
time into the different phases of JAID’s overall process:
fault localization, fix generation, and fix validation. Fix
validation remains, by far, the most time consuming phase,
taking about 76% of the overall running time on all the
bugs. A straightforward way to practically reduce this is
to run validation of candidates in parallel, which we plan to
implement in future versions of JAID.

The other phases of JAID take proportionally much less
time: fault localization accounts for no more than 20%
of the running time for 443 faults, which indicates JAID’s
fault localization is reasonably efficient on most faults. In a
minority of cases, however, fault localization may become a
bottleneck: JAID’s fault localization took over 60% of overall
running time for 48 faults that required many snapshot
expressions, had many tests, or both. One way of improving
the efficiency of fault localization in these cases is therefore
to select snapshot expressions and tests (for example, based
on information gathered during fixing). As for the time
spent on fix generation, it never takes more than 15% of
the overall running time.

Time to first fix. In its current implementation, JAID

always runs to completion, stopping only after it has val-
idated all the generated candidate fixes. From a user’s point
of view, however, what matters is the time JAID takes to
generate the first valid or the first correct fix: as soon as a
valid fix is available, the user can start inspecting it to see if
it’s suitable; and as soon as a correct fix is available, the rest
of JAID’s output becomes redundant.

To assess JAID’s efficiency from this more practical view-
point, Fig. 6 and Fig. 7 picture the distributions of running
time to a valid fix and to a correct fix, and Tab. 9 provides
related statistics. The average running time to a valid fix
is less than 30 minutes for most faults, and hence the
distributions in Fig. 6 are strongly skewed to the left. A
similar trend is visible in Fig. 7 for the time to a correct
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Fig. 6: Distribution of JAID’s running time until it finds a
valid fix over all bugs for which JAID finds at least a valid
fix. The height of a bar spanning x coordinates a and bmarks
the number of bugs whose running time until JAID output a
valid fix was between a and b minutes.

TABLE 9: Statistics on JAID’s running time (in minutes) until
a VALID or a CORRECT fix is found: MINimum, MAXimum,
MEAN, MEDIAN, STandard DEViation, and SKEWness. The
statistics are computed over bugs with a VALID fix (row
VALID), and bugs with a CORRECT fix (row CORRECT).

MIN MAX MEAN MEDIAN STDEV SKEW

VALID 0 1777 45.4 2 180.2 7.6
CORRECT 0 1777 78.7 24 221.0 6.4

fix, even though the skewedness is less pronounced in this
case: while the majority of correct fixes can be produced in
less than 90 minutes, there remains a “long tail” of correct
fixes that take considerably more time.

JAID validates candidate fixes in the same order of
suspiciousness value of their snapshots: the more suspi-
cious a snapshot, the earlier its derived candidate fixes
are validated. In contrast, other automated program repair
techniques [6], [22] adjust the validation order based on
information obtained by mining other fixes and the relations
between different fixes. JAID could add a similar prioritiza-
tion approach to its validation phase. Specifically, it could
associate a priority order based on the relation between,
on the one hand, fix actions (Sec. 2.3) and fix schemas
(Sec. 2.4), and, on the other hand, the characteristics of the
bug being fixed in comparison with the features of other
known bugs. For example, if fixing bugs involving null-
pointer dereferencing usually requires to execute a call only
conditionally on its target being non-null, Jaid’s schema B in
Fig. 2 should be given higher priority. We may experiment
with such prioritization approaches in future extensions of
JAID.

On an average bug, JAID ran for around 76 minutes in total,
but took only 2 minutes to produce the first valid fix, and 24

minutes to produce the first correct fix (when it could find one).

10



0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
2
4
6
8

10
#B

ug
s

(a) DEFECTS4J bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
3
6
9

12
15
18
21
24

#B
ug

s

(b) INTROCLASSJAVA bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
1
2
3
4
5

#B
ug

s

(c) QUIXBUGS bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
4
8

12
16
20
24
28
32

#B
ug

s

(d) All bugs.

Fig. 7: Distribution of JAID’s running time until it finds a
correct fix over all bugs for which JAID finds at least a correct
fix. The height of a bar spanning x coordinates a and bmarks
the number of bugs whose running time until JAID output a
correct fix was between a and b minutes.

4.3 RQ3: Tool comparison

Tab. 10 quantitatively compares JAID to 16 other APR tools
for Java on bugs from the three benchmarks.

JAID can produce valid fixes for several more bugs than
any other tools; in DEFECTS4J, for example, JAID produced
valid fixes for 56% (= (94 − 60)/60) more bugs than ssFix,
which does so for 60 bugs. This indicates that JAID explores
a large space of possible fixes—arguably larger than other
tools. JAID outperforms any other tools also in terms of
correct fixes, even though JAID’s advantage is more limited
here; in DEFECTS4J, for example, JAID’s recall is 0.3% higher
(1 more bug correctly fixed) than the runners up SimFix and
SketchFixPP, and it is 2.3% higher (9 more bugs correctly
fixed) than the next-best tool Elixir.

When it comes to precision, several other tools perform
better than JAID on DEFECTS4J bugs, especially if we only
consider correct fixes that are ranked high (in the top-10
or even in first position). JAID’s precision is better than
ssFix’s, Nopol’s, jKali’s, and jGenProg’s, but it is worse
than the other tools for which this measure is available.
All tools that outperform JAID in terms of precision are
specifically designed to achieve a high precision, and have
access to information mined from existing human-written
patches to help identify candidate fixes that are more likely
to be correct. JAID’s precision may similarly improve if its
algorithm also had access to the same kind of machine-
learned information.

JAID’s precision is lagging behind other tools only on
DEFECTS4J bugs; in contrast, it is consistently higher than
other tools on INTROCLASSJAVA5 and QUIXBUGS bugs. This
difference is probably due to the kinds of tests that accom-
pany bugs in INTROCLASSJAVA and QUIXBUGS: thorough
tests, which serve as strong oracles. JAID’s validation is

5. While precision measures of other tools on INTROCLASSJAVA bugs
are not available, JAID’s precision is quite high in absolute numbers
(over 82%), and hence it is likely to be overall competitive.

entirely based on dynamic analysis, and hence using high-
quality tests lowers overfitting and increases precision.

JAID’s effectiveness on INTROCLASSJAVA and QUIXBUGS

also suggests that its repair algorithm may be less prone
to overfitting than other tools that are more focused on
achieving a high precision on DEFECTS4J. A recently pub-
lished large-scale experiment [12] targeted 11 repair tools
for Java (ARJA, two implementations of GenProg for Java,
two implementations of Kali for Java, an implementation
of RSRepair for Java, Cardumen, jMutRepair, Nopol, Dy-
naMoth, and NPEFix) that were primarily evaluated on
DEFECTS4J in their original publications, and ran them
on different benchmarks—including INTROCLASSJAVA and
QUIXBUGS. While these experiments only considered the
number of valid fixes (without analyzing correctness), they
clearly showed that the number of bugs with valid fixes for
“all [11] tools is significantly higher for bugs from DEFECTS-
4J compared to the other four benchmarks”—which include
INTROCLASSJAVA and QUIXBUGS. This is in contrast to JAID,
which built proportionally more valid (and correct) fixes for
bugs in other benchmarks: in [12]’s experiments, none of the
11 tools could build valid fixes for more than 10% of bugs in
INTROCLASSJAVA and QUIXBUGS; in our experiments, JAID

built valid fixes for 28% of bugs in both INTROCLASSJAVA

and QUIXBUGS.

Unique fixes. Tools that have been evaluated on the
DEFECTS4J benchmark often list the identifiers of the bugs
they correctly fixed; therefore, we can get a more nuanced
idea of which bugs each tool can fix. Fig. 8 displays this
information in a readable format; and column UNIQUE in
Tab. 10 summarizes the number of bugs that each tool can
fix that no other tools can. This data suggests that tools are
often complementary in the specific bugs they are successful
on: JAID fixes 11 bugs that no other tool can fix; SimFix fixes
another 12; ACS fixes 11; CapGen, SketchFixPP, and HDA
fixes 3 each; Nopol fixes 2; ssFix and jGenProg fixes 1 each.
The complementarity between JAID and other tools is not
accidental but depends on different tools focusing on differ-
ent fix spaces and fix ingredients. Consider the 23 bugs that
only ACS (11 bugs) or SimFix (12 bugs) can fix: 9 require in-
serting statements that throw appropriate exceptions, which
is something only ACS can do at the moment; 4 require
changing the code at two locations simultaneously, which
is something very few tools other than SimFix are capable
of; 1 requires inserting a snippet with more than four lines
of code, which is beyond the capabilities of most tools; and
the remaining 9 require various other ingredients currently
outside JAID’s fix space. The complementarity implies that
each technique is successful in its own domain, and suggests
that combining techniques based on mining (such as SimFix,
CapGen, HDA, and ACS) with JAID’s techniques is likely to
yield further improvements in terms of overall effectiveness.

Other tools. We cannot quantitatively compare APR
tools that target other programming languages since they
were evaluated on different benchmarks [14]. Nevertheless,
just to give an idea, Angelix [33] and Prophet [34] achieve a
precision of 35.7% and 42.9%, and a recall of 9.5% and 17%,
on 105 bugs in the C GenProg benchmark [35]; AutoFix [36]
achieves a precision of 59.3% and a recall of 25% on 204
bugs from various Eiffel projects with contracts. GenProg,
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TABLE 10: A quantitative comparison of JAID with 16 other tools for automated program repair, based on their published
experimental evaluations (see Tab. 4 for sources of the comparison data), and partitioned into sections for each benchmark
DEFECTS4J, INTROCLASSJAVA, and QUIXBUGS. For each APR TOOL, the table reports the number of bugs that the tool
could fix with a VALID fix; the number of bugs that the tool could fix with a CORRECT fix; and the resulting PRECISION
(CORRECT/VALID) and RECALL (CORRECT/TOT, where TOT is the total number of bugs from the benchmark that are used
in the experiments). For tools whose data about the POSITION of fixes in the output is available, the table reports number of
bugs with CORRECT fixes, PRECISION, and RECALL separately for fixes ranked in ANY POSITION, in the TOP-10 POSITIONS,
and in the FIRST POSITION. The rightmost column UNIQUE lists the number of distinct bugs that only the tool can fix
correctly. Question marks represent data not available for a tool.

APR TOOL VALID
ANY POSITION TOP-10 POSITIONS FIRST POSITION

UNIQUE
CORRECT PRECISION RECALL CORRECT PRECISION RECALL CORRECT PRECISION RECALL

DEFECTS4J

JAID 94 35 37.2% 8.9% 25 26.6% 6.3% 14 14.9% 3.5% 11
ACS 23 18 78.3% 4.6% 18 78.3% 4.6% 18 78.3% 4.6% 11
CapGen 25 22 88.0% 5.6% 22 88.0% 5.6% 21 84.0% 5.3% 3
Elixir 41 26 63.4% 6.6% 26 63.4% 6.6% 26 63.4% 6.6% ?
HDA ? 23 ? 5.8% 23 ? 5.8% 13 ? 3.3% 3
jGenProg 27 5 18.5% 1.3% 5 18.5% 1.3% 5 18.5% 1.3% 1
jKali 22 1 4.5% 0.3% 1 4.5% 0.3% 1 4.5% 0.3% 0
Nopol 35 5 14.3% 1.3% 5 14.3% 1.3% 5 14.3% 1.3% 2
SimFix 56 34 60.7% 8.6% 34 60.7% 8.6% 34 60.7% 8.6% 12
SketchFix 26 19 73.1% 4.8% ? ? ? 9 34.6% 2.3% 0
SketchFixPP ? 34 ? 8.6% ? ? ? ? ? ? 3
ssFix 60 20 33.3% 5.1% 20 33.3% 5.1% 20 33.3% 5.1% 1
xPar ? 4 ? 1.0% 4 ? 1.0% ? ? ? ?

INTROCLASSJAVA

JAID 84 69 82.1% 26.7% 43 51.2% 16.7% 30 35.7% 11.6% ?
CapGen ? 25 ? 9.7% ? ? ? ? ? ? ?
JFix ? 19 ? 7.4% ? ? ? ? ? ? ?
S3 ? 22 ? 8.5% ? ? ? ? ? ? ?

QUIXBUGS

JAID 11 9 81.8% 22.5% 9 81.8% 22.5% 4 36.4% 10.0% ?
Astor 11 6 54.5% 15.0% ? ? ? ? ? ? ?
Nopol 4 1 25.0% 2.5% ? ? ? ? ? ? ?

AE [37], and TrpAutoRepair [38] produced [14] valid fixes
for 37%, 20%, and 32% of the bugs in the original IntroClass
C benchmark; the experiments [14] do not analyze how
many of these fixes are correct.

TABLE 11: Templates used more commonly by JAID to
produce correct fixes. For bugs in each benchmark, the table
lists the numbers of correct fixes produced by JAID using
a semantic action (s), a mutation action (m), or a control-
flow action (c); and the number of correct fixes that use one
of the five schemas A–E in Fig. 2. Since JAID may produce
multiple correct fixes for the same bug, the total number of
fix actions or fix schemas listed is greater than the number
of bugs correctly fixed by JAID.

BENCHMARK

FIX ACTION FIX SCHEMA

s m c A B C D E

DEFECTS4J 14 17 13 5 15 4 6 18
INTROCLASSJAVA 71 42 2 13 36 6 24 42
QUIXBUGS 4 3 2 2 4 1 0 3

OVERALL 89 62 17 20 55 11 30 63

JAID produced correct fixes for more bugs than any other
automated repair tools for Java—and fixed 11 bugs in

DEFECTS4J that no other tools can fix. JAID is less precise than
some other tools on DEFECTS4J bugs, but it is more precise on

INTROCLASSJAVA and QUIXBUGS bugs.

4.4 RQ4: Templates and Heuristics

Templates. As explained in Sec. 2.3, JAID uses three kinds of
fix actions as templates to build patches: semantic actions,
mutation actions, and control-flow actions. Tab. 11 shows
how often each kind of fix action was used to produce
correct fixes. Semantic and mutation actions are the most
frequently used fix action kinds, but control-flow actions
are also needed for a significant fraction of correct fixes.
This indicates that the three kinds of actions are often
complementary and all contribute to JAID’s effectiveness.

JAID patches a buggy program by injecting fix actions
using one of the five different fix schemas in Fig. 2. A fix
schema may execute the fix action unconditionally (schemas
A and E) or guarded by an if condition (schemas B, C,
and D); and may execute it instead of an existing statement
(schemas D and E) or in addition to it (schemas A, B, and C).
Tab. 11 indicates that schemas B and E are used a bit more
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Fig. 8: Partitioning of DEFECTS4J bugs according to which tool can fix them. Each vertical bar measures the number of bugs
that a certain combination of tools (indicated by connected dots in the lower part of the diagram) can correctly fix that no
other tools can. For example, the leftmost column indicates that SimFix can correctly fix 12 bugs that no other tool can; the
eighth column from the left indicates that HDA, SketchFixPP, and JAID can all fix the same 3 bugs that no other tools can
fix. The horizontal bars on the left report how many bugs in total each tool can fix.

often, but there is no schema that is overwhelmingly more
useful, and all are required to be able to fix a wide choice of
bugs.

Number of snapshots. JAID builds a variable number of
snapshots to abstract program state based on its heuristics; in
its default settings (Sec. 3.5), it uses up to 1500 snapshots to
drive the rest of the fixing process. It’s clear that the number
and variety of snapshots may affect the effectiveness (more
snapshots means more precise abstractions) and efficiency
(more snapshots means longer analysis times) of the fixing
process. To understand the trade-off in a quantitative way,
we ran a series of experiments where JAID used a different
number of snapshots to fix all 693 bugs in the three bench-
marks DEFECTS4J, INTROCLASSJAVA, and QUIXBUGS. Fig. 9
plots various measures of JAID’s performance (number of
valid and correct fixes, overall precision and recall, running
time per bug, and running time until a valid or correct fix is
found) as a function of the number of used snapshots—from
100 to 1500 in 100-snapshot increments. Overall, the data
confirms the intuition that more snapshots means longer
running times (Fig. 9c and Fig. 9d) but also a greater chance
of success (Fig. 9a) and better precision (Fig. 9b). However,
while the running time grows uniformly proportionally to
the number of snapshots, there are diminishing returns in
adding more snapshots to increase precision and recall,
since as the search space becomes larger it is harder to
search it effectively. Thus, further substantial progress in
effectiveness is not only a matter of extending the search
space but requires more structured ways of exploring it.

TABLE 12: How JAID’s effectiveness changes using different
fault localization techniques. For each of the five spectrum-
based Fault Localization algorithms of Tab. 5, the table
reports the number of fixes in each benchmark that JAID

could repair with a Valid or a Correct fix in ALL benchmarks,
and in each benchmark DEFECTS4J, INTROCLASSJAVA, and
QUIXBUGS individually. The first row refers to JAID using
its original fault-localization technique (as in the rest of the
experimental evaluation).

ALL DEFECTS4J INTROCLASSJAVA QUIXBUGS

FL c v c v c v c v

JAID 113 189 35 94 69 84 9 11
Barinel 111 191 33 96 69 84 9 11
DStar 111 191 33 96 69 84 9 11
Ochiai 111 191 33 96 69 84 9 11
Op2 111 191 33 96 69 84 9 11
Tarantula 111 191 33 96 69 84 9 11

JAID’s templates are all needed to be able to effectively fix bugs
with different characteristics. Reducing the number of

snapshots used by JAID improves its running time but also
reduces the number of bugs that can be fixed.

4.5 RQ5: Fault Localization

Do JAID’s effectiveness and efficiency depend on the fault-
localization algorithm it uses? To answer this question, we
ran five different variants of JAID, each using one of the fault
localization algorithms of Tab. 5 instead of JAID’s default
algorithm (used in the rest of the experiments). Tab. 12
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Fig. 9: How effectiveness and efficiency of JAID depend on the number of snapshots used for fixing. Each figure plots the
number of bugs with a valid or correct fix (Fig. 9a), overall precision and recall (Fig. 9b), average running time per bug
(Fig. 9c), and average time until a valid or a correct fix is built (Fig. 9d) as a function of the number of snapshots used
for fixing. The data comes from experiments using all 693 bugs in the three benchmarks DEFECTS4J, INTROCLASSJAVA, and
QUIXBUGS.
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Fig. 10: Violin plots of the top rank of correct fixes for
all bugs fixed by JAID using different fault localization
algorithms: JAID’s custom algorithm (JD), Barinel (BA), DStar
(DS), Ochiai (OC), Op2 (OP), and Tarantula (TR).

shows the number of faults fixed (with a correct fix, or just
with a valid fix) in each case. The differences between fault-
localization techniques are very small: there are only three
bugs in total that JAID can or cannot fix depending on the
fault localization algorithm it uses. Precisely, JAID failed to
produce any valid fixes for bug Lang53 in DEFECTS4J when
using its default fault localization algorithm, since the one
snapshot from which valid fixes could be derived was not
ranked among the top 1500 most suspicious; in contrast,
JAID could only correctly fix bugs Closure33 and Chart9

in DEFECTS4J using its default fault localization algorithm,
since the other five algorithms ranked the “useful” snap-
shots too low to be used.

Fig. 10 looks at how the top rank of a correct fix varies
with the choice of fault localization algorithm. Here too
differences between JAID’s default algorithm and any other
algorithm are quite limited—with JAID’s default algorithm
leading to a greater variance in the rank but no noticeable
differences on average.

Finally, Fig. 11 plots JAID’s running time using differ-
ent fault localization algorithms. Once again, there are no
marked differences between JAID’s default algorithm and
any other algorithm.

In summary, JAID’s overall technique is remarkably ro-
bust with respect to the choice of fault localization algo-
rithm. Note, however, that all fault localization algorithms
are spectrum-based, and hence process the same information
(the spectrum over the available executions) using slightly
different heuristic formulas (see Tab. 5). Using radically

different fault localization approaches [24], [39] may still
have a significant impact on the performance of automated
program repair.

JAID’s effectiveness and efficiency are largely independent of the
spectrum-based fault localization algorithm that is used.

5 THREATS TO VALIDITY

Construct validity indicates whether the measures used in
the experiments are suitable. We classify a fix as correct
if it is semantically equivalent to a programmer-written
fix. Since we assess semantic equivalence manually, dif-
ferent programmers may provide different assessments; to
mitigate this threat, we were conservative in evaluating
equivalence—if a fix does not clearly produce the same
behavior as the fix in DEFECTS4J or QUIXBUGS for the same
bug, we classify it as incorrect. This approach is consistent
with what was done by other researchers, and seems to be
reasonably reliable as a way of assessing correctness [40].

We measured, and compared, precision and recall rela-
tive to all bugs from the three benchmarks, although most
APR techniques only run experiments on a subset of the
DEFECTS4J bugs whose features have a chance of being
fixable. Using the largest possible denominator ensures that
measures are comparable between different tools, and is
consistent with the ultimate ambition of developing APR
techniques that are as widely applicable as possible.

Tools, and their experimental evaluations, often differ in
how they deal with multiple valid fixes for the same bugs. In
the tool comparison, we counted all correct fixes generated
by each tool that were reported in the experiments, and we
reported separate measures of precision according to how
many valid fixes are inspected. This gives a nuanced picture
of the results, which must however be taken—as usual—
with a grain of salt: different tools may focus on achieving a
better ranking vs. correctly fixing more bugs, and we do not
imply that there is one universal measure of effectiveness.
Anyway, our evaluation is widely applicable—including to
papers that may not detail this aspect—and is in line with
what was done in other evaluations [1], [3], [34]–[36].

Internal validity indicates whether the experimen-
tal results soundly support the findings. Comparing the
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Fig. 11: Violin plots of the overall running time of JAID using different fault localization algorithms: JAID’s custom algorithm
(JD), Barinel (BA), DStar (DS), Ochiai (OC), Op2 (OP), and Tarantula (TR).

performance—running time, in particular—of different APR
techniques is a particularly delicate matter because of a
number of confounding factors. First of all, the experiments
should all run on the same hardware and runtime envi-
ronment, using comparable configurations (e.g., in terms of
timeouts). Techniques using randomization, such as jGen-
Prog, require several repeated runs to get quantitative re-
sults that are representative of a typical run [41]. Some tech-
niques, such as ACS, HDA, ssFix, and CapGen, rely on a time-
consuming preprocessing stage that mines code repositories
(and is crucial for effectiveness), and hence it is unclear
how to appropriately compare them to techniques, such as
JAID, that do not depend on this auxiliary information. Fault
localization is also an explicit input to most other APR tech-
niques. In all, we used standard, clearly specified settings
for the experiments with JAID, and we relied on the overall
results—in terms of correct fixes—reported in other tools’
experiments. In contrast, we refrained from qualitatively
compare tools in measures of performance, which depend
more sensitively on having a controlled experimental setup,
and which we therefore leave to future work.

External validity indicates whether the experimental
findings generalize. Our experimental evaluation targets a
large and varied selection of bugs in three benchmarks. The
DEFECTS4J dataset is a varied collection of bugs, carefully
designed and maintained to support realistic and sound
comparisons of the effectiveness of all sorts of analyses
based on testing and test-case generation; it has also become
a de facto standard to evaluate APR techniques for Java.
The INTROCLASSJAVA dataset contains bugs representative
of mistakes commonly made by novice programmers in
writing small programs. Bugs in the QUIXBUGS dataset
are representative of mistakes programmers often make in
implementing algorithms that are challenging to get right.
Overall, using bugs with distinct characteristics from differ-
ent sources helps to mitigate the risk that our experiments
overfit the subjects. As future work, we plan to run JAID

on other open-source Java projects; we see no intrinsic
limitations that would prevent JAID from working reliably
on other projects as well.

6 RELATED WORK

Automated program repair has become a bustling research
area in the course of just a few years. The first APR tech-
niques [42], [43] used genetic algorithms to search the space
of possible fixes for a valid one. GenProg [43] pioneered the

“generate-and-validate” approach, where many plausible
fixes are generated based on heuristics, and then are vali-
dated against the available tests. More recently, others [9],
[21], [33], [44]–[46] have pursued the “constraint-based”
approach, where fixes are constructed to satisfy suitable
constraints that correspond to their validity. The two ap-
proaches are not sharply distinct, in that fixes generated
by constraint-based techniques may still require valida-
tion if the constraints they satisfy by construction are not
sufficiently precise to ensure that they are correct—as it
often happens when dealing with incomplete specifications.
Nevertheless, the categorization remains useful; we devote
more attention to generate-and-validate techniques, since
JAID belongs to this category, and thus is more directly
comparable to them. We also focus the discussion on recent
techniques that are applicable to Java programs, since these
are directly comparable to JAID; for an exhaustive list of APR
techniques, see the annotated bibliography [47].

Generate-and-validate. GenProg [43] is based on a ge-
netic algorithm that mutates the code of a faulty C function
by deleting, adding, or replacing code taken from other
portions of the codebase—following the intuition [48] that
existing code is also applicable to patch incorrect function-
ality. PAR [49] bases the generation of fixes on ten patterns,
selected based on a manual analysis of programmer-written
fixes, which helps generate fixes that are more readable,
and possibly easier to understand. Since PAR is not publicly
available, xPar [6], [7] reimplements PAR. A complementary
approach [50] suggests to use anti-patterns, trying to capture
fixes that are likely to be incorrect but still pass validation.
SketchFix [17] replaces suspicious expressions with “holes”
via AST node-level code transformation and employs a
sketch engine to systematically synthesize expressions with
predefined structures on demand to fill the holes. By in-
tegrating fix generation and validation, SketchFix signifi-
cantly outperforms existing G&V techniques in proposing
expression-level fixes.

A performance comparable to that of GenProg can be
achieved using a simplistic APR tool Kali [1], which repairs
faulty C programs by just removing or skipping code;
Martinez and Monperrus [2] developed jKali, a Java imple-
mentation of Kali.

By also relying on contracts (specifications embedded in
the program text) AutoFix [4], [36], [51] was the first general-
purpose APR technique able to produce a significant num-
ber of correct fixes. One of the ideas behind JAID’s design is
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to generalize AutoFix’s state-based analysis to work on Java
code without contracts, so as to improve the quality of the
generated fixes without sacrificing applicability.

Code mining. A number of recent approaches are
based on preprocessing a large dataset of programmer-
written code snippets to learn useful features of effec-
tive repairs. SearchRepair [52] encodes program behavior
as input/output relational constraints, and then generates
fixes by searching the dataset for snippets that capture the
desired input/output behavior. HDA [6] also leverages a
model of programmer-written code built by mining soft-
ware repositories, but combines it with a mutation-based
syntax-driven analysis similar to GenProg: mutants that are
“more similar” to what the learned model prescribes are
preferred in the search for a repair. Elixir [19] learns a logistic
regression model from existing patches and uses the model
to identify promising fixes to faulty method calls. ssFix [23]
leverages existing code that is syntactically related to the
fixing context to produce patches. CapGen [16] exploits
fault context information to prioritize expression-level fixes
so that fixes more likely to be correct are generated first.
SimFix [22] utilizes both existing patches and similar code to
repair faults. The idea of mining programmer-written code
is applicable to other APR approaches, including JAID, as
a way to provide additional information that reduces the
chance of overfitting.

Condition synthesis. Constraint-based approaches [44],
[46] often target the synthesis of conditions in if statements
or loops, since changing those conditions often affects the
control flow in decisive ways. For example, Angelix [33]
introduced an efficient representation of constraints, com-
bined with a symbolic execution analysis, which helps it
scale.

Nopol [9] only targets conditional expressions, and uses
a form of angelic debugging [53], [54] to reconstruct the
expected value of a condition in passing vs. failing runs;
based on it, it synthesizes a new conditional expression
using an SMT solver. SPR [55] and Prophet [34] also combine
condition synthesis with a dynamic analysis of the value
each abstract conditional expression should take to make
all tests pass, which helps aggressively prune the search
space when no plausible repair exists. ACS [7] significantly
improves the precision of condition synthesis based on
a combination of data- and control-dependency analysis,
and mining API documentation and Boolean predicates in
existing projects.

7 CONCLUSIONS AND FUTURE WORK

We presented an extensive experimental evaluation of JAID,
a technique and tool for the automated repair of Java
programs. In experiments involving all 693 bugs from the
DEFECTS4J, INTROCLASSJAVA, and QUIXBUGS benchmark
suites, JAID produced correct fixes for 113 bugs with a preci-
sion of nearly 60%. At the time of writing, 11 of these bugs
could not be fixed by any other state-of-the-art automated
repair technique for Java.

Like most techniques based on dynamic analysis and
generate-then-validate fix generation, JAID’s running times
are often reasonable (on average, 24 minutes to generate a

correct fix) but can become very long on a few “hard” bugs.
We plan to pursue two directions to improve JAID’s running
time performance: 1) fine-grained test selection strategies
could curtail validation time by only rerunning the tests
whose behavior may have changed; 2) parallelizing the
execution of the validation phase should be straightforward,
since different unit tests are obviously independent.

Major progress in the precision and applicability of
automated program repair typically requires tapping into
additional sources of information about program behavior:
JAID relies on a rich state-based dynamic analysis; other
approaches mine repositories of code and fixes [6], [7]. While
our experiments suggest that JAID’s overall effectiveness
does not depend much on the details of its spectrum-based
fault localization algorithm, they also indicate that further
substantial progress would probably require to step up the
precision of fault localization in a way that it can incorporate
such additional sources of information. To this end, we
plan to integrate fault localization closely with JAID’s overall
repair process.
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