
1

RESTORE: Retrospective Fault Localization
Enhancing Automated Program Repair

Tongtong Xu, Liushan Chen, Yu Pei, Tian Zhang, Minxue Pan, Carlo A. Furia

Abstract—Fault localization is a crucial step of automated program repair, because accurately identifying program locations that are
most closely implicated with a fault greatly affects the effectiveness of the patching process. An ideal fault localization technique would
provide precise information while requiring moderate computational resources—to best support an efficient search for correct fixes. In
contrast, most automated program repair tools use standard fault localization techniques—which are not tightly integrated with the
overall program repair process, and hence deliver only subpar efficiency.
In this paper, we present retrospective fault localization: a novel fault localization technique geared to the requirements of automated
program repair. A key idea of retrospective fault localization is to reuse the outcome of failed patch validation to support mutation-based
dynamic analysis—providing accurate fault localization information without incurring onerous computational costs.
We implemented retrospective fault localization in a tool called RESTORE—based on the JAID Java program repair system. Experiments
involving faults from the DEFECTS4J standard benchmark indicate that retrospective fault localization can boost automated program
repair: RESTORE efficiently explores a large fix space, delivering state-of-the-art effectiveness (41 DEFECTS4J bugs correctly fixed, 8 of
which no other automated repair tool for Java can fix) while simultaneously boosting performance (speedup over 3 compared to JAID).
Retrospective fault localization is applicable to any automated program repair techniques that rely on fault localization and dynamic
validation of patches.

F

1 INTRODUCTION

Automated program repair has the potential to transform
programming practice: by automatically building fixes for
bugs in real-world programs, it can help curb the large
amount of resources—in time and effort—that programmers
devote to debugging [1]. While the first viable techniques
tended to produce patches that overfit the few tests typically
available for validation [2], [3], automated program repair
tools have more recently improved precision (see Section 5.2
for a review) to the point where they can often produce
genuinely correct fixes—equivalent to those a programmer
would write.

A crucial ingredient of most repair techniques—and
especially of so-called generate-and-validate approaches [4]—
is fault localization. Imitating the debugging process fol-
lowed by human programmers, fault localization aims to
identify program locations that are implicated with a fault
and where a patch should be applied. Fault localization
in program repair has to satisfy two apparently conflicting

• Tongtong Xu is with both the State Key Laboratory for Novel Software
Technology, Nanjing University, China, and the Department of Comput-
ing, The Hong Kong Polytechnic University.
E-mail: dz1633014@smail.nju.edu.cn.

• Liushan Chen and Yu Pei are with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.
E-mail: {cslschen,csypei}@comp.polyu.edu.hk.

• Tian Zhang is with the State Key Laboratory for Novel Software Technol-
ogy of Nanjing University, China.
E-mail: ztluck@nju.edu.cn.

• Minxue Pan is with the State Key Laboratory for Novel Software Technol-
ogy and the Software Institute of Nanjing University, China.
E-mail: mxp@nju.edu.cn.

• Carlo A. Furia is with the Software Institute of USI Università della
Svizzera italiana, Lugano, Switzerland.
Homepage: https://bugcounting.net/ .

requirements: it should be accurate (leading to few locations
highly suspicious of error), but also efficient (not taking too
much running time).

In this paper, we propose a novel fault localization
approach—called retrospective fault localization, and pre-
sented in Section 3—that improves accuracy while simul-
taneously boosting efficiency by integrating closely within
standard automated program repair techniques. By provid-
ing a more effective fault localization process, retrospective
fault localization expands the space of possible fixes that
can be searched practically. Retrospective fault localization
leverages mutation-based fault localization [5], [6] to boost
localization accuracy. Since mutation-based fault localiza-
tion is notoriously time consuming, a key idea is to per-
form it as a derivative of the usual program repair process.
Precisely, retrospective fault localization introduces a feed-
back loop that reuses, instead of just discarding them, the
candidate fixes that fail validation to enhance the precision
of fault localization. Candidate fixes that pass some tests
that the original (buggy) program failed are probably closer
to being correct, and hence they are used to refine fault
localization so that other similar candidate fixes are more
likely to be generated.

We implemented retrospective fault localization in a tool
called RESTORE, built on top of JAID [7], a recent generate-
and-validate automated program repair tool for Java. Ex-
periments with real-world bugs from the DEFECTS4J curated
benchmark [8] indicate that retrospective fault localization
significantly improves the overall effectiveness of program
repair in terms of correct fixes (for 41 faults in DEFECTS4J,
8 more than any other automated repair tool for Java
at the time of writing) and boosts its efficiency (cutting
JAID’s running time to a third or less). Other measures
of performance, discussed in detail in Section 4, suggest

that retrospective fault localization improves the efficiency
of automated program repair by supporting accurate fault
localization with comparatively moderate resources.

Generality. While our prototype implementation is
based on the existing tool JAID, retrospective fault localiza-
tion should be applicable to any program repair tools that
use fault localization and rely on validation through testing.
To demonstrate the approach’s generality, we extended Sim-
Fix [9]—another state-of-the-art automated repair tools for
Java—with retrospective fault localization. The experimen-
tal results comparing SimFix with and without retrospective
fault localization (reported in Section 4.2.3) indicate that
retrospective fault localization is applicable also to different
implementations, where it similarly brings considerable per-
formance improvements without decreasing effectiveness.

Contributions. This paper makes the following contri-
butions:

1) Retrospective fault localization: a novel fault localiza-
tion approach tailored for automated program repair
techniques based on validation;

2) RESTORE: a prototype implementation of retrospective
fault localization, demonstrating how retrospective
fault localization can work in practice;

3) An experimental evaluation of RESTORE on real-world
faults from DEFECTS4J, showing that retrospective fault
localization significantly improves the efficiency by
boosting effectiveness and, simultaneously, perfor-
mance.

4) An implementation of retrospective fault localization
atop the SimFix program repair technique, indicating
that it is viable to improve also other generate-and-
validate repair techniques.

Replication. A replication package with RESTORE’s imple-
mentation and all experimental data is publicly available at:
http://tiny.cc/9xff3y.

2 AN EXAMPLE OF RESTORE IN ACTION

The Closure Compiler is an open source tool that optimizes
JavaScript programs to achieve faster download and exe-
cution times. One of the refactorings it offers—renaming
classes so that namespaces are no longer needed—is based
on class ProcessClosurePrimitives whose methods modify
calls to common namespace manipulation APIs. In par-
ticular, method processRequireCall processes calls to the
goog.require API and determines if they can be removed
without changing program behavior.

Listing 1 shows part of the method’s implementation,
which is defective:1 according to the tool documenta-
tion, a call to goog.require should be removed (lines 6
and 7) if (i) the required namespace can be resolved suc-
cessfully (provided != null), or (ii) the tool is configured
to remove all the calls to goog.require unconditionally
(requiresLevel.isOn()). But the code in Listing 1 only
checks condition (i) on line 5, and hence does not remove
unresolvable calls even when condition (ii) holds.

Using some of the tests that come with Closure Compiler’s
source code, the RESTORE tool described in the present paper
produces the fix shown in Listing 2, which is identical to

1. Fault Closure113 in DEFECTS4J [8] and Table 3.

the one written by Closure Compiler’s tool developers—and
completely fixes the bug. At the time of writing, RESTORE is
the only automated program repair tool capable of correctly
fixing this bug2.

The features of method processRequireCall and its en-
closing class ProcessClosurePrimitives contribute to mak-
ing the bug challenging for generate-and-validate auto-
mated repair tools. First, class and method are relatively
large (Class ProcessClosurePrimitives has 1233 lines and
method processRequireCall has 40 lines), which is a chal-
lenge in and of itself for precise fault localization. Sec-
ond, attribute requiresLevel is never referenced in the
faulty version of processRequireCall and is used only
once after initialization in the whole class; thus, expres-
sion requiresLevel.isOn()—which is needed for the fix—
is unlikely to be selected by techniques that look for fixing
“ingredients” mainly in a fault’s context.

RESTORE’s retrospective fault localization is crucial to
ensure that the necessary fixing expression is found in rea-
sonable time: RESTORE takes around 32 minutes to produce
the fix in Listing 2) and to rank it first in the output. This
indicates that RESTORE’s search for fixes is not only efficient
but also effective.

In the rest of the paper we explain how RESTORE works
(Section 3), and demonstrate its consistent performance
improvements on standard benchmarks of real-world bugs
(Section 4).

3 HOW RESTORE WORKS

Retrospective fault localization is applicable in principle
to any generate-and-validate automated program repair
technique to improve its efficiency. To make the presen-
tation more concrete, we focus on how retrospective fault
localization is applicable on top of the JAID [7] automated
program repair tool. We call the resulting technique, and its
supporting tool, RESTORE.

3.1 Overview
Figure 1 illustrates how RESTORE works at a high level, and
how it enhances a traditional automated program repair

2. Nopol was able to produce a valid, but incorrect, fix to the
fault [10].

1 private void processRequireCall(NodeTraversal t,
2 Node n, Node parent) {
3 ProvidedName provided = providedNames.get(...);
4 ...
5 if (provided != null) {
6 parent.detachFromParent();
7 compiler.reportCodeChange();
8 }
9 }

Listing 1: Faulty method processRequireCall from class
ProcessClosurePrimitives in project Closure Compiler.

if (provided != null || requiresLevel.isOn()) {

Listing 2: Fix written by tool developers (replacing line 5 in
Listing 1), and also produced by RESTORE.

2

Java
program

Test
cases

Fault localization Fix generation Fix validation

Mutation-based
fault localization

Partial
fix validation

Ranked
valid
fixes

Suspicious
snapshots

Candidate
fixes

Validation
results RESTORE

Figure 1: An overview of how RESTORE works. RESTORE can improve the performance of any generate-and-validate automated program repair
tool. Such a tool inputs a faulty program and some test cases exercising the program. The first, crucial, step of fixing is fault localization, which
determines a list of snapshots: program states that are indicative of error; for each suspicious snapshot, fix generation builds a number of candidate
fixes of the input program by exploring a limited number of program mutations that may avoid the suspicious states; fix validation reruns the
available tests on each candidate built by fix generation; only candidates that pass all tests are valid fixes, which are the tool’s output to the user.
RESTORE kicks in during the first run of such a program repair tool, by introducing a feedback loop (in grey) that improves the effectiveness of fault
localization. RESTORE performs a partial fix validation, whose goal is quickly identifying candidate fixes that fail validation—which are treated as
mutants of the input program; information about how mutants’ behaviors differ from the input program supports a mutation-based fault localization
step that sharpens the identification of suspicious snapshots. As we demonstrate in Section 4, RESTORE’s feedback loop significantly improves
effectiveness and efficiency of automated program repair.

technique by retrospective fault localization (boxes in grey
in Figure 1).

Input. RESTORE inputs a Java program P (a collection
of classes), with a faulty method fixme, and a set T of
test cases exercising P ; precisely, tests T are partitioned
into passing tests TË and failing tests Té. Since each run
of RESTORE actually only uses tests that exercise fixme, we
assume, without loss of generality, that T only includes such
tests.

Fault localization identifies program locations and states
(called snapshots) that are indicative of faulty behavior. Ac-
cording to heuristics based on dynamic and static measures,
each snapshot receives a suspiciousness score—the higher, the
more suspicious; snapshots ranked according to their suspi-
ciousness score are input to the next step: fix generation.

Fix generation builds several modifications of input
program P for each snapshot in order of suspiciousness.
The modifications try to mutate P ’s behavior in a way
that avoids reaching the suspicious snapshot’s state. Fix
generation’s output is a sequence of candidate fixes that needs
to be validated.

(Full) fix validation tests each candidate fix to deter-
mine whether it actually fixes the fault exposed by Té. In
traditional automated program repair, fix validation runs
all available tests T against each fix candidate, and only
outputs candidates that pass all tests—ranked according to
the suspiciousness of the snapshots they were derived from.
Hence, fix validation is often the most time-consuming step
of traditional automated program repair. Since it is done
downstream from fix generation—as the last step of the
whole fixing process—validation requires a large number of
fix candidates to maximize the chance of finding some valid,
possibly correct, fixes, which exacerbates the performance
problem.

Partial fix validation is the lightweight form of valida-
tion of candidate fixes used by RESTORE to support retro-
spective fault localization. By only running a subset of the
available tests T , partial fix validation aims to quickly detect
behavioral changes in some of the candidates with respect to
the program P under fix.

Mutation-based fault localization improves the preci-
sion and effectiveness of fault localization by using retro-
spective information coming from partial validation. Based
on this information, the suspiciousness score of snapshots is

revised to become more discriminatory.
Exploring a larger fix space. With retrospective fault

localization, the top-ranked snapshots have a higher chance
of leading to valid fixes when used in the following phases
of the repair technique—and thus to correct fixes ranked
high in the overall output. Conversely, a higher-precision
fault localization technique means that fewer candidates need
to be generated and (fully) validated, leading to an overall
faster process. In turn, RESTORE’s more efficient search of the
fix space allows it to explore a larger space in comparable—
often shorter—time, ultimately leading to discovering fixes
that are outside JAID’s fix space.

3.2 Basic Automated Program Repair
This section describes the basic process of automated pro-
gram repair—as implemented in generate-and-validate re-
pair tools such as JAID and RESTORE. Then, Section 3.3
presents retrospective fault localization in RESTORE, showing
how it enhances the basic repair process described here.

3.2.1 State abstraction: snapshots
Snapshots are fundamental abstractions of a program’s runs.
A snapshot is a triple 〈`, e, v〉, where ` is a location in the
program’s control-flow graph, e is a Boolean expression,
and v is a Boolean value (true or false). Intuitively, 〈`, e, v〉
records the information that a program’s run reaches loca-
tion ` with expression e evaluating to v.

RESTORE builds snapshots by enumerating different
Boolean expressions e that refer to program features visible
at `, and by evaluating such expressions in all runs of tests
T .

3.2.2 Fault localization
Fault localization assigns a suspiciousness score su(s) to each
snapshot s. Intuitively, su(s) should capture the likelihood
that s is the source of failure.

Tools like JAID use a form of spectrum-based fault local-
ization [11], which roughly corresponds to giving a higher
suspiciousness to s = 〈`, e, v〉 the more often e evaluates
to v at ` in runs of failing tests than in runs of passing
tests. In RESTORE, we call JAID’s fault localization basic fault
localization; RESTORE uses it to determine a suspiciousness
score suB(s) for each snapshot s—bootstrapping the fix
generation phase.

3

More precisely, JAID applies Wong et al.’s Heuris-
tic III [12] to classify the suspiciousness of snapshots rather
than statements—as more commonly done in fault localiza-
tion. A snapshot s’s suspiciousness combines a static analy-
sis score (measuring the syntactic similarity of the snapshot
expression e and the code around location `) and a dynamic
score (measuring the relative frequency with which e = v
in a failing rather than in a passing test). Some recent
experiments [13] indicate that JAID’s effectiveness does not
significantly depend on the details of the spectrum-based
fault localization algorithm: running JAID using other com-
mon algorithms for fault localization (such as Ochiai [11] or
Tarantula [14]) leads to very similar numbers of valid and
correct fixes.

3.2.3 Fix generation
For each snapshot 〈`, e, v〉, fix generation modifies P ’s
method fixme (the one being fixed) in ways that affect
the value of e at `. Fix generation processes snapshots in
decreasing order of suspiciousness, building multiple mod-
ifications of fixme for the same snapshot; each modification
is a fix candidate.

RESTORE generates fix candidates in two steps. First, it
enumerates code snippets (called actions in [7]) that (a) mod-
ify the state of an object referenced in e, (b) modify a subex-
pression of e in the statement at `, (c) if ` is a conditional
statement if (c) ..., modify expression c, or (d) modify
the control flow at ` (for example with a return statement).
Second, it injects a code snippet action into fixme using any
of the five schemas in Figure 2: oldStatement is the statement
at ` in fixme, which the whole instantiated schema replaces
to generate a fix candidate.

Each fix candidate C can be seen as a mutant of in-
put program P that originates from one snapshot s; we
write σ(C) = s to denote the snapshot s that candidate
C originates from. To cull the search space of generated
fixes, it is customary to builds fix candidates for at most
the top N snapshots in order of suspiciousness; in JAID,
N = NS = 1500.

Schema A: action; oldStatement;
Schema B: if (e == v) { action; } oldStatement;
Schema C: if (e != v) { oldStatement; }
Schema D: if (e == v) { action; } else { oldStatement; }
Schema E: /* oldStatement; */ action;

Figure 2: Schemas to build candidate fixes from a code snippet action
built from snapshot 〈`, e, v〉, where oldStatement is the statement at `
in method fixme under fixing.

3.2.4 Fix validation (and ranking)
Since fix generation is “best effort” and based on the partial
information captured by snapshots, it is followed by a
validation step that reruns all available tests. A fix candidate
C is valid if it passes all available tests T : tests Té failing on
the input program are passing on C , and tests TË passing
on the input program are still passing on C (no regression
errors).

Typically, more than one fix candidate C fixing the same
input program P is valid; we rank all such valid fixes in
decreasing order of suspiciousness of the snapshot used to

generate C—that is in decreasing order of su(σ(C)). The
overall output of automated program repair is thus a list of
valid fixes ranked according to suspiciousness.

3.3 Retrospective Fault Localization in RESTORE

The ultimate goal of automated program repair is finding
fixes that are not only valid—pass all available tests—
but correct—equivalent to those a competent programmer,
knowledgeable of the program P under repair, would write.
The traditional automated program repair process presented
in Section 3.2 can be quite effective at producing correct
fixes but is limited in practice by two related requirements:
1) since the accuracy of fault localization greatly affects the
chances of success of the whole repair process, we would
like to have a fault localization technique that incorporates
as much information as possible; 2) since the process is open
loop (no feedback), we have to generate as many candidate
fixes as possible to maximize the chance of finding a correct
one. Improving accuracy and generating many candidate
fixes both exacerbate the already significant problem of long
validation times (for example, validation takes up 92.8% of
JAID’s overall running time [7]). More crucially, they require
to bound the search space of possible fixes to a size that can
be feasibly explored. But, by definition, shrinking the fix
space makes some bugs impossible to fix.

Retrospective fault localization, as implemented in RE-
STORE, addresses these two requirements with complemen-
tary solutions: 1) it performs a preliminary partial fix val-
idation, which runs much faster than full validation and
whose primary goal is to supply more dynamic information
to fault localization; 2) using the information from partial
validation, it complements JAID’s fault localization with pre-
cise mutation-based fault localization. Such a feedback-driven
mutation-based fault localization drives more efficient fur-
ther iterations of fix generation, producing a much smaller,
often higher-quality, number of candidate fixes that can
undergo full validation taking a reasonable amount of time.
The greater efficiency is then traded off against fix space
size: RESTORE can afford to explore a larger space of candidate
fixes, thus ultimately fixing bugs that are out of JAID’s (and
other repair tools’) capabilities.

3.3.1 Initial fix generation

The initial iteration of fix generation in RESTORE works sim-
ilarly to basic automated program repair: fault localization
(Section 3.2.2) assigns a basic suspiciousness score suB(s) to
every snapshot s (using spectrum-based fault localization
as in JAID); and fix generation (Section 3.2.3) builds fix
candidates for the most suspicious snapshots.

As we have already remarked, JAID’s spectrum-based
fault localization often takes a major part of the total fixing
time, as it involves monitoring the values of many snapshot
expressions in every test execution; for example, it takes
51%–99% of JAID’s total time on 16 hard faults [7]. To cut
down on this major time cost, RESTORE selects a subset TB of
all tests T to be used in basic fault localization using nearest
neighbor queries [15]. The selected tests TB include all
failing tests Té as well as the passing tests with the smallest
distance to those failing. The distance between two tests t1, t2

4

is calculated as the Ulam distance3 U(φ(t1), φ(t2)), where
φ(t) is a sequence with all basic blocks of fixme’s control-
flow graph sorted according to how many times each block
is executed when running t. This way, passing tests that are
behaviorally similar to failing tests are selected as “more
useful” for fault localization since they are more likely to
be sensitive to fixes of the fault. Take, for example, the
conditional at lines 5–7 in Listing 2; two tests t1 and t2 such
that provided != null at line 5 both execute the conditional
block, and hence will have a shorter Ulam distance than
t1 and another test t3 that skips the conditional block
(such that provided == null at line 5). Subset TB is used
only to bootstrap RESTORE’s initial fix generation without
dominating the overall running times.

During initial fix generation, RESTORE builds fix candi-
dates for the N1 = NS · NP most suspicious snapshots
(whereas JAID builds candidates for the NS most suspicious
snapshots). Parameter NP is 10% (i.e., NP = 0.1) by default;
this works because retrospective fault localization can be as
effective as JAID’s basic fault localization with a fraction of
the snapshots.

3.3.2 Partial fix validation
Partial fix validation aims at quickly extracting dynamic in-
formation about the many candidate fixes built by the initial
iteration of fix generation. To strike a good balance between
costs (time spent on running tests) and benefits (information
gathered to guide mutation-based fault localization), partial
fix validation follows the simple strategy of running only the
tests Té that were failing on the input program P . This is
efficient—because |Té| is often much smaller than |TË| (see
columns F and P in Table 3)—and still has a good chance of
providing valuable information for fault localization, since
it detects whether the failing behavior has changed in some
of the fix candidates.

If a candidate fix happens to pass all tests Té, it imme-
diately undergoes full validation (Section 3.3.6) for better
responsiveness of the fixing process (outputting valid fixes
as soon as possible).

3.3.3 Mutation-based fault localization
In mutation-based fault localization [6], [5], we compare the
dynamic behavior of many different mutants of a program.

A mutant is a program variant produced by changing the
program’s code in some ways—for example, by changing a
comparison operator. A mutant M of a program P is killed
by a test t when M behaves differently from P on t; that is,
either P passes twhileM fails it, or P fails twhileM passes
it. A killed mutant M indicates that the locations where M
syntactically differs from P are likely (if M fails) or unlikely
(if M passes) to be implicated with the failure triggered by
t.

RESTORE’s retrospective fault localization treats candi-
date fixes as higher-order mutants—that is, mutants of the
input program P that may include multiple elementary
mutations—and interprets partial fix validation results of

3. The Ulam distance [16] of two sequences is the minimum number
of delete, shift, and insert operations to go from one sequence to
another. For example, the Ulam distance U(s1, s2) of s1 = a b c t u and
s2 = a b t c u is 2 (delete c from s1 and insert it back after t).

those higher-order mutants in a similar way to help locate
faults more accurately. In particular, adapting [6]’s heuristics
to our context, we assign a suspiciousness score suM (C) to
each candidate fix C :

suM (C) =
|Té ∩ killed(C)|√
|Té| · |killed(C)|

, (1)

where killed(C) ⊆ Té is the set of all tests that kill C—and
thus Té∩killed(C) are the tests that fail on input program P
and pass on C . Formula (1) assigns a higher suspiciousness
to a candidate fix the more failing tests it manages to pass,
indicating that C might be closer to correctness than P .

In order to combine the output of mutation-based and
basic fault localization, we assign a suspiciousness score
suM (s) to each snapshot s based on the suspiciousness (1)
of candidates. Each candidate fix D is generated from some
snapshot σ(D); let SU (D) be the largest suspiciousness
score of all candidate fixes E generated from the same
snapshot σ(D) as D:

SU (D) = max
E

{
suM (E) | σ(E) = σ(D)

}
.

Then, the mutation-based suspiciousness score suM (s) of
a snapshot s = 〈`, e, v〉 is the average of SU (D) across all
candidate fixes D generated from a snapshot with the same
location ` as s (and any expression and value):

suM (〈`, e, v〉) = mean
D

{
SU (D) | σ(D) = 〈`, ∗, ∗〉

}
. (2)

The maximum selects, for each snapshot, the candidate fix
generated from it that is more “successful” at making failing
tests pass. Then, all snapshots with the same location get
the same “average” suspiciousness score. Intuitively, the
average pools the information from different fixes that target
different locations and pass partial validation.

Finally, we combine the basic suspiciousness score suB

and the mutation-based suspiciousness score suM into an
overall total ordering of snapshots according to their suspi-
ciousness:

s1 � s2 ,

(
`1 6= `2 ∧ suM (s1) ≥ suM (s2)

)
∨

(
`1 = `2 ∧ suB(s1) ≥ suB(s2)

) ,
where s1 = 〈`1, e1, v1〉 and s2 = 〈`2, e2, v2〉. That is, snap-
shots referring to different locations are compared according
to their mutation-based suspiciousness, and snapshots refer-
ring to the same location are compared according to their ba-
sic suspiciousness—because they have the same mutation-
based suspiciousness score. As discussed in Section 3.2.2,
RESTORE assigns a basic suspiciousness score to each snapshot;
whereas the mutation-based suspiciousness score (2) is the
same, by definition, for all snapshots with the same location.

An example of how MBFL works. To get a more
intuitive idea of how mutation-based fault localization can
help find suitable fix locations in RESTORE, let’s consider
again fault Closure113 in DEFECTS4J—shown in Figure 1 and
discussed in Section 2. A single failing test case Té = {té}
triggers the fault by reaching line 5 with provided == null:
execution skips the then branch (lines 6 and 7), which
eventually leads to a failure.

During the initial round of fix generation, RESTORE does
not produce any valid fix, because a key fix ingredient

5

(expression requiresLevel.isOn()) is further out in the fix
search space. However, it generates 16 candidate fixes that
happen to pass the originally failing té because they all
force execution through lines 6 and 7 by changing condition
provided != null on line 5. For example, one such fixes re-
places it with provided != null || provided == null. None
of these 16 candidates is valid (because they all fail other,
previously passing, tests) but, instead of simply being dis-
carded, they all are reused as evidence—to increase the
suspiciousness score of line 5: (i) suM (C) = 1 for each of
these 16 candidates, because |Té| = 1 and killed(C) = Té;
(ii) SU (C) = suM (C) for the same candidates, because
they all have the same (maximum) value of suspiciousness;
(iii) suM (〈` = 5, ∗, ∗〉) = 1 for all snapshots that target
line 5. Since no other candidates generated in this round
change the suspiciousness of other locations, the net result
is that the following iterations of fix generation will pref-
erentially target fixes at line 5. This biases the search for
fixes so that RESTORE goes deeper in this direction of the
fix search space, which eventually leads to generating the
correct fix shown in Listing 2—which indeed targets line 5
with a suitable condition.

3.3.4 Retrospective loop iteration
Equipped with the refined fault localization information
coming from mutation-based fault localization, RESTORE de-
cides whether to iterate the retrospective fault localiza-
tion loop—entering a new round of initial fix generation
(Section 3.3.1)—or to just use the latest fault localization
information to perform a final fix generation (Section 3.3.5).
While the retrospective feedback loop could be repeated
several times (until all snapshots are used to build candi-
dates), we found that there are diminishing returns in per-
forming many iterations. Thus, the default setting is to stop
iterating as soon as mutation-based fault localization assigns
a positive suspiciousness score suM (s) to some snapshot s;
if no snapshot gets a positive score, we repeat initial fix
generation.

3.3.5 Final fix generation
Snapshots ranked according to the � relation drive the final
generation of fixes. Final fix generation runs when retro-
spective fault localization has successfully refined the sus-
piciousness ranking of snapshots (Section 3.3.4)—hopefully
identifying few promising snapshots. Thus, final fix genera-
tion generates fixes only for snapshots corresponding to the
NL most suspicious locations—with NL = 5 by default.

During final fix generation, RESTORE can even afford to
trade off some of the greater precision brought by retrospec-
tive fault localization for a larger fix space to be explored:
whereas JAID builds fix candidates based only on expres-
sions found in method fixme (the method being fixed),
RESTORE may also consider expressions found anywhere in
fixme’s enclosing class. RESTORE can efficiently search such
a larger fix space, thus significantly expanding its overall
fixing effectiveness.

3.3.6 (Full) fix validation
The final validation is, as in basic automated program
repair, full—that is, uses all available tests T and validates

candidate fixes that pass all of them. This validation has
a higher chance of being significantly faster than in basic
automated program repair: first, it often has to consider
fewer candidate fixes (Section 3.3.5) selected according to
their mutation-based suspiciousness; second, several candi-
date fixes have already undergone partial validation against
failing tests Té (Section 3.3.2), and thus only need to be
validated against the originally passing tests TË.

Fixes that pass validation are output to the user in the
same order of suspiciousness � as the snapshots used to
generate them. Thus, RESTORE’s overall output is a list of
valid fixes ranked according to suspiciousness.

4 EXPERIMENTAL EVALUATION

We implemented the RESTORE technique in a tool, also called
RESTORE, based on the JAID program repair system. Our
experimental evaluation assesses to what extent RESTORE

is an effective automated program repair tool by com-
paring: (i) RESTORE’s results on high-level metrics, such as
bugs correctly fixed, to other program repair tools for Java;
(ii) RESTORE’s results on fine-grained metrics, such as the
effectiveness of fault localization, to JAID—a state-of-the-art
repair tool for Java which RESTORE directly extends; (iii) the
effects of extending SimFix—another recent generate-and–
validate repair tool for Java—with retrospective fault local-
ization (RESTORE’s key technical improvement). Overall, the
evaluation indicates that RESTORE is a substantial advance
in general-purpose automated program repair for Java.
Different parts of the evaluation have different levels of
granularity, so that the we can also track which ingredients
used by RESTORE are effective and which metrics they impact.
RQ1: What is RESTORE’s effectiveness in fixing bugs?

In RQ1, we consider RESTORE from a user’s perspec-
tive: how many valid and correct fixes it can generate.

RQ2: What is RESTORE’s performance in fixing bugs?
In RQ2, we consider RESTORE’s efficiency: how quickly
it runs versus how large a fix space it explores.

RQ3: How well does retrospective fault localization (RFL)
work in RESTORE?
In RQ3, we zoom in on RESTORE’s fault localization
technique to assess how efficiently it drives the search
for a valid fix.

RQ4: How robust is RESTORE’s behavior when its internal
parameters are changed?
In RQ4, we evaluate the impact of disabling features
like partial validation and of changing some parame-
ters that regulate retrospective fault localization.

RQ5: Is retrospective fault localization generally applicable to
generate-and-validate program repair techniques?
In RQ5, we look for evidence that retrospective fault
localization is applicable not only to JAID but also to
other automated program repair techniques.

Comparison to other tools. We compare RESTORE’s re-
sults on high-level metrics to the 13 state-of-the-art auto-
mated program repair systems for Java listed in Table 2. To
our knowledge these 13 tools include all recent Java repair
tools evaluated on DEFECTS4J and published, at the time of
writing, in major software engineering conferences in the
last couple of years.

6

4.1 Subject Faults

As it has become customary when evaluating automated
program repair tools for Java, our experiments use real-
world faults in the DEFECTS4J curated collection [8]. DE-
FECTS4J includes hundreds of faults from open-source Java
projects; each fault comes with at least one test triggering
the failure—in addition to other passing or failing tests—as
well as a programmer-written fix for the fault. Table 1 shows
basic measures of size for DEFECTS4J’s 357 faults in 5 projects.

TABLE 1: Basic measures of size for projects in DEFECTS4J. For each
PROJECT in DEFECTS4J, its FULL NAME, the size KLOC in thousands of
lines of code, the number of tests #TESTS, and the number of distinct
faults #FAULTS.

PROJECT FULL NAME KLOC #TESTS #FAULTS

Chart JFreechart 96 2205 26
Closure Closure Compiler 90 7927 133
Lang Apache Commons-Lang 22 2245 65
Math Apache Commons-Math 85 3602 106
Time Joda-Time 27 4130 27

TOTAL 320 20109 357

4.2 Experimental Protocol

Each experiment runs RESTORE, JAID, or another tool to
completion on a fault in DEFECTS4J. In each run we record
several measures such as:

#V: number of valid fixes in the output;
C: rank of the first correct fix in the output;
T: overall wall-clock running time;

T2V: wall-clock time until the first valid fix is found;
T2C: wall-clock time until the first correct fix is found;
C2V: number of fixes that are checked (generated and vali-

dated) until the first valid fix is found;
C2C: number of fixes that are checked (generated and vali-

dated) until the first correct fix is found.
Measures C2V and C2C include all kinds of validation. For
example, RESTORE performs partial and full validation (see
Section 3.3.2 and Section 3.3.6); JAID uses only one kind of
(full) validation.

Correctness. We determined correct fixes by manually
going through the output list of valid fixes and comparing
each of them to DEFECTS4J’s manually-written fix for the
fault under repair: a valid fix is correct if it is semantically
equivalent to the fix manually written by the developers and
included in DEFECTS4J. Conservatively, we mark as incorrect
fixes that we cannot conclusively establish as equivalent in
a moderate amount of time (around 15 minutes per fix).

Hardware/software setup. All the experiments ran on
the authors’ institution’s cloud infrastructure. Each exper-
iment used exclusively one virtual machine instance, run-
ning Ubuntu 14.04 and Oracle’s Java JDK 1.8 on one core of
an Intel Xeon Processor E5-2630 v2 with 8 GB of RAM.

4.2.1 Statistics

Table 4 reports detailed summary statistics directly compar-
ing RESTORE to JAID. For each measure m taken during the
experiments (e.g., time T), let Jm,k and Rm,k denote the
value of m in JAID’s and in RESTORE’s run on fault k. We

compare RESTORE to JAID using these metrics (illustrated and
justified below) [17]:∑

RESTORE∑
JAID

: the ratio
∑

k Jm,k/
∑

k Rm,k expressing the rela-
tive cost of RESTORE over JAID for measure m.

mean(JAID − RESTORE): the mean difference (using arith-
metic mean) meank(Jm,k −Rm,k) expressing the aver-
age additional cost of JAID over RESTORE for measure m.

bl, b̂, bh: the estimate b̂ and the 95% probability interval
(bl, bh) of the slope b of the linear regression Rm,k =
a+ b · Jm,k expressing RESTORE’s measure m as a linear
function of JAID’s.

χ̂, χh: for the same linear regression, the estimate χ̂ and the
95% probability upper bound χh of the crossing ratio
(where the regression line crosses the “no effect” line).

Each summary statistics compares RESTORE to JAID on faults
on which the statistics is defined for both tools; for example,
the mean difference of measure C (rank of first correct fix)
is over the 23 faults that both RESTORE and JAID can correctly
fix.

Interpretation of linear regression. A linear regression
y = a + b · x estimates coefficients a (intercept) and b
(slope) in a way that best captures the relation between
x and y. A linear regression algorithm outputs estimates â
and b̂ and standard errors εa and εb for both coefficients: the
“true” value of a coefficient c lies in interval (cl, ch), where
cl = ĉ− 2 εc ≤ ĉ ≤ ĉ+ 2 εc = ch, with 95% probability.

In our experiments, values of x measure JAID’s perfor-
mance and values of y measure RESTORE’s;4 thus, the linear
regression line expresses RESTORE’s performance as a linear
function of JAID’s. The line y = x (that is, a = 0 and b = 1)
corresponds to no effect: the two tool’s performances are
identical. In contrast, lines that lie below the “no effect” line
indicate that RESTORE measures consistently lower than JAID;
since for all our measures “lower is better”, this means that
RESTORE performs better than JAID. Plots such as those in
Figure 4 display the estimated regression line with a shaded
area corresponding to the 95% probability error interval;
thus we can visually inspect whether the difference with
respect to the dashed “no effect” line is significant with 95%
probability by checking whether the shaded area lies under
the dashed line.

Analytically, RESTORE is significantly better than JAID at the
95% probability level if the 95% probability upper bound bh
on the regression slope’s estimate satisfies bh < 1: the slope
is different from (in fact, less than) the “no difference” value
1 with 95% probability.

Since this notion of significant difference does not con-
sider the intercept, it only indicates that RESTORE’s is better
asymptotically; to ensure that the difference is significant in
the range of values that were actually measured, we con-
sider the crossing ratio χ̂ = (x − min(JAID))/(max(JAID) −
min(JAID)), which expresses the coordinate x = xwhere the
regression line y = â+ b̂x crosses the “no effect” line y = x
relative to JAID’s range of measured values (the crossing ratio
upper bound χh is computed similarly but using the upper
bounds ah and bh of a’s and b’s 95% probability intervals).
A large crossing ratio means that RESTORE is better than JAID

4. In Section 4.3.5, x measures SimFix’s performance and y measures
the performance of SimFix+ (SimFix with retrospective fault localiza-
tion).

7

only on “hard” faults, whereas a small crossing ratio means
that RESTORE is consistently better across the experimented
range, as illustrated in the example of Figure 3.

0 100 200 300 400
0

100

200

300

400

y0

y1

260

260

y2

60

60

x̄1x̄2

Figure 3: Visual explanation of linear regression lines. The
two regression lines y1 = 130 + 0.5x and y2 = 30 + 0.5 y
have the same slope but different intercepts. Therefore, y2
crosses the “no effect” line y0 = x at x̄2 = 60, much earlier
than y1 that crosses it at x̄1 = 260. The crossing ratio scales
the crossing coordinates x̄1 and x̄2 over the range of values
on the x axis. If the range is the whole x axis from 0 to
400, the crossing ratios are simply χ1 = x̄1/400 = 0.15 and
χ2 = x̄2/400 = 0.65, which indicate that y1 is above y0 for
only 15% of the data, and y2 for 65% of the data.

Summarizing data with linear regression. Using linear
regression to model data that doesn’t “look” linear may
seem unsound. However, it is not a problem in our case
given how we use linear regression: not to predict the per-
formance of RESTORE on yet to be seen inputs, but simply
to summarize the experimental data in a way that accounts
for some measurement errors (and hence is more robust
than just summarizing the raw data). After all, the essence
of linear regression is a mechanism to “learn about the
mean and variance of some measurement, using an additive
combination of other measurements” [18], which is all we
use it for in analyzing our experimental data.

4.2.2 Robustness of retrospective fault localization
As described in Section 3.3.2, retrospective fault localization
initially performs a partial validation of candidate fixes—
using only failing tests. To understand the usefulness of
partial validation, we built RESTORE-FULL: a variant of RE-
STORE that only performs full validation—always using all
available tests.5 In Section 4.3.4, we compare RESTORE and
RESTORE-FULL on DEFECTS4J faults.

In its current implementation, RESTORE’s behavior de-
pends on several parameters: it uses the NS = 1500 most
suspicious state snapshots for fixing (Section 3.2.3); it adds
NP = 10% more snapshots in each iteration of retrospective
fault localization, and performs NI = 0 extra iterations
after a new suspicious location has been found (Section 3.3);
it targets the NL = 5 most suspicious locations for final

5. Since full validation may blow up the running time when many
tests are available for a fault, we do not run RESTORE-FULL to completion
but set a cut-off time equal to twice overall running time of RESTORE on
the fault.

fix generation (Section 3.3.5). To understand whether these
parameters influence RESTORE’s behavior, we modified one
of them at a time and ran RESTORE on the same DEFECTS4J
faults with these different settings. In Section 4.3.4, we
report how changing each parameters affects the number
of faults repaired with valid fixes, the number of faults
repaired with correct fixes, and the running time across all
faults where RESTORE is able to produce at least one valid fix.

4.2.3 General application of retrospective fault localization
To support our claim that retrospective fault localization
is applicable to program repair tools other than JAID, we
implemented it atop the SimFix [9] automated program
repair system.6 We picked SimFix because it is a state-of-
the-art repair technique for Java (as shown in Table 2, it
correctly fixes the largest number of DEFECTS4J bugs when
only one fix per bug is considered) and because its source
code and replication package are publicly available.

The key mechanism of retrospective fault localization is
the feedback loop that uses the information gathered during
partial validation of candidate fixes to tune fault localiza-
tion; this mechanism is general—and hence it is present both
in RESTORE and SimFix+. On the other hand, how the feed-
back loop collects and processes information, and precisely
when it does so depends on the details of the technique to
which retrospective fault localization is applied. Let’s see
what peculiarities of SimFix affected our implementation of
retrospective fault localization in SimFix+.

A key difference between JAID (and hence RESTORE) and
SimFix is that the latter’s fault localization process, like most
automated repair techniques’, targets statements as possible
fault locations—rather than snapshots. Precisely, SimFix ap-
plies the Ochiai [11] spectrum-based fault-localization tech-
nique to rank statements according to their suspiciousness.
For each statement above a certain suspiciousness rank,
SimFix searches for “donor code” (code snippets in the
same project that are similar to those close to the suspicious
statement), extracts modification patterns from the donors,
and builds candidate fixes by matching these patterns to
the suspicious statement. To winnow the many candidate
fixes that are generated by this process, it tries to match
them against a “catalog” of fixes—which is generated by
mining programmer-written repairs during a preliminary
phase done once before running SimFix on all bugs. As soon
this process determines one fix that is valid (i.e., passes all
available tests), SimFix stops.

We call SimFix+ the modified version of SimFix we built
by adding retrospective fault localization. Just like RESTORE,
SimFix+ undergoes a feedback loop: after a few candidate
fixes are generated, their partial validation results inform a
more accurate iteration of fault localization. In SimFix+, each
iteration of the feedback loop usesMP % more code snippets
for each suspicious statement to generate a few candidates
fixes to “seed” retrospective fault localization. MP is set to
20% for the initial iterations and 10% for the others, which
is usually sufficient to generate enough candidates to drive
the process; if this is not the case (namely, it generates less
than 20 candidates), SimFix+ repeatedly increases MP , by

6. We used the latest revision c2a5319 from SimFix’s repository https:
//github.com/xgdsmileboy/SimFix.

8

TABLE 2: A quantitative comparison of RESTORE with 13 other tools for automated program repair on DEFECTS4J bugs. For
each program repair TOOL, the table references the source of its experimental evaluation data reported here: the number
of bugs that the tool could fix with a VALID fix; the number of bugs that the tool could fix with a CORRECT fix; and the
resulting PRECISION (CORRECT/VALID) and RECALL (CORRECT/357, where 357 is the total number of DEFECTS4J faults used
in the experiments). For tools whose data about the POSITION of fixes in the output ranking is available, the table breaks
down the data separately for fixes ranked in ANY POSITION, in the FIRST POSITIONS, and in the TOP-10 POSITION. (These
measures do not change for tools that output at most one fix per fault.) The rightmost column UNIQUE lists the number of
distinct bugs that only the tool can correctly fix. Question marks represent data not available for a tool.

TOOL VALID
ANY POSITION FIRST POSITION TOP-10 POSITION

UNIQUE
CORRECT PRECISION RECALL CORRECT PRECISION RECALL CORRECT PRECISION RECALL

RESTORE 98 41 42% 11% 19 20% 5% 29 30% 8% 8
ACS [19] 23 18 78% 5% 18 78% 5% 18 78% 5% 12
CapGen [20] 25 22 88% 6% 21 84% 6% 22 88% 6% 3
Elixir [21] 41 26 63% 7% 26 63% 7% 26 63% 7% 0
HDA [22] ? 23 ? 6% 13 ? 4% 23 ? 6% 3
JAID [7] 31 25 81% 7% 9 29% 3% 15 48% 4% 1
jGenProg [23] 27 5 19% 1% 5 19% 1% 5 19% 1% 1
jKali [23] 22 1 5% 0% 1 5% 0% 1 5% 0% 0
Nopol [23] 35 5 14% 1% 5 14% 1% 5 14% 1% 2
SimFix [9] 56 34 61% 10% 34 61% 10% 34 61% 10% 12
SketchFix [24] 26 19 73% 5% 9 35% 3% ? ? ? 0
SketchFixPP [24] ? 34 ? 10% ? ? ? ? ? ? 2
ssFix [25] 60 20 33% 6% 20 33% 6% 20 33% 6% 1
xPar [22], [19] ? 4 ? 1% ? ? ? 4 ? 1% 0

10% each time, until at least 20 candidates are produced or
all code snippets are used.

Like in RESTORE, partial validation in SimFix+ runs only
the failing tests for the current bug. As soon it finds a
candidate fix that passes at least one failing test (“the mutant
is killed”), the candidate’s fixing location increases its sus-
piciousness score, and hence SimFix+ immediately begins
a new iteration that generates all fixes at that location and
validates them. This behavior is different from RESTORE’s—
where a new iteration only begins after all candidates have
undergone partial validation—but is consistent with Sim-
Fix’s standard behavior of stopping as soon as it finds one
valid fix.

In Section 4.3.5, we experimentally compare SimFix and
SimFix+ by running both on DEFECTS4J faults. Each fixing
experiment used exclusively one virtual machine instance
running Ubuntu 16.04 on two cores of an Intel Xeon Proces-
sor E5-2630 and 8 GB of RAM. Using the same setting as
in the original experiments [9], each SimFix (and SimFix+)
run is forcefully terminated after a 300-minute timeout if it
is still running.

4.3 Experimental Results

In this section, we report the experiment results as answers
to the research questions.

4.3.1 RQ1: Effectiveness

RQ1 assesses the effectiveness of RESTORE in terms of the valid
and correct fixes it can generate.

Since most automated program repair tools for Java have
been evaluated on the same DEFECTS4J bugs as RESTORE,
we can compare precision and recall of the various tools in

Table 2.7 RESTORE and JAID can output multiple, ranked valid
fixes for the same bugs; in contrast, other tools often stop
after producing one valid fix. We keep this discrepancy into
account in Table 2 by reporting different values of precision
and recall according to whether we consider all valid fixes,
only those in the top-10 positions, or only those produced
in the top position (the first produced).

Valid fixes. RESTORE produced at least one valid fix for 97
faults in DEFECTS4J. As shown in Table 2, that is more than
any other automated repair tools for Java.

On the 36 faults that JAID can also handle, RESTORE often
produces fewer valid fixes than JAID: overall, RESTORE produces
56% (1−0.44) fewer valid fixes than JAID; and produces more
valid fixes for only 13 faults. As we’ll see later, RESTORE also
produces more correct fixes than JAID; thus, fewer valid fixes
per bug can be read as an advantage in these circumstances.

Correct fixes. RESTORE produced at least one correct fix
for 41 faults in DEFECTS4J—when considering all fixes for the
same bug. As shown in Table 2, that is more than any of the
other automated repair tools for Java, and constitutes a 21%
increase (7 faults) over the runners-up SimFix and SketchFix
according to this metric. RESTORE correctly fixed 8 faults that
no other tool can currently fix, in addition to the 6 faults that
only RESTORE and JAID can fix. This indicates that RESTORE’s
fix space is somewhat complementary to other repair tools for
Java.

The output list of valid fixes should ideally rank correct
fixes as high as possible—so that a user combing through
the list would only have to peruse a limited number of fix
suggestions. For the 23 faults that both RESTORE and JAID

correctly fix, the two tools behave similarly on the majority

7. Since these experimental all refer to the same set of bugs (with-
out cross-validation), precision and recall have a narrower scope as
effectiveness metrics here than they have in the context of information
retrieval.

9

TABLE 3: Summary of the experimental results. For each fault in DEFECTS4J (identified by its PROJECT name and ID) that RESTORE or JAID can
correctly fix: the size LOC of the faulty method being repaired (in lines of code), and the number of Passing and Failing tests exercising the method;
for each tool RESTORE and JAID: the number #V of Valid fixes; the position C of the first Correct fix in the output; the wall-clock running time T to
completion; the wall-clock running time until the first valid fix (T2V) and the first correct fix (T2C) are found. All times are in minutes.

FAULT ID #TEST RESTORE JAID

PROJECT ID LOC P F #V C T T2V T2C #V C T T2V T2C

chart 1 32 37 1 291 221 28.5 7.5 21.6 536 84 54.1 5.6 19.9
chart 9 38 1 1 17 - 14.4 3.3 - 52 43 72.2 3.6 20.8
chart 11 32 15 1 1 1 19.4 17.6 17.6 0 - - - -
chart 24 6 0 1 2 1 26.7 25.0 25.0 2 1 16.8 15.0 15.0
chart 26 108 23 22 213 3 32.7 11.5 12.2 82 1 53.6 15.2 15.2
closure 5 98 56 1 4 1 247.3 186.3 186.3 2 - 975.9 493.5 -
closure 11 18 2261 2 434 20 846.8 167.5 201.5 0 - - - -
closure 14 97 3005 3 1 1 355.0 123.5 123.5 0 - 672.2 - -
closure 18 122 3929 1 1 1 561.4 101.5 101.5 5 1 1367.1 518.0 518.0
closure 31 122 3835 1 12 1 570.6 118.4 118.4 9 8 1440.1 1068.2 1181.5
closure 33 27 259 1 171 141 290.8 19.2 266.7 2720 1 258 6.9 6.9
closure 40 46 305 2 5 1 25.9 6.1 6.1 4 1 119.5 27.4 27.4
closure 46 11 10 3 161 116 24.1 4.2 21.3 0 - - - -
closure 62 45 45 2 122 90 37.5 10.3 30.4 87 31 126.7 8.1 31.9
closure 63 45 45 2 122 49 34.8 8.8 20.3 87 31 127.1 8.1 31.7
closure 70 19 2337 5 1 1 127.9 105.3 105.3 5 1 70.4 31.9 31.9
closure 73 70 482 1 1 1 49.2 39.4 39.4 1 1 473.4 413.5 413.5
closure 86 39 52 7 1 1 8.9 6.1 6.1 0 - - - -
closure 113 39 26 1 1 1 48.7 32.5 32.5 0 - 26.8 - -
closure 115 69 151 5 761 1 853.4 4.3 4.3 0 - - - -
closure 118 23 19 2 4 3 33.0 24.6 29.7 0 - 12.3 - -
closure 119 124 764 1 2 2 113.5 94.9 113.4 0 - - - -
closure 125 15 538 1 103 103 154.1 13.1 151.0 98 - 131.3 9.7 -
closure 126 95 71 2 39 1 103.6 7.8 7.8 425 1 601.4 8.4 8.4
closure 128 9 61 1 14 1 37.8 9.3 9.3 0 - - - -
closure 130 36 301 1 15 4 239.1 216.9 221.4 0 - - - -
lang 6 24 35 1 51 5 142.3 6.6 19.7 0 - - - -
lang 33 11 0 1 3 1 21.7 11.6 11.6 7 1 11.0 5.5 5.5
lang 38 6 33 1 69 18 6.7 1.5 4.0 28 4 10.7 1.1 1.2
lang 45 37 0 1 40 - 35.6 6.5 - 68 34 105.1 9.6 58.5
lang 51 51 0 1 37 1 8.1 4.2 4.2 424 46 188.4 5.4 15
lang 55 6 4 1 29 10 12.5 1.1 3.0 15 3 3.6 0.4 0.9
lang 59 17 2 1 12 7 31.7 5.0 11.8 0 - - - -
math 5 22 5 1 225 1 43.1 3.2 3.2 61 1 11.3 0.6 0.6
math 32 52 6 1 2 1 10.2 9.2 9.2 5 4 37.5 18.9 32.2
math 33 40 21 1 2 2 114.9 74.0 74.1 0 - 251.6 - -
math 50 125 3 1 812 94 489.2 98.5 137.6 1101 28 1502.6 54.3 93.5
math 53 5 19 1 10 9 60.0 25.2 51.3 10 6 19 11.1 13.3
math 59 2 0 1 2 1 3.4 2.4 2.4 0 - 0.9 - -
math 80 15 16 1 1450 936 86.9 13.2 65.2 3877 1366 156.7 2.8 58.0
math 82 15 13 1 44 22 63.9 3.6 25.5 13 9 33.1 3.4 22.7
math 85 43 12 1 235 5 16.7 3.9 3.9 709 4 68.3 1.5 1.5
time 19 31 721 1 38 30 15.5 10.4 14.8 0 - - - -

TOTAL 1887 19518 88 5560 - 6047.1 1645.0 425.9 10433 - 8998.7 2747.7 2625.0

TABLE 4: Summary statistics of the experiments. For each MEASURE:
the relative cost

∑
RESTORE∑

JAID
of RESTORE over JAID; the mean cost difference

mean(JAID − RESTORE) between JAID and RESTORE; the estimate b̂ of
slope b expressing RESTORE’s cost as a linear function of JAID, with 95%
probability interval (bl, bh); the estimate χ̂ and upper bound χh on the
crossing ratio χ.

MEASURE
∑

RESTORE∑
JAID

mean(JAID − RESTORE)
slope b: 95% crossing χ

bl b̂ bh χ̂ χh

#V 0.44 181 0.2 0.3 0.4 0.02 0.04
C 0.98 1 0.6 0.7 0.8 0.05 0.13
T 0.32 214 0.2 0.2 0.3 0.02 0.04

T2V 0.29 83 0.1 0.1 0.2 0.02 0.04
T2C 0.42 64 -0.0 0.1 0.2 0.03 0.07
C2V 0.43 1498 0.2 0.3 0.4 0.03 0.07
C2C 0.64 602 -0.2 0.1 0.3 0.11 0.26

of bugs: RESTORE ranks the first correct fix 1 position higher
than JAID on average; and ranks it lower in 11 faults. Even

thought this difference between the two tools is limited,
RESTORE still fixes 18 more bugs than JAID, and ranks first
8 of them. In addition, Figure 4b suggests that RESTORE’s ad-
vantage over JAID emerges with “harder” faults with many
valid fixes—where a reliable ranking is more important for
practical usability.

Precision. While it can correctly fix more bugs, RESTORE

has a precision that is lower than other repair tools. In
designing RESTORE we primarily aimed at extending the
fix space that can be explored effectively by leveraging
retrospective fault localization; since there is a trade off
between explorable fix space and precision, the latter is not
as high as in other tools that targeted it as a primary goal.

Extended fix space. RESTORE explores a larger fix space
than JAID, since it can also use expressions outside method
fixme in the same class to build fixes (Section 3.3.5). In
all experiments when RESTORE could produce valid fixes,

10

0

500

1000

1500

0 1000 2000 3000 4000
Jaid

R
es

to
re

(a) #V

0

250

500

750

1000

0 500 1000
Jaid

R
es

to
re

(b) C

0

200

400

600

0 500 1000 1500 2000
Jaid

R
es

to
re

(c) T

0

50

100

150

200

0 300 600 900
Jaid

R
es

to
re

(d) T2V

0

100

200

0 300 600 900 1200
Jaid

R
es

to
re

(e) T2C

0

2000

4000

6000

8000

0 5000 100001500020000
Jaid

R
es

to
re

(f) C2V

0

1000

2000

3000

4000

5000

0 2500 5000 7500
Jaid

R
es

to
re

(g) C2C

Figure 4: Comparison of JAID and RESTORE on various measures. For each measure m, a point with coordinates x = Jm,k, y = Rm,k indicates that
JAID costed Jm,k of m on fault k while RESTORE costed Rm,k of m on fault k. The dashed line is y = x; the solid line is the linear regression with
y dependent on x.

68,344 candidate fixes produced during final fix generation
belong to the extended fix space (and hence cannot be
produced by JAID). Among them, 2,049 candidates are valid
(corresponding to 52 faults); and 9 are correct (one for each
of 9 faults). In all, the extended fix space enabled RESTORE

to generate valid fixes for 17 more bugs than JAID, correct
fixes for 9 more bugs than JAID; and correct fixes for 5 of the
8 bugs that only RESTORE can correctly fix among all tools
(Table 2).

Multi-line fixes. Four of the bugs correctly fixed by
RESTORE (Closure40, Closure46, Closure115, and Closure128)
have programmer-written fixes in DEFECTS4J that change
multiple lines. For example, project developers fixed the
buggy method of bug Closure128:

1 static boolean isSimpleNumber(String s) {
2 int len = s.length();
3 for (int index = 0; index < len; index++) {
4 char c = s.charAt(index);
5 if (c < ’0’ || c > ’9’) return false;
6 }
7 return len > 0 && s.charAt(0) != ’0’;
8 }

by adding if (len == 0) return false; before line 3 and
changing line 7 to return len == 1 || s.charAt(0) != ’0’;.
RESTORE, instead, just changed line 7 to

if (len == 1) return true;
else return len > 0 && s.charAt(0) != ’0’;

RESTORE’s conditional return is equivalent to the program-
mer-written fix even though it only modifies one location.
Such complex fixes demonstrate how RESTORE manages to
combine bug-fixing effectiveness and competitive perfor-
mance: this fix was the first valid fix in the output, generated
in less than 10 minutes.

RESTORE can correctly fix 41 faults in DEFECTS4J
when allowing multiple fixes for the same bug;

19 of these faults are fixed by the first fix output by RESTORE.
RESTORE trades off a lower precision for a larger fix space, which

includes correct fixes for 8 faults that no other tools can fix.

4.3.2 RQ2: Performance
RQ2 assesses the performance of RESTORE in terms of its
running time.

Total time. RESTORE’s wall-clock total running time per
fault ranged between 1.5 minutes and 21 hours, with a
median of 53 minutes. This means that RESTORE achieves a
speedup of 3.1 (1/0.32) over JAID; Figure 4c indicates that the
major difference in favor of RESTORE is particularly marked
for the harder faults—which generally require long running
times.

Comparing with other tools in terms of running time
would require to replicate their evaluations using uniform
experimental settings—something we did not do in this
experimental evaluation. Nevertheless, it is plausible other
tools have an overall significant running time too: HDA,
ACS, ssFix, Elixir, CapGen, and SimFix are all based on
mining external code to learn common features of correct
fixes; this process is likely time consuming—even though
it would be amortized over a consequent long run of the
tools—but is not present in RESTORE (or JAID). This indicates
that RESTORE’s performance is likely to remain competitive
overall, and that retrospective fault localization can bring
a performance boon. Performing more fine-grained experi-
mental comparisons belongs to future work.

Time to valid/correct. Especially important for a repair
tool’s practical usability is the time elapsing until a fix appears
in the output. All else being equal, shorter times mean that
users can start inspecting fix suggestions earlier—possibly
supporting a more interactive usage—so that the whole

11

repair process can be sped up. On average, RESTORE outputs
the first valid fix 83 minutes before JAID—a 3.4 speedup
(1/0.29) according to the linear regression line; and the first
correct fix 64 minutes before JAID—a 2.3 speedup (1/0.43).
While Figure 4d and Figure 4e suggest that these averages
summarize a behavior that varies significantly with some
faults, it is clear that RESTORE’s is substantially faster in many
cases—especially with the “harder” faults that require long
absolute running times. Cutting the running times in less
than half on average in these cases results in speedups that
often span one order of magnitude, and sometimes even two
orders of magnitudes.

RESTORE’s performance is the combined result of explor-
ing a larger fix space than JAID (which takes more time)
and using retrospective fault localization (which speeds up
fault localization). That RESTORE finds many more correct
fixes while simultaneously often drastically decreasing the
running times indicates that its fault localization techniques
bring a decidedly positive impact with no major downsides.

RESTORE is usually much faster than JAID even though it
explores a larger fix space: 3.1 speedup in total running time;

3.4 speedup in time to the first valid fix;
2.3 speedup in time to the first correct fix.

4.3.3 RQ3: Fault Localization
Retrospective fault localization is RESTORE’s key contribution: a
novel fault localization technique that naturally integrates
into generate-and-validate program repair algorithms. RQ1
and RQ2 ascertained that retrospective fault localization
indirectly improves program repair by supporting searching
a larger fix space while simultaneously improving perfor-
mance. In RQ3 we look into how retrospective fault local-
ization is directly more efficient.

Checked to valid/correct. To this end, we follow [26]’s
survey of fault localization in automated program repair
and compare the number of fixes that are checked (generated
and validated) until the first valid (C2V, called NFC in [26])
and the first correct (C2C) fix is generated. The smaller these
measures the more efficiently fault localization drives the
search for a valid or correct fix.

RESTORE needs to check 57% fewer (1 − 0.43) fixes than
JAID until it finds the first valid fix. RESTORE significantly
improves measure C2C too: it needs to check 36% (1− 0.64)
fewer fixes than JAID until it finds the first correct fix. Even
though JAID is more efficient on some faults, Figure 4f and
Figure 4g show that RESTORE prevails in the clear majority
of cases, as well as in the harder cases that require to check
many more candidate fixes (exploring a larger search space);
the difference is clearly statistically significant (slope under
0.4 with 95% confidence, and the overlap of regression line
and “no effect” line is only for small absolute values of C2V
and C2C, as also reflected by the crossing ratio). These re-
sults are direct evidence of retrospective fault localization’s
greater precision in searching for fault causes.

Candidate fixes as mutations. Retrospective fault local-
ization treats candidate fixes as mutants. As described in
Section 3.3.3, a candidate that passes at least one previ-
ously failing test (during partial validation) increases the
suspiciousness ranking of all snapshots associated with
the candidate’s location. Such candidate fixes sharpen fault

TABLE 5: How retrospective fault localization achieves
progress. Each row focuses on faults in one category: those
that RESTORE can repair with a CORRECT fix; with a VALID fix;
ALL faults in DEFECTS4J; and those with a SINGLE failing test.
In each category, the table reports how many faults are in
total (#); for how many RESTORE’s fault localization can find
a location suitable to build a correct fix (LOCALIZED, either
because RESTORE actually built a correct fix or because the
DEFECTS4J reference fix modifies that location); the number
of CANDIDATES used as mutants in retrospective fault local-
ization; how many of these candidates are SHARPENING and
PLAUSIBLE.

LOCALIZED CANDIDATES SHARPENING PLAUSIBLE

CORRECT 41 41 23,529 2,582 511
VALID 98 75 84,989 7,348 2,762
ALL 357 107 495,359 9,854 3,377
SINGLE 74 57 61,530 5,307 2,108

TABLE 6: How many times retrospective fault localization
iterates. Among all faults in DEFECTS4J that RESTORE could
repair with a VALID or a CORRECT fix, how many ITER-
ATIONS RESTORE’s feedback loop went through to sharpen
fault localization.

ITERATIONS

1 2 3 4 5 6 7 8 9 10

VALID 86 3 0 0 3 1 2 0 1 2
CORRECT 35 2 0 0 1 1 1 0 1 0

localization, and hence we call them sharpening candidates.
If a sharpening candidate is furthermore associated with
a location where a correct fix can be built (according to
the correct fixes actually produced in the experiments or
in DEFECTS4J) we call it plausible.

Table 5 measures sharpening and plausible candidates in
different categories. Only 2% of all candidates are sharpen-
ing; however, the percentage grows to 9% for faults RESTORE

can build a valid fix for; and to 12% for faults RESTORE

can build a correct fix for. These cases are those where
retrospective fault localization achieved progress; in some
cases (plausible candidates) it even led to finding program
locations where a correct fix can be built. Table 5 also shows
that sharpening and plausible candidates are 9% for faults
with a single failing test case in DEFECTS4J. These can be
considered “hard” faults because of the limited information
about faulty behavior; retrospective fault localization can
perform well even in these conditions.

Table 6 looks at RESTORE’s fault localization feedback
loop, which is repeated until retrospective fault localization
has successfully refined the suspiciousness ranking. While
some faults require as many as ten iterations, in most cases
only one iteration is needed to achieve progress. This sug-
gests that candidate fixes are often “good mutants” to per-
form fault localization—and they provide information that
is complementary to that available with simpler spectrum-
based techniques.

12

TABLE 7: Comparison between RESTORE’s and RESTORE-FULL’s
effectiveness and performance. The number of DEFECTS4J
faults with VALID fixes, with CORRECT fixes, and the average
running TIME (in minutes) per fault in RESTORE compared to
those in RESTORE-FULL (RESTORE with only full validation).

VALID CORRECT TIME

RESTORE 98 41 122.4
RESTORE-FULL 87 27 160.6

RESTORE’s retrospective fault localization improves the
efficiency of the search for correct fixes: on average, 57% fewer

fixes need to be generated and checked until a valid one is
found. The candidate fixes generated by RESTORE are effective as

mutants to perform fault localization.

4.3.4 RQ4: Robustness

RQ4 investigates whether RESTORE’s overall effectiveness
and running time are affected by changes in features and
parameters of its algorithms.

Partial validation. Table 7 summarizes some key perfor-
mance measures about RESTORE, and compares them to the
same measures for RESTORE-FULL—a variant of RESTORE that
only uses full validation as discussed in Section 4.2.2.

RESTORE-FULL is clearly less effective than RESTORE, as the
former misses valid fixes for 11 faults and correct fixes for 14
faults that the latter can find. It is also slower than RESTORE;
in fact, much slower than what suggested by the 40-minute
difference per fault reported in Table 7. Remember that
RESTORE-FULL is forcefully terminated after it runs for twice
as long as RESTORE on each fault. With this cap, RESTORE-FULL

could not complete its analysis for 17 of the 98 faults where
RESTORE produces valid fixes, and it could not even finish
the first round of mutation-based fault localization for 13
of them. (RESTORE could produce a correct fix for 11 out of
these 13 faults.) Therefore, partial validation is an important
ingredient to make retrospective fault localization scale up,
and hence be effective.

Parameters. Table 8 shows how some key performance
measures about RESTORE change as we individually change
the value of each of four parameters NS , NP , NI , and NL.

The more snapshots NS are used for fixing, the more
valid and correct fixes RESTORE can generate. A closer look
indicates a monotonic behavior: if RESTORE can fix a fault
using s snapshots, it can also fix it using t > s snapshots.
Unsurprisingly, increasing NS also increases the running
time. Since the number of correctly fixed faults increases
only by a few units, whereas the running time increases
substantially, it seems a case of diminishing returns.

In contrast, the effects of changing the percentage NP

of snapshots used in each iteration of retrospective fault
localization are very modest—both on the running time
and on the number of valid and correct fixes. Increasing
NI—that is, iterating retrospective fault localization even
after it has contributed to refining the ranking of suspicious
locations—also has a modest effect on effectiveness but
noticeably increases the running time. Overall, RESTORE’s be-
havior is not much affected by how snapshots are sampled,
but repeating retrospective fault localization beyond what

TABLE 8: How changing parameters affects RESTORE’s be-
havior. For each PARAMETER that control RESTORE’s algo-
rithms, the table reports the number of DEFECTS4J faults with
VALID fixes, with CORRECT fixes, and the average running
TIME per fault of RESTORE with different VALUEs of the
parameter. Values marked with an asterisk (*) are defaults;
in the experiments where a parameter has a non-default
value, all other parameters are set to their defaults.

PARAMETER VALUE VALID CORRECT TIME

NS

800 90 39 101.5
∗1500 98 41 127.0

3000 103 42 180.4

NP

5% 98 39 126.6
∗10% 98 39 127.0

20% 99 40 133.5

NI

∗0 98 41 127.0
2 100 41 140.4
4 100 40 169.1
6 100 41 181.6

NL

2 91 33 96.8
∗5 98 41 124.5
10 98 41 149.9

is needed tends to decrease RESTORE’s efficiency without any
clear advantage.

The default value of parameter NL—the number of
most suspicious locations used for final fix generation
(Section 3.3.5)—seems to strike a good balance between
effectiveness and efficiency: increasing NL does not lead to
fixing more faults, but visibly increases the running time;
decreasing it reduces the running time, but also fixes fewer
faults.

Partial validation is crucial for the efficiency of retrospective
fault localization. RESTORE’s effectiveness is usually only
weakly dependent on the values of internal parameters.

4.3.5 RQ5: Generalizability

By comparing SimFix to SimFix+ (our variant of SimFix that
implements retrospective fault localization) RQ5 analyzes
the applicability of retrospective fault localization to tools
other than RESTORE.

Both SimFix and SimFix+ can build valid fixes for the
same 64 faults in DEFECTS4J. SimFix can generate valid fixes
for another 4 faults that SimFix+ cannot, and hence can fix
68 faults in total; conversely, SimFix+ can generate valid
fixes for another 7 faults that SimFix cannot, and hence can
fix 71 in total. In the case of the 4 faults that only SimFix
can repair, SimFix’s simple spectrum-based fault localiza-
tion was sufficiently precise to guide the process to suc-
cess (by ranking high locations that lead to suitable donor
code). In contrast, the donor code leading to candidates
that are useful for mutation-based fault localization (see
Section 4.2.3) was ranked low; thus, SimFix+’s retrospective
fault localization took multiple iterations and a long time
to go through the many candidates, and ended up hitting
the tool’s 300-minute timeout. The cases of the 7 faults that
only SimFix+ can repair are opposite: spectrum-based fault
localization was imprecise, hampering the performance of
SimFix, whereas mutation-based fault localization could

13

chart1, chart3,
chart7, chart20, closure14,

closure57, closure62, closure63,
closure73, closure115, lang16, lang27,
lang33, lang39, lang41, lang43, lang50,
lang58, lang60, math5, math33, math35,

math41, math50, math53, math57,
math59, math63, math70, math71,

math75, math79, math98

SimFix SimFix+

Time7
Closure92,
Closure93

Figure 5: Faults in DEFECTS4J bugs for which SimFix and
SimFix+ can build correct fixes.

TABLE 9: Summary statistics of the experiments on SimFix and Sim-
Fix+. For each MEASURE: the relative cost

∑
SimFix+∑
SimFix of SimFix+ over

SimFix; the mean cost difference mean(SimFix−SimFix+) between SimFix
and SimFix+; the estimate b̂ of slope b expressing SimFix+’s cost as a
linear function of SimFix, with 95% probability interval (bl, bh); the
estimate χ̂ and upper bound χh on the crossing ratio χ.

MEASURE
∑

SimFix+∑
SimFix mean(SimFix − SimFix+)

slope b: 95% crossing χ

bl b̂ bh χ̂ χh

T2V 0.69 14 0.5 0.6 0.7 0.03 0.15
T2C 0.63 9 0.3 0.5 0.6 0.06 0.20
C2V 0.60 238 0.4 0.5 0.6 0.02 0.08
C2C 0.55 166 0.3 0.5 0.7 0.01 0.16

successfully complete its analysis and sharpen the suspi-
ciousness ranking as required by these 7 faults.

As shown in Figure 5, both SimFix and SimFix+ can
build correct fixes for the same 33 faults in DEFECTS4J. SimFix
can generate correct fixes for 1 other fault that SimFix+ can-
not, and hence can correctly fix 34 faults in total; conversely,
SimFix+ can generate correct fixes for another 2 faults that
SimFix cannot, and hence can correctly fix 35 in total. As in
the case of the valid fixes, the differences are due to higher
ranks of locations that lead to suitable donor code against
lower ranks of donor code that is useful for mutation-based
fault localization (or vice versa) in certain conditions.

How does SimFix+ compares to SimFix on the large
majority of DEFECTS4J faults where both tools are successful?
For the 64 DEFECTS4J faults that both can repair with at least
a valid fix, Figure 6a and Figure 6c visually compare total
running time (T2V)8 and number of candidates checked
(C2V) until a valid fix is found. When both SimFix and
SimFix+ are successful, the latter is decidedly more efficient:
the summary statistics of Table 9 confirm that it takes 69%
of the running time, and needs to check 60% as many
candidates. For the 33 DEFECTS4J faults that both tools can
repair with a correct fix, the advantage of SimFix+ over
SimFix in terms of total running time (T2C) and number
of candidates checked (C2C) until a correct fix is found is
also evident, as shown in Figure 6a, Figure 6c, and Table 9.

Unlike RESTORE—which “uses” some of the efficiency
brought by retrospective fault localization to explore a larger
fix space than JAID—SimFix+ has exactly the same fix space
as SimFix. What we found in this section’s experiments is
consistent with this design choice: SimFix+ has an effective-
ness that is very similar to that of SimFix (precisely, slightly

8. Since SimFix and SimFix+ stop after one valid fix is built, total
running time T and running time T2V until a valid fix is found coincide.

0

50

100

150

200

0 50 100 150 200
SimFix

S
im

F
ix

+

(a) T2V

0

25

50

75

100

0 40 80 120
SimFix

S
im

F
ix

+

(b) T2C

0

1000

2000

3000

0 2000 4000
SimFix

S
im

F
ix

+

(c) C2V

0

1000

2000

0 1000 2000 3000
SimFix

S
im

F
ix

+

(d) C2C

Figure 6: Comparison of SimFix and SimFix+ on various measures. For
each measure m, a point with coordinates x = u, y = v indicates that
SimFix costed u on a certain fault while SimFix+ costed v on the same
fault. As in Figure 4, the dashed line is y = x; the solid line is the linear
regression with y dependent on x.

better precision and recall); retrospective fault localization
brings clear improvements but mostly in terms of efficiency.
Trading off some of this greater efficiency to explore a larger
fix space belongs to future work.

Retrospective fault localization implemented atop SimFix cuts
down the running time of the tool by 30% or more,

without negatively affecting bug-fixing effectiveness.

4.4 Threats to Validity
Construct validity. Threats to construct validity are con-
cerned with whether the measurements taken in the eval-
uation realistically capture the phenomena under investiga-
tion.

An important measure is the number of correct fixes—
fixes that are semantically equivalent to programmer-
written fixes for the same fault. Since correctness is manu-
ally assessed, different programmers may disagree with the
authors’ classifications in some cases. To mitigate the threat,
we follow the common approach [23], [7] of being conserva-
tive: fixes that do not clearly have the same behavior as the
programmer-written ones are regarded as incorrect.

Several measures could be used to assess the perfor-
mance of automated program repair tools. In our evaluation,
we focus on measures that have a clear impact on practical
usability—especially number of valid and correct fixes, and
running time.

When, in Section 4.3.3, we zoom in to analyze the behav-
ior of different aspects of RESTORE’s fault localization tech-
nique, we use the number of fixes generated and validated
until the first valid fix is found. This measure has been used
by other evaluations of fault localization in program re-
pair [26] because it assesses the overall effectiveness of fault
localization in guiding the search for valid fixes—instead of

14

measures, such as the rank of program locations, narrowly
focused on the standard output of fault localization without
context [27].

Our summary statistics in Table 4 follow recommended
practices [17]; in particular, we used statistics that are easy to
interpret, and based statistical significance on whether “an
estimate is at least two standard errors away from some [...]
value that would indicate no effect present” [28].

Internal validity. Threats to internal validity are mainly
concerned with factors that may affect the evaluation results
but were not properly controlled for.

One obvious threat to internal validity are possible
bugs in the implementation of RESTORE, or in the scripts
we used to run our experiments. To address this threat,
we reviewed our code and our experimental infrastructure
between authors, to slash chances that major errors affected
the soundness of our results.

Another possible threat comes from comparing RESTORE

to tools other than JAID based on the data of their pub-
lished experimental evaluations—without repeating the ex-
periments on the same system used to run RESTORE. This
threat has only limited impact: we do not compare RESTORE

to tools other than JAID on measures of performance—
which require a uniform runtime environment—but only
on measures of effectiveness such as precision and recall—
which record each tool’s bug-fixing capabilities on the same
DEFECTS4J benchmark.

External validity. Threats to external validity are
mainly concerned with whether our findings generalize—
supporting broader conclusions.

DEFECTS4J has become accepted as an effective bench-
mark to evaluate dynamic analysis and repair tools for Java,
because of the variety and size of its curated collection of
faults. At the same time, as with every benchmark, there
is the lingering risk that new techniques become narrowly
optimized for DEFECTS4J without ascertaining that they do
not overfit the benchmark. As future work, we plan to
carry out evaluations on faults from different sources, to
strengthen our claims of external validity.

Both the implementation and the evaluation of RESTORE

are based on the JAID repair system, and hence the fine-
grained evaluation of RESTORE focused on how it improves
over JAID. To demonstrate that most of the ideas behind
retrospective fault localization (Section 3) are applicable
to other generate-and-validate automated program repair
techniques, we also implemented retrospective fault local-
ization on top of SimFix [9]—another state-of-the-art pro-
gram repair technique for Java. Generalizing retrospective
fault localization to work with repair techniques that are
even more different—for example, based on synthesis—
belongs to future work.

5 RELATED WORK

Research in automated program repair has gained sig-
nificant traction in the decade since the publication of the
first works in this area [29], [30]—often taking advantage
of advances in fault localization. In this section, we focus
on reviewing the approaches that have more directly in-
fluenced the design of RESTORE. Other publications provide

comprehensive summaries of fault localization [31] and
automated program repair [32], [33] techniques.

5.1 Fault Localization

The goal of fault localization is finding positions in the
source code of a faulty program that are responsible for the
fault. The concrete output of a fault localization technique
is a list of statements, branches, or program states ranked
according to their likelihood of being implicated with a
fault. By focusing their attention on specific parts of a faulty
program, such lists should help programmers debugging
and patching. While this information may not be enough
for human programmers [27], it is a fundamental ingredient
of automated program repair. Thus, research in fault localiza-
tion has seen a resurgence as part of an effort to improve
automated repair.

Spectrum-based fault localization techniques [34], [35] are
among the most extensively studied. The basic idea of
spectrum-based fault localization is to use coverage infor-
mation from tests to infer suspiciousness values of program
entities (statements, branches, or states): for example, a
statement executed mostly by failing tests is more suspi-
cious than one executed mostly by passing tests.

Several automated program repair techniques use
spectrum-based fault localization algorithms [30], [36], [37],
[38], [39], [7]. Generating a correct fix, however, typically
requires more information than the suspiciousness ranking
provided by spectrum-based techniques: an empirical eval-
uation of 15 popular spectrum-based fault localization tech-
niques [26] found that the typical evaluation criteria used
in fault-localization research (namely, the suspiciousness
ranking) are not good predictors of whether a technique will
perform well in automated program repair. This observa-
tion buttresses our suggestion that fault localization should
be co-designed with automated program repair to perform
better—as we did with retrospective fault localization.

Fault localization needs sources of additional informa-
tion to be more accurate. One effective idea—pioneered by
delta debugging [40]—is to modify a program and observe
how small local modifications affect its behavior in pass-
ing vs. failing runs. More recently, ideas from mutation
testing [41] and delta-debugging have been combined to
perform mutation-based fault localization: randomly mutate
a faulty program, and assess whether the mutation changes
the behavior on passing or failing tests.

Metallaxis [6] and MUSE [5], [42] are two representative
mutation-based fault localization techniques. Experiments
with these tools indicate that mutation-based fault localiza-
tion often outperforms spectrum-based fault localization in
different conditions [5], [6]. In our work, we used a variant
of the Metallaxis algorithm, because it tends to perform
better than MUSE with tasks similar to those we need for
automated program repair. The main downside of mutation-
based fault localization is that it can be a performance hog,
because it requires to rerun tests on a large amount of
mutants. Thus, a key idea of our retrospective fault local-
ization is to reuse, as much as possible, validation results
(which have to be performed anyway for program repair)
to perform mutation-based analysis.

15

In retrospective fault localization, a simple fault-
localization process bootstraps a feedback loop that imple-
ments a more accurate mutation-based fault localization.
RESTORE currently uses a spectrum-based technique for the
bootstrap phase (see Section 3.2.2); however, other fault
localization techniques—such as those based on statistical
analysis [43], [44], machine learning [45], [46], or deep
learning [47]—could be used instead. Even techniques that
are not designed specifically for fault localization may be
used, as long as they produce a ranked list of suspicious
program entities. For example, MintHint [48] performs a
correlation analysis to identify expressions that should be
changed to fix faults. The expressions, or more generally
their program locations, could thus be treated as suspicious
entities for the purpose of initiating fault localization.

5.2 Automated Program Repair
Generate-and-validate (G&V) remains the most widespread
approach to automated program repair: given a faulty pro-
gram and a group of passing and failing tests, generate
fix candidates by heuristically searching a program space;
then, check the validity of candidates by rerunning all
available tests. GenProg [30], [49] pioneered G&V repair
by using genetic programming to mutate a faulty program
and generate fix candidates. RERepair [50] works similarly
to GenProg but uses random search instead of genetic
programming. AE [51] enumerates variants systematically,
and uses simple semantic checks to reduce the number of
equivalent fix candidates that have to be validated. Par [38]
uses patterns modeled after existing programmer-written
fixes to guide the search toward generating fixes that are
easier for programmers to understand.

This first generation of G&V tools is capable of working
on real-world bugs, but has the tendency to overfit the input
tests [3]—thus generating many fixes that pass validation
but are not actually correct [2]. A newer generation of tools
addressed this shortcoming by supplying G&V program
repair with additional information, often coming from mining
human-written fixes. AutoFix [39] uses contracts (assertions
such as pre- and postconditions) to improve the accuracy
of fault localization. SPR [52] generates candidate fixes
according to a set of predefined transformation functions;
Prophet [53] implements a probabilistic model, learned by
mining human-written patches, on top of SPR to direct the
search towards fixes with a higher chance of being correct.
HDA [22] performs a stochastic search similar to genetic
programming, and uses heuristics mined from fix histories
available in public bug repositories to guide the search
toward generating correct fixes. ACS [19] builds precise
changes of conditional predicates, based on a combination
of dependency analysis and mining API documentations.
Genesis [54] learns templates for code transformations from
human patches, and instantiates the templates to generate
new fixes. ssFix [25] matches contextual information at the
fixing location to a database of human-written fixes, and
uses this to drive fix generation. JAID [7] uses rich state
abstractions in fault localization to generate correct repairs
for a variety of bugs. Elixir [21] specializes in repairing
buggy method invocations, using machine-learned models
to prioritize the most effective repairs. SimFix [9] com-
bines the information extracted from existing patches and

snippets similar to the code under fix to make the search
for correct fixes more efficient. CapGen [20] improves the
effectiveness of expression-level fix generation by lever-
aging fault context information so that fixes more likely
to be correct are generated first. SketchFix [24] expresses
program repair as a sketching problem [55] with “holes” in
suspicious statements, and uses synthesis to fill in the holes
with plausible replacements. RESTORE and SketchFix both
work to better integrate phases that are normally separate
in automated repair—fault localization and fix validation in
RESTORE, and fix generation and fix validation in SketchFix.

Most of these tools are quite effective at generating
correct fixes for real bugs; several of them do so by min-
ing additional information. Further improvements in G&V
repair hinge on the capability of improving the preci-
sion of fault localization. A promising option is using
mutation-based fault localization, which was recently in-
vestigated [56] on data from the BugZoo9 repair bench-
marks. [56] found no significant improvement on the over-
all repair performance—supposedly because the single-edit
mutations used in the study may be too simple to reveal
substantial differences between programs variants.

In our retrospective fault localization, we combine mu-
tation testing with a G&V technique that can generate com-
plex “higher-order” program mutants, and tightly integrate
fault localization and fix generation. This way, RESTORE ben-
efits from the additional accuracy of mutation-based fault
localization without incurring the major overhead typical of
mutation testing.

Test selection and prioritization has been studied in
the context of G&V automated program repair to improve
the efficiency of fix evaluation. For example, techniques
based on genetic programming—such as GenProg [30] and
PAR [38]—can become very computationally expensive if
they evaluate all program mutations on all available tests.
To improve this situation, one could use all the failing
tests but only a small sample of the passing tests—selected
randomly [57] or using an adaptive test suite reduction [58].
Another approach is the FRTP technique [59], [50], which
gives higher priority to a test the more fixes it has invali-
dated in previous iterations. RESTORE currently uses a very
simple test selection strategy for partial validation (Sec-
tion 3.3.2) consisting in just running the originally failing
tests. This was quite economical, yet effective, in the experi-
ments with DEFECTS4J, but cannot replace a full validation
step. To achieve further improvements we will consider
more sophisticated test selection strategies in future work.

Correct-by-construction program repair techniques [60],
[61], [37], [62], [63] express the repair problem as a constraint
satisfaction problem, and then use constraint solver to build
fixes that satisfy those constraints. Relying on static instead
of dynamic analysis makes correct-by-construction tech-
niques generally faster than G&V ones, and is particularly
effective when looking for fixes with a restricted, simple
form.

6 CONCLUSIONS

We presented retrospective fault localization: a novel fault
localization technique that integrates into the standard

9. https://github.com/squaresLab/BugZoo

16

generate-and-validate process followed by numerous au-
tomated program repair techniques. By executing a form
of mutation-based testing using byproducts of automated
repair, retrospective fault localization delivers accurate fault
localization information while curtailing the otherwise de-
manding costs of running mutation-based testing.

Our experiments compared RESTORE—implementing ret-
rospective fault localization—with 13 other state-of-the-art
Java program repair tools—including JAID, upon which RE-
STORE’s implementation is built. They showed that RESTORE

is a state-of-the-art program repair tool that can search a
large fix space—correctly fixing 41 faults from the DEFECTS4J
benchmark, 8 that no other tool can fix—with drastically
improved performance (speedup over 3, and candidates that
have to be checked cut in half).

Retrospective fault localization is a sufficiently general
technique that it could be integrated, possibly with some
changes, into other generate-and-validate program repair
systems. To support this claim, we implemented it atop
SimFix [9]—another recent automated program repair tool
for Java—and showed it brings similar benefits in terms of
improved efficiency. As part of future work, we plan to
combine retrospective fault localization with other recent
advances in fault localization—thus furthering the exciting
progress of automated program repair research.

ACKNOWLEDGMENTS

Tongtong Xu, Tian Zhang, and Minxue Pan were supported
by the National Natural Science Foundation of China (No.
61690204 and 61972193) and the Fundamental Research
Funds for the Central Universities, China (No. 14380020 and
14380022). Liushan Chen and Yu Pei were supported by the
Hong Kong RGC General Research Fund (GRF) under grant
PolyU 152703/16E and PolyU 152002/18E and by the Hong
Kong Polytechnic University under internal fund 1-ZVJ1
and G-YBXU. Carlo A. Furia was partially supported by
the Swiss National Science Foundation (SNF) under grant
Hi-Fi 200021-182060.

REFERENCES

[1] M. Zhivich and R. K. Cunningham, “The real cost of software
errors,” IEEE Security & Privacy, vol. 7, no. 2, pp. 87–90, 2009.

[2] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New York, NY,
USA: ACM, 2015, pp. 24–36.

[3] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM,
2015, pp. 532–543.

[4] M. Monperrus, “A Critical Review of "Automatic Patch Genera-
tion Learned from Human-written Patches": Essay on the Problem
Statement and the Evaluation of Automatic Software Repair,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 234–242.

[5] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Proceedings of the 2014
IEEE International Conference on Software Testing, Verification, and
Validation, ser. ICST ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 153–162.

[6] M. Papadakis and Y. Le Traon, “Metallaxis-FL: Mutation-based
Fault Localization,” Software Testing, Verification, and Reliability,
vol. 25, no. 5-7, pp. 605–628, August 2015.

[7] L. Chen, Y. Pei, and C. A. Furia, “Contract-based Program Repair
Without the Contracts,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 637–647.

[8] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 437–440, http://defects4j.org.

[9] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Nether-
lands, July 16-21, 2018, 2018, pp. 298–309.

[10] T. Durieux, B. Danglot, Z. Yu, M. Martinez, S. Urli, and M. Mon-
perrus, “The Patches of the Nopol Automatic Repair System on
the Bugs of Defects4J version 1.1.0,” Université Lille 1 - Sciences et
Technologies, Research Report hal-01480084, 2017.

[11] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An evaluation of
similarity coefficients for software fault localization,” in Proceed-
ings of the 12th Pacific Rim International Symposium on Dependable
Computing, ser. PRDC ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 39–46.

[12] W. Eric Wong, V. Debroy, and B. Choi, “A family of code coverage-
based heuristics for effective fault localization,” Journal of Systems
and Software, vol. 83, no. 2, pp. 188–208, Feb. 2010.

[13] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts: An extended study,” IEEE Transactions on
Software Engineering, Online since January 2020, http://dx.doi.
org/10.1109/TSE.2020.2970009.

[14] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
Tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp.
273–282.

[15] M. Renieris and S. P. Reiss, “Fault localization with nearest neigh-
bor queries,” in Proceedings of the 18th IEEE International Conference
on Automated Software Engineering, ser. ASE’03. Piscataway, NJ,
USA: IEEE Press, 2003, pp. 30–39.

[16] D. Critchlow, Metric Methods for Analyzing Partially Ranked Data.
3Island Press, 1986.

[17] T. Hoefler and R. Belli, “Scientific Benchmarking of Parallel Com-
puting Systems.” ACM, Nov. 2015, pp. 73:1–73:12, proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC15).

[18] R. McElreath, Statistical Rethinking. Chapman & Hall/CRC, 2015.
[19] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and

L. Zhang, “Precise condition synthesis for program repair,” in Pro-
ceedings of the 39th International Conference on Software Engineering,
ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 416–426.

[20] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceed-
ings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 1–11.

[21] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effec-
tive object oriented program repair,” in Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 2017. Piscataway, NJ, USA: IEEE Press, 2017, pp.
648–659.

[22] X. D. Le, D. Lo, and C. Le Goues, “History driven program
repair,” in Proceedings of the IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering. Osaka, Japan: IEEE
Computer Society, 2016, pp. 213–224.

[23] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Mon-
perrus, “Automatic repair of real bugs in java: a large-scale ex-
periment on the defects4j dataset,” Empirical Software Engineering,
vol. 22, no. 4, pp. 1936–1964, 2017.

[24] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp.
12–23.

[25] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for au-
tomated program repair,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 660–670.

[26] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated pro-
gram repair for evaluating the effectiveness of fault localization

17

http://defects4j.org
http://dx.doi.org/10.1109/TSE.2020.2970009
http://dx.doi.org/10.1109/TSE.2020.2970009

techniques,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY,
USA: ACM, 2013, pp. 191–201.

[27] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA ’11.
New York, NY, USA: ACM, 2011, pp. 199–209.

[28] A. Gelman and D. Weakliem, “Of beauty, sex and power,” Ameri-
can Scientist, vol. 97, pp. 310–316, 2009.

[29] A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,” in Proceedings of the IEEE Congress
on Evolutionary Computation. IEEE, 2008, pp. 162–168.

[30] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proceedings
of the IEEE 31st International Conference on Software Engineering,
2009, pp. 364–374.

[31] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transaction on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, Aug. 2016.

[32] M. Monperrus, “Automatic Software Repair: a Bibliography,”
ACM Computing Surveys, vol. 51, pp. 1–24, 2017.

[33] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Trans. Software Eng., vol. 45, no. 1, pp.
34–67, 2019.

[34] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, pp. 11:1–11:32, Aug. 2011.

[35] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, ser. TAICPART-MUTATION ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 89–98.

[36] V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proceedings of the 2010
Third International Conference on Software Testing, Verification and
Validation, ser. ICST ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 65–74.

[37] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program Repair via Semantic Analysis,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13, Piscataway, NJ, USA, 2013, pp. 772–781.

[38] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch gener-
ation learned from human-written patches,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 802–811.

[39] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, “Au-
tomated Fixing of Programs with Contracts,” IEEE Transactions on
Software Engineering, vol. 40, no. 5, pp. 427–449, 2014.

[40] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[41] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Transaction Software Engineering,
vol. 37, no. 5, pp. 649–678, Sep. 2011.

[42] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual pro-
grams,” in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’15. Wash-
ington, DC, USA: IEEE Computer Society, 2015, pp. 464–475.

[43] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’05. New York, NY, USA: ACM, 2005, pp.
15–26.

[44] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S. P. Midkiff, “Sta-
tistical debugging: A hypothesis testing-based approach,” IEEE
Transactions on Software Engineering, vol. 32, no. 10, pp. 831–848,
Oct 2006.

[45] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to
support debugging with tarantula,” in Proceedings of the The 18th
IEEE International Symposium on Software Reliability, ser. ISSRE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 137–146.

[46] W. E. Wong and Y. Qi, “Bp neural network-based effective fault lo-
calization,” International Journal of Software Engineering and Knowl-
edge Engineering, vol. 19, no. 4, pp. 573–597, 2009.

[47] R. Gupta, A. Kanade, and S. Shevade, “Deep learning for bug-
localization in student programs,” 2019.

[48] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint:
Automated synthesis of repair hints,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 266–276.

[49] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in 2012 34th International Conference on
Software Engineering (ICSE), ser. ICSE ’12, Jun. 2012, pp. 3–13.

[50] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 254–265.

[51] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equiva-
lence for adaptive program repair: Models and first results,” in
2013 IEEE/ACM 28th International Conference on Automated Software
Engineering, Nov. 2013, pp. 356–366.

[52] F. Long and M. Rinard, “Staged Program Repair with Condition
Synthesis,” in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ser. ESEC/FSE 2015, New York, NY,
USA, 2015, pp. 166–178.

[53] ——, “Automatic patch generation by learning correct code,” in
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, 2016, pp. 298–312.

[54] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 727–739.

[55] A. Solar-Lezama, “Program sketching,” Software Tools for Technol-
ogy Transfer, vol. 15, no. 5-6, pp. 475–495, 2013.

[56] C. S. Timperley, S. Stepney, and C. Le Goues, “An Investigation
into the Use of Mutation Analysis for Automated Program Re-
pair,” in International Symposium on Search Based Software Engineer-
ing. Paderborn: York, Aug. 2017, pp. 99–114.

[57] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing
better fitness functions for automated program repair,” in Genetic
and Evolutionary Computation Conference, GECCO 2010, Proceedings,
Portland, Oregon, USA, July 7-11, 2010, 2010, pp. 965–972.

[58] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006
International Symposium on Software Testing and Analysis, ser. ISSTA
’06. New York, NY, USA: ACM, 2006, pp. 1–12.

[59] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in 2013 IEEE Inter-
national Conference on Software Maintenance, Eindhoven, The Nether-
lands, September 22-28, 2013, 2013, pp. 180–189.

[60] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
Simple Program Repairs,” in Proceedings of the 37th International
Conference on Software Engineering, ser. ICSE ’15. IEEE Press, 2015,
pp. 448–458.

[61] ——, “Angelix: Scalable Multiline Program Patch Synthesis via
Symbolic Analysis,” in Proceedings of the 38th International Confer-
ence on Software Engineering, ser. ICSE ’16. New York, NY, USA:
ACM, 2016, pp. 691–701.

[62] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic
Repair of Conditional Statement Bugs in Java Programs,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2016.

[63] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3:
Syntax- and semantic-guided repair synthesis via programming
by examples,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 593–604.

18

	Introduction
	An Example of [1]Restore in Action
	How [1]Restore Works
	Overview
	Basic Automated Program Repair
	State abstraction: snapshots
	Fault localization
	Fix generation
	Fix validation (and ranking)

	Retrospective Fault Localization in [1]Restore
	Initial fix generation
	Partial fix validation
	Mutation-based fault localization
	Retrospective loop iteration
	Final fix generation
	(Full) fix validation

	Experimental Evaluation
	Subject Faults
	Experimental Protocol
	Statistics
	Robustness of retrospective fault localization
	General application of retrospective fault localization

	Experimental Results
	RQ1: Effectiveness
	RQ2: Performance
	RQ3: Fault Localization
	RQ4: Robustness
	RQ5: Generalizability

	Threats to Validity

	Related Work
	Fault Localization
	Automated Program Repair

	Conclusions
	References

