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Program Repair with Repeated Learning
Liushan Chen, Yu Pei, Minxue Pan, Tian Zhang, Qixin Wang, Carlo A. Furia

Abstract—A key challenge in generate-and-validate automated program repair is directing the search for fixes so that it can efficiently
find those that are more likely to be correct. To this end, several techniques use machine learning to capture the features of
programmer-written fixes. In existing approaches, fitting the model typically takes place before fix generation and is independent of it:
the fix generation process uses the learned model as one of its inputs. However, the intermediate outcomes of an ongoing fix
generation process often provide valuable information about which candidate fixes were “better”; this information could profitably be
used to retrain the model, so that each new iteration of the fixing process would also learn from the outcome of previous ones.
In this paper, we propose the LIANA technique for automated program repair, which is based on this idea of repeatedly learning the
features of generated fixes. To this end, LIANA uses a fine-grained model that combines information about fix characteristics, their
relations to the fixing context, and the results of test execution. The model is initially trained offline, and then repeatedly updated online
as the fix generation process unravels; at any step, the most up-to-date model is used to guide the search for fixes—prioritizing those
that are more likely to include the right ingredients. In an experimental evaluation on 732 real-world Java bugs from 3 popular
benchmarks, LIANA built correct fixes for 134 faults (83 ranked as first in its output)—improving over several other generate-and-validate
program repair tools according to various measures.

✦

1 INTRODUCTION

Automated program repair (APR) techniques rely on
highly-specialized heuristics to efficiently sift through the
huge space of all possible program modifications (the so-
called “fix space”) looking for suitable repairs [18], [60], [13].
A critical choice in designing these heuristics is selecting
the right “fix ingredients” [74], [54], [40]: which program
elements should be considered for generating the repairs.
An effective APR technique must achieve a delicate balance
between the size of the fix space (equivalently, the available
fix ingredients) and the efficiency with which it can be
searched.

This problem is a natural fit for machine learning: rather
than selecting fix ingredients explicitly, one can train a sta-
tistical model that summarizes the features of programmer-
written repairs, and then use the trained model to select
repairs using ingredients classified as similar to those pre-
viously learned. As we discuss in Sec. 5, numerous recent
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advances in APR are based on applications of machine
learning along these lines [47], [44], [39], [21].

It goes without saying that the effectiveness of a
machine-learning model strongly depends on the data that
one uses to train it [1], [5]. Applications of machine learning
to APR usually train the model on programmer-written fixes
offline, that is before the program repair process runs and
independent of it. This proved to be an effective choice
in many situations, but it also limits the flexibility of the
resulting APR process. Whereas programmer-written fixes
are the gold standard for what a suitable fix should look
like [27], collecting a sufficiently varied collection of such
fixes may be time-consuming [50]; and the fitted model may
be unsuitable for fixing automatically any programs but
those that are sufficiently similar to those used for training.

In this paper, we propose LIANA: a novel APR technique
that is based on the idea of repeatedly updating a statistical
model online based on the intermediate validation results
of an ongoing program repair process. At its core, LIANA

(Learn It AgaiN for APR) implements a fairly standard test-
driven generate-and-validate (G&V) program repair loop,
which explores the fix space incrementally and uses the
available tests to validate any candidate fixes it generate.
On top of that, LIANA introduces a learning-to-rank model
to capture the features of fixes that are similar to those
deployed by programmers (or at least that make some
progress towards passing all available tests), and uses the
model’s information to guide the search towards generating
candidate fixes that have similar characteristics. For exam-
ple, if candidate fixes that introduce a conditional statement
tend to pass tests that the original program failed, LIANA

will prioritize generating new candidates that also introduce
a similar conditional.

As in other APR approaches that use machine learning,
the statistical model can be trained offline on any collection
of fixes and given to LIANA as input. The key novelty of
LIANA is that it also updates the model based on the outcome
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of validating any newly generated candidate fixes. More
precisely, any candidate fix that passes some tests that were
previously failing is considered a step in the right direction;
LIANA automatically uses it to update its machine-learning
model. The idea of using the results of intermediate valida-
tion to guide successive iterations of APR was also used by
earlier, influential APR techniques such as GenProg [72] and
HDA [30]. LIANA extends this idea by introducing a fine-
grained statistical model that ranks candidate fixes in terms
of features combining static and dynamic information about
them. For example, it measures the number of variables that
a candidate fix uses that are also declared locally to the
method under fix; the number of tests that the originally
faulty program fails that a candidate fix passes instead; and
the similarity between method invocations in a candidate
fix and other candidate fixes that pass validation. LIANA’s
approach also supports reusing the model learned while
fixing a bug to repair another bug in a later run of the
algorithm.

We implemented the LIANA technique into a tool with
the same name based on the RESTORE generate-and-validate
APR tool [80]. LIANA inputs a buggy Java program, a set of
test cases (including at least one that triggers the bug under
repair), and an initial fix ranking model, which was trained
offline on any reference fixes or online during previous
runs of the tool. It outputs a list of valid fixes (patches
to the program that make all tests pass) and the latest fix
ranking model, updated based on the information collected
automatically while running the tests.

To evaluate the effectiveness and efficiency of LIANA,
we ran it to repair 732 bugs from 3 popular benchmarks
in APR, namely DEFECTS4J [27], INTROCLASSJAVA [14], and
QUIXBUGS [36]. LIANA built valid fixes for 219 bugs and
correct fixes (semantically equivalent to those written by
programmers for the same bugs) for 134 bugs; specifically,
it correctly fixed 53 bugs in DEFECTS4J, and a correct fix was
ranked first in the output for 28 DEFECTS4J bugs. As we
discuss in detail in Sec. 4.4—where we compare LIANA to 21
other state-of-the-art APR tools for Java—these results put
LIANA among the most effective tools in terms of number
of bugs fixed. To demonstrate the generality of the LIANA

technique, we also implemented it atop the SIMFIX APR
technique [26]. SIMFIX with LIANA fixes only two more DE-
FECTS4J bugs than “plain” SIMFIX, but does so considerably
more quickly (2.7x speedup on average).

In summary, this paper makes the following contribu-
tions:

1) The LIANA technique for improving the effectiveness
and efficiency of search-based automated program re-
pair by repeatedly learning a fix ranking model based
on the intermediate results of the fixing process;

2) An implementation of the LIANA in a tool based on the
RESTORE APR tool;

3) A large-scale experimental evaluation of LIANA on 732
bugs from 3 different benchmarks.

Terminology. We use the terms “defect”, “bug”, “fault”,
and “error” as synonyms. We also use “fix”, “patch”, and
“repair” as synonyms to denote changes to a program’s
source code.

Availability. The LIANA tool and a replication pack-
age are available at http://www4.comp.polyu.edu.hk/

1 public static double linearCombination(double[] a, double[] b)
2 throws DimensionMismatchException {
3 final int len = a.length;
4 if (len != b.length) {
5 throw new DimensionMismatchException(len, b.length);
6 }
7

8 final double[] prodHigh = new double[len];
9

10 for (int i = 0; i < len; i++) {
11 final double ai = a[i];
12 final double bi = b[i];
13 prodHigh[i] = ai * bi;
14 ...
15 }
16 ...
17 double prodHighNext = prodHigh[1];
18 ...
19 }

(a) Faulty method linearCombination from class MathArrays in
project Commons-Math.

if (len == 1)
return a[0] * b[0];

(b) Fix written by developers
(inserted at line 7 in Fig. 1a).

if (prodHigh.length == 1)
return prodHigh[i];

(c) Correct fix generated by LI-
ANA (inserted before line 15 in
Fig. 1a).

Fig. 1: A faulty method in project Commons-Math that LIANA

repairs with a fix functionally equivalent to that written by
the developer.

if (a[i] != b[i])
return prodHigh[i];

(a)

if (a[i] == a[i])
return prodHigh[i];

(b)
Fig. 2: Two “progress” fixes generated by LIANA (inserted
before line 15 in Fig. 1a), which are incorrect but help direct
the search in the space of fixes towards the correct one.

~csypei/download/LIANA-TSE.zip.

2 AN EXAMPLE OF LIANA IN ACTION

Apache Commons Math’s class MathArrays provides a wide
range of functions to work with numerical arrays. Method
linearCombination of the class inputs two double arrays a

and b of the same length, and returns the scalar product∑
k a[k] * b[k].
Fig. 1a outlines the implementation of this method in an

older release of the library. The method’s body first checks
if a and b have the same length; if not, it returns with
an exception. Otherwise, the method implements specific
multiplication and addition algorithms to preserve accu-
racy and reduce the chance of numerical errors. However,
Fig. 1a’s implementation is faulty [27, Fault Math3]: when
a and b are singletons, the statement on line 17 triggers an
ArrayIndexOutOfBoundsException. To correct the bug in later
versions of the library, the developers inserted at line 7 the
conditional statement in Fig. 1b.

The LIANA technique described in this paper can auto-
matically produce the fix in Fig. 1c, which also correctly
fixes the bug in Fig. 1a. While LIANA’s fix is applied at a
later location—and is therefore slightly less efficient—it is
semantically equivalent to the programmer-written one.

Automatically generating a correct fix for this bug is
challenging: the fix requires to find both a conditional ex-
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pression and a returned expression; the method is fairly
large (60 lines of code), which means it includes a high
number of “fix ingredients” to choose from for constructing
fixes. For example, 15 variables are in scope at line 15;
simply enumerating all possible combinations of boolean

expressions (for the if condition) and double expressions
(for the return statement) built out of these variables would
be infeasible.

Indeed, to our knowledge, only three APR tools can
correctly fix this bug at the time of writing. LIANA outputs
a correct fix in around 70 minutes; JAID can also build a
correct fix, but takes over 14 hours to do so. This difference
in efficiency is even more striking considering that LIANA’s
search space is a considerably larger superset of JAID’s; and
that RESTORE includes this fix in its fix space, but runs out
of time before its heuristics can find it. ACS is the third
tool capable of fixing this bug; key to its success is that it
specializes in synthesizing conditional fixes, like the one
required to correct Fig. 1a’s bug. The behavior of these
three tools illustrates the relation between fix space, search
efficiency, and overall effectiveness of an APR technique.
ACS targets a smaller fix space, so that it can quickly find
fixes such as those in the example; this choice also entails
that generating different kinds of fixes are outside its capa-
bilities. JAID targets a broader fix space, but it may struggle
to sift through it in a reasonable amount of time; LIANA

can generate several different kinds of fixes, and still often
manages to search efficiently an heterogeneous and large fix
space.

To this end, LIANA builds a fix ranking model, which iden-
tifies fix ingredients that are more likely to be useful. Cru-
cially, the model is updated as LIANA’s search progresses, so
that it can learn from previous, partially successful, fixing
attempts.

When running on the code in Fig. 1a, LIANA initially
generates a batch of candidate fixes that includes, among
others, the two in Fig. 2. Neither of them is correct; however,
they are a step in the right direction since they pass a
test that the buggy implementation fails, thus hinting at a
suitable fixing location and at the necessary fixing ingredi-
ents (including using a conditional and the correct return

expression). LIANA uses such “progress fixes” (incorrect but
passing some originally failing tests) to retrain the fix ranking
model so that similar candidate fixes will be generated in
the following iterations. Indeed, LIANA’s second batch of
candidate fixes includes Fig. 1c’s correct fix and ranks it in
the top position. Since this fix also passes all available tests,
it is output to the user. Overall, the ranking information
learned by repeated iterations of LIANA’s algorithm is useful
both to direct the search towards candidate fixes that are
more likely to be correct and to output to the user such fixes
in a prominent position.

3 HOW LIANA WORKS

Fig. 3 gives an overview of the main steps of LIA-
NA’s program repair process. The process’s backbone—
corresponding to the blue boxes in the top row of Fig. 3—
is similar to any standard G&V program repair technique:
given a Java program P and a test suite T that triggers (at
least) one failure in P , LIANA first performs fault localization

to identify suspicious entities (locations or expressions) in
P that are implicated with the failure. Then, it generates a
number of candidate fixes; each candidate fix targets one of
the suspicious entities in P identified by fault localization.
Fix generation is based on heuristics, and hence it’s best
effort; therefore, it is followed by a fix validation step, where
LIANA reruns all tests on all candidates. Valid fixes V are
LIANA’s final output to the user.

Validity and correctness. In the remainder, we call a
candidate fix valid if it passes all the available tests for
the program under repair. Valid fixes are also called plau-
sible [46] or test-suite adequate [50]. A valid fix is correct if
it is also semantically equivalent to the one written and
deployed by the project maintainers for the same bug.

Fix space exploration. To efficiently explore the space of
all possible candidate fixes (the so-called fix space), LIANA

guides the fix generation process by means of a fix ranking
model: a statistical model that ranks a candidate fix the
higher the more likely it is valid. As shown by the green
boxes in the bottom row of Fig. 3, each run of LIANA starts
with an initial ranking model R (which typically comes
from previous runs of the technique on other bugs), and
uses it to generate a first batch of candidate fixes. Then, it
iteratively updates the ranking model based on the features
of the candidates it has generated and validated. To this
end, it learns the features of all candidates that make some
progress towards building a valid fix (that is, such that
they pass some more tests in T ), so that additional similar
fixes are likely to be generated. As we detail in Sec. 3.3,
“similarity” is measured in terms of 17 different features
that mainly capture the syntactic “distance” between two
programs using static and dynamic measures. In every
round of fix generation and validation, LIANA always uses
the most up to date ranking model R—which incorporates
all information about the progress made so far.

The repair process terminates after a timeout (or when
the fix space is exhausted). In addition to any valid fixes, LI-
ANA’s final output also includes the latest fix ranking model,
which can be used to start future program repair runs.

The rest of this section describes the main steps of this
process in detail, with a focus on those that are specific to
LIANA’s approach. Alg. 1 outlines in pseudo code the same
steps and how they are combined. The presentation targets
a run of LIANA on a program P , given a collection T of tests.
T is partitioned into failing tests Té and passing tests TË;
we assume that Té is not empty—that is, P is buggy.

3.1 Fault Localization, Fix Generation, and Validation

The backbone of LIANA’s process covers the usual steps
of a G&V program repair technique: fault localization, fix
generation, and fix validation. We refer to these steps as
the “standard (repair) process”. The specific contributions of
LIANA complement the standard process with information
that helps explore the fix space more effectively. These
contributions are largely independent of the details of how
the standard process works; hence, we only describe the
standard process succinctly and at a high level, focusing
instead on LIANA’s peculiarities in the rest of the section.
This also implies that LIANA is applicable in principle on
top of a wide range of G&V program repair techniques;
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Fig. 3: Overview of how LIANA works. Given as input a Java program P and a test suite T , LIANA goes through the three
main steps of fault localization, fix generation, and fix validation that are common in all G&V program repair techniques.
Fix generation is done incrementally and guided by a fix ranking model R: a statistical model that assigns higher ranks to
fixes that are more likely to be valid (and possibly correct). After each round of fix validation, LIANA updates the ranking
model to incorporate the outcome of validation; and it uses the most up-to-date ranking model R in each round of fix
generation. The final outputs are any valid fixes V (which pass all tests in T ), as well as the latest update of the fix ranking
model R.

Algorithm 1 How LIANA works in pseudo code.

Input
R: an existing fix ranking model
P : a buggy program to repair
T : passing TË and failing Té tests for P

Output
V : a (possibly empty) list of valid fixes
R: an updated fix ranking model

1: candidates← [] /* list of candidate fixes, initially empty */
2: V ← [] /* list V of valid fixes, initially empty */
3: /* list L of suspicious program entities */
4: L ← FAULT_LOCALIZATION(P , T )
5: /* while there are suspicious entities or candidate fixes */
6: while L ̸= ∅ ∨ candidates ̸= ∅ do
7: /* select a new batch of n suspicious entities L from L */
8: L← PICK(L, n)
9: /* enumerate all candidate fixes for new entities */

10: fixes← FIX_GENERATION(P , L)
11: candidates← candidates + fixes
12: /* sort candidates according to ranking model */
13: ranked← RANK(candidates, R)
14: /* progress fix discovered in this round of validation */
15: progress← []
16: /* for each of the top-m ranked candidates */
17: for all f in ranked[0:m] do
18: if TIME() > timeout then return ⟨V,R⟩ end if
19: candidates← candidates − [f]
20: /* if f passes at least one failing test (“progress fix”) */
21: if PROGRESS?(f, P , Té) then
22: progress← progress + [f]
23: /* if f passes all tests T it is valid */
24: if VALID?(f, T ) then
25: V ← V + [f]
26: end if
27: end if
28: end for /* if there is at least one progress fix */
29: if progress ̸= ∅ then
30: /* update ranking model R by learning from ‘progress’ */
31: R← UPDATE(R, progress)
32: end if
33: end while
34: return ⟨V,R⟩

the experiments in Sec. 4.4.4 will substantiate this claim of
generality.

3.1.1 Fault Localization

Fault localization produces a list L of program entities
(statements or expressions) that are suspicious: they are pos-
sible causes of the fault that is being repaired. Changing any
of the entities in L has a chance of repairing the program.
Precisely, a program entity ℓ ∈ L corresponds to a triple
⟨n, e, v⟩: n denotes a statement within the program by its
location number; e is an expression that is in scope at n; and
v is a value of that expression. Intuitively, the triple points
to a program run where e = v when statement n executes.
In the running example, the list L of entities identified by
LIANA’s fault localization includes various triples ⟨n15, e, v⟩,
where n15 identifies line 15 in Fig. 1a.

The current implementation of LIANA uses a spectrum-
based fault localization algorithm to identify suspicious
entities in the input program P . More specifically, LIANA

reuses JAID’s fault localization [7], [8], which implements
Wong et al.’s Heuristic III [15], and combines static (ex-
pression dependence, which gives higher suspiciousness
values to program entities that are syntactically similar
to those implicated with a failure) and dynamic (spectral
information, which gives higher suspiciousness scores to
program entities that are evaluated more often in failing
than in passing runs) information about the program. In
LIANA, fault localization plays a less central role than in
JAID, since LIANA only uses it to boostrap the fix generation
process, after which it relies on the ranking model to select
program entities.

3.1.2 Fix Generation

Given a batch L ⊆ L of suspicious program entities
(selected out of all suspicious entities L), fix generation
enumerates all repair actions A that are applicable to any
of the entities in L. Repair actions are transformations that
try to change program behavior at the location where they
are applied. Applying a repair action a ∈ A to an entity
ℓ ∈ L gives a candidate fix: a patched version of program
P . The set of all candidate fixes that could be generated is
the fix space of P . Thus, the fix space depends on the fault
localization technique (which populates L ⊇ L) and on the
repair actions A that are available.

LIANA only generates fixes that modify a single entity ℓ
in program P : while a repair action may introduce complex
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Schema A: snippet; oldStatement;
Schema B: if(e == v) { snippet; } oldStatement;
Schema C: if(e != v) { oldStatement; }
Schema D: if(e == v) { snippet; } else { oldStatement; }
Schema E: /* oldStatement; */ snippet;

Fig. 4: Schemas to build candidate fixes given a fix action a
derived from entity ⟨n, e, v⟩.

modifications to its target entity, LIANA does not currently
support multi-hunk (multi-location) fixes [68].

Fix ingredients. LIANA’s generation of candidate fixes
from suspicious entities follows a process that extends RE-
STORE’s [80]1 with a new fix ingredient α5. First, given a
suspicious entity ℓ = ⟨n, e, v⟩, LIANA enumerates (repair)
actions (called fix actions in [80]) that:
α1: modify the state of an object referenced by the suspi-

cious program entity e (for example, if e is an integer
variable x, an action of this kind is x = x + 1);

α2: modify a subexpression of e (for example, if e is the
expression x == 1, an action of this kind changes that
expression to x <= 1);

α3: if the statement at n is a conditional if (c), modify its
condition c;

α4: modify the control flow at n (for example, adding a
return statement at n);

α5: if e includes a call to some method m with actual ar-
guments a, replace it with a call to another method that
is type-compatible (for example, if e is the expression
y.get(2) that retrieves the element at index 2 in a list
y, an action of this kind changes that expression to
y.remove(2)).

An action a determines a new statement snippet as follows:
if a is of kinds α1 and α4, snippet is the action itself (for
example, an assignment for α1 and a return for α4); if a is
of kinds α2, α3, and α5, snippet is the statement at location
n modified according to a.

After enumerating several repair actions, LIANA gener-
ates candidate fixes by weaving the actions into the program
under repair. To this end, it instantiates any2 of the five
schemas listed in Fig. 4, where oldStatement is the statement
at location n in the buggy program, and snippet is the
new statement determined by the action as described above.
The candidate fix consists of the whole instantiated schema
replacing the statement at location n in the program.

The combinations of actions and schemas determine the
so-called fix ingredients, that is the possible modifications of
the program that LIANA can introduce.

Fix space. In turn, the fix ingredients determine LIANA’s
space of all possible fixes, which is a strict superset of RE-
STORE’s: LIANA supports all of RESTORE’s repair actions (re-
pair actions α1, α2, α3, α4), but can also generate fixes that
replace method calls (repair action α5). Incorrect method
calls are a relevant category of bugs targeted by automated
program repair [67], which LIANA is equipped for.

In the running example, the first iteration of LIANA

generates several repair actions for location n15, including
statement return prodHigh[i] of kind α4. Weaving this

1. Sec. 3.5.2 details the differences between LIANA and RESTORE.
2. The exceptions are actions of kind α5: since they already target a

conditional, LIANA only uses schema E to weave them into the program.

action into method linearCombination using schema B pro-
duces, for program entities ⟨n15, a[i] == b[i], false⟩ and
⟨n15, a[i] == a[i], true⟩, the two candidate fixes in Fig. 2.

3.1.3 Fix Validation
In G&V program repair, fix generation is “best effort”: there
is no guarantee that any of the candidate fixes is indeed an
improvement over the original program P . Therefore, fix
validation runs all available tests T on every candidate fix
f . If f passes all tests, it is valid and output to the user.

In the running example, neither candidate fixes in Fig. 2
is valid. However, both pass some tests in Té—which were
failing in the program P under repair. This information
about “partial validation” is used by LIANA’s ranking model
as we describe below.

3.2 Fix Ranking Model
The fix space is usually too large to be generated exhaus-
tively (“combinatorial explosion”); even if it were, exhaus-
tive validation would be infeasible since rerunning all tests
takes even more time than generating fixes. Therefore, a
key component of any effective program repair technique
is heuristics to effectively explore the most promising parts
of the fix space. LIANA generates candidates in batches; a fix
ranking model determines which candidates are generated
in each batch.

A fix ranking model is a statistical classifier that can be
used to rank candidate fixes. As we have discussed before,
a candidate f is the result of applying a repair action a ∈ A,
using a certain schema s ∈ S , to an entity ℓ ∈ L identified by
fault localization. Therefore, we can think of the fix ranking
model R as a function R : L × A × S → R≥0 that assigns
a nonnegative score to any candidate fix f = (ℓ, a, s). R
should capture how similar a candidate fix f is to a valid
(ideally, correct) fix. In each iteration, LIANA generates a
new batch of candidate fixes corresponding to those with
the highest ranking score as determined by R.

Learning to rank model. LIANA implements the ranking
model R using learning-to-rank techniques [42]. Learning
to rank is a family of supervised machine learning algo-
rithms to learn ranking functions. LIANA uses a listwise
ranking algorithm and normalized discounted cumulative
gain (NDCG) as a measure of ranking quality. Previous
applications of learning to rank to fault localization used
pairwise ranking [4], [34] to exhaustively rank each element
compared to all others. For our purposes, we mainly need
to distinguish between high-rank and low-rank candidates;
therefore, a listwise algorithm is a natural choice. NDCG
also fits well LIANA’s application of learning to rank: under
discounted cumulative gain, top-ranked candidates have a
disproportionate impact on determining the ranking qual-
ity; and indeed, the rest of the fixing process will only use
candidates that are ranked high enough.

3.3 Features and Feature Extraction
The fix ranking model R assigns a score to a candidate
fix f = (ℓ, a, s) based on f ’s program features. LIANA

currently extracts 17 different features, which characterize f
according to how it modifies P and how it compares to the
progress fixes that have been generated in previous batches.
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TABLE 1: Features used by LIANA’s fix ranking model to characterize candidate fixes. The description refers to a candidate
fix f = (ℓ, a, s) that applies a repair action a, using schema s, to the entity ℓ (location or expression) reported by fault
localization within the whole program P under repair. The repair action a is a collection of edits (each deleting, replacing,
adding, or moving some code). “Progress fixes” are the candidate fixes generated in previous batches that pass at least
one of the tests Té that P fails. Column EX-VAL lists the concrete values of each feature for the correct fix of Fig. 1c after
generating the first batch of progress fixes. Missing values are for features that are undefined in the specific example (e.g.,
φ17 is undefined since there are no method calls in any of those progress fixes).

# FEATURE DESCRIPTION EX-VAL

φ1 n-calls normalized number of operators and method calls introduced by a 0.100
φ2 dep-vars fraction of all variables in P and f affected by a that are pairwise correlated 0.152
φ3 dep-edits fraction of all variables in each edit affected by a that are pairwise correlated –
φ4 used-vars fraction of all variables introduced by a that are also elsewhere in the method under fix 1.000
φ5 nodes fraction of all AST nodes introduced by a that are also elsewhere in the method under fix 1.000
φ6 calls fraction of all operators introduced by a that are also elsewhere in the method under fix 0.055
φ7 sim-code similarity (as in [76]) between the code introduced by a and any code snippets in P 0.500
φ8 sim-calls similarity (as in [76]) between method calls introduced by a and any method invocations in P –
φ9 susp suspiciousness score of ℓ (determined by fault localization) 1.002
φ10 progress progress score of ℓ (the higher, the more progress fixes target the location of ℓ) 1.000
φ11 prog-vars fraction of all variables used by any progress fixes that are also introduced by a 0.436
φ12 prog-expr fraction of all expressions used in any progress fixes that are also introduced by a 0.431
φ13 prog-edits fraction of all edit descriptors in any progress fixes that are also used by a 1.000
φ14 prog-modified fraction of all expressions modified by edits in any progress fixes that are also targeted by a 1.000
φ15 prog-removed fraction of all expressions removed by edits in any progress fixes that are also removed by a –
φ16 prog-added fraction of all expressions added by edits in any progress fixes that are also added by a 0.610
φ17 prog-calls fraction of all method calls introduced by any progress fixes that are also introduced by a –

Tab. 1 briefly describes the features; here, we discuss what
information they capture and give a few details about how
they are computed. The experiments described in Sec. 4.4.3
will empirically assess each feature’s impact on LIANA’s
effectiveness.

The chosen features try to characterize the candidate
fixes from different angles and at different levels of gran-
ularity (for instance, variables, expressions, and methods).
At a high level, the features capture a notion of “syntactic
distance” both between a candidate and other candidates
(e.g., φ11 counts the variables that both use), and between a
candidate and its “context” within the whole program (e.g.,
φ7 measures the similarity between the code introduced
by the candidate fix and the rest of the program). Some
features (1–8) measure how a candidate fix relates to the
different parts of the program it modifies; other features (9–
17) compare a candidate fix to other candidates generated
in previous batches. All features are based on static and
dynamic measures that are commonly used for fault local-
ization [62], program analysis [61], and program repair [51],
[54]. Sec. 4.4.3 describes the results of an ablation study,
which justifies the selection of features a posteriori and
demonstrates that LIANA’s overall effectiveness is generally
robust with respect to the choice of features.

LIANA uses the GumTree algorithm [16] to represent a fix
f as an edit script: a hierarchical collection of edits that, when
applied to the entity ℓ, transform P into the fix f . A single
edit modifies the program’s abstract syntax tree (AST) by
adding a new node, deleting an existing node, modifying
an existing node, and moving an existing node to another
part of the tree.

Fix-program features. Features 1–8 capture how the
modifications introduced by f relate to (different parts of)
the modified program P . Feature φ1 simply counts the oper-
ators and method calls that appear in the code introduced by
fix f into P . Features φ2 and φ3 consider all variable pairs
v1, v2 such that v1 appears in P at ℓ (before fix action a is

applied) and v2 appears in the corresponding spot in f (after
fix action a is applied); φ2 measures the fraction of such
pairs for which v1 and v2 are correlated, that is, either there
is a data dependency between the two variables, or they
belong to the same basic statement or branching condition.
φ3 is a similar measure but for variable pairs that belong to
each edit in f ’s edit script. Features φ4, φ5, and φ6 measure
different program elements that appear both in the code
introduced by a in f and elsewhere in its fixing context—
that is, in the rest of the method that is being fixed. φ4

targets variables; φ5 targets nodes in the AST representation
of the code; and φ6 targets operators. Features φ7 and φ8

measure syntactic similarity in an even broader context,
namely between code introduced by a in f and the whole
program P under repair (even beyond the method where
fixing takes place). φ7 considers all code snippets, whereas
φ8 zooms in on method calls; both use the same notion of
syntactic similarity used by [76].

As a concrete example, take φ4: this feature has value
1 for all three candidate fixes in Fig. 1c and Fig. 2,
since all variables that appear in the candidates’ code
(len, a, b, and prodHigh) are declared within the method
linearCombination under repair. Another example is φ1,
which has value 0.1 for Fig. 1c and Fig. 2 in the first batch of
fixes: each candidate fix includes exactly one operator (== or
!=), which gives a normalized score of 1/m, where m = 10 is
the total number of operators and method calls that appear
in the candidate fixes of the first batch.

Progress fix features. In contrast to features 1–8, which
compare the code modified by a candidate fix to the rest
of the program, features 9–17 capture similarities between
a candidate fix f and other progress fixes. Remember that
a progress fix is one that passes at least one test in Té—
tests which the program under repair P all fails. Feature
φ9 is simply the suspiciousness that fault localization com-
putes for each program entity ℓ; all candidate fixes that
modify ℓ have the same value. The remaining features all
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measure the similarity between f and other progress fixes
by determining how common the different features of f
are in the pool of progress fixes found so far. Feature φ10

quantifies “how much progress” f makes: first, program
locations are ranked according to how many candidate fixes
that target each location are also progress fixes; then, φ10 is
1/N for f , where N is the position of the program location
that f modifies in this ranking. Like for φ9, all candidate
fixes that modify the same location have the same value
of φ10. φ11 examines variables; φ12 examines individual
sub-expressions; and φ17 examines method calls. Features
13–16 have a different level of granularity since they all
examine the individual edits in f ’s edit script compared to
the other progress fixes’. φ13 looks at the edit descriptors,
which classify an edit according to: whether it adds, deletes,
modifies, or moves a node; and the statement type it applies
to (e.g., a conditional or an assignment). φ14 looks at the
expressions that are modified by any edits (they change
from P to f ); φ15 at the expressions that are removed by
any edits (they appear in P but not in f ); and φ16 at the
expressions that are added (they don’t appear in P but do
appear in f ).

The rightmost column in Tab. 1 lists the concrete values
of the features for the running example’s fix in Fig. 1c,
after generating the first batch of (progress) candidate fixes
(on which several features are based). The shown values
indicate that the candidate is quite similar to other progress
fixes, and hence its components seem useful to direct the
search towards fixes that pass more test; in addition, most
progress fixes modify the same location (line 7 in Fig. 1a)
that the running example’s fix modifies (hence, φ10 = 1).

3.4 Model Update
The ranking model can be updated by providing a new
candidate fix labeled with a ranking score. Precisely, a
candidate fix f is characterized by a value for each of its
features (Tab. 1); and the score is a nonnegative number r
the higher the closer the fix is to being correct. Therefore, a
labeled datapoint to update R is a tuple ⟨φ1, φ2, . . . , φ17, r⟩.
The score r is: (a) 10 if f is correct (equivalent to the
programmer-written fix); (b) 5 if f is valid (it passes all tests
in T ) but not correct; (c) 3 if f is progress (it passes at least
one test in Té) but not valid; (d) 1 if f is not progress (it fails
all tests in Té).

We chose these scores following some basic principles:
(i) qualitative order: a correct fix should have a higher score
than a merely valid one, which should have a higher score
than a progress but invalid one, which should have a higher
score than a non-progress one; (ii) correct ≫ valid: the score
difference between a correct fix and a valid but incorrect one
should be larger than the score difference between a valid
fix and a progress, invalid one (after all, finding correct fixes
is the ultimate goal of the ranking process); (iii) standard
range: the overall range of scores should be close to the
scores normally used in applications of the learning-to-rank
algorithm that we use [25]. In Sec. 4.4.3, we discuss some
experiments that indicate that LIANA’s overall effectiveness
is not affected by small changes in the absolute values of the
scores.

As outlined in Fig. 3, LIANA updates the ranking model
automatically when some progress fixes were found in the

previous batch of fix validation. Namely, it computes the
values v1, . . . , v17 of Tab. 1’s features for the new progress
fix, assigns it a score r according to whether it is valid or
not, and retrains the ranking model using the new labeled
datapoint ⟨v1, . . . , v17, r⟩. In this case, the score r assigned
to a new progress fix can only be 5 or 3, since we cannot
determine automatically which valid fixes are also correct.
We only use progress fixes for updating the model since
also including non-progress candidates (that still fail all
originally failing tests) would drown the model with lots
of “noise”; instead, focusing on the candidates that do pass
more tests provides a more direct guidance about which
candidates to generate next. In addition to the model up-
dates that take place while LIANA runs, users can provide
additional training data offline. This data may also include
fixes that have been established to be correct, and hence are
labeled with r = 10.

In the running example, LIANA updates its fix rank-
ing model with new datapoints in successive iterations.
Some datapoints correspond to progress fixes, such as those
in Fig. 2, which receive a score of 3. One datapoint is
⟨EX-VAL, 5⟩, where EX-VAL are the values in Tab. 1’s column
with the same name, for the candidate fix in Fig. 1c which
is also valid (hence, the score of 5). Since this fix is also the
first candidate that passes validation, LIANA will output it
to the user first.

3.5 Implementation Details

We implemented the LIANA technique into a tool with the
same name, based on the RESTORE program repair tool [80].
RESTORE is a recent G&V program repair tool for Java,
whose implementation is publicly available [66]. LIANA

reuses RESTORE’s implementation as its backbone (blue
boxes in Fig. 3). While using RESTORE was a convenient
choice, LIANA’s technique is not tied to any of RESTORE’s
features; in fact, Sec. 4.4.4 discusses a different implementa-
tion of LIANA which is based on the SIMFIX repair tool [26].

As discussed in Sec. 3.1.1, LIANA reuses JAID’s spectrum-
based fault localization algorithm to perform fault local-
ization. Then, it generates an initial batch of candidate
fixes, which go through validation. Any progress candidates
are used to update the fix ranking model. Each following
round of fix generation generates candidate fixes targeting
10% more suspicious program entities (identified by fault
localization); then, LIANA ranks all candidates using the
ranking function and feeds the top-30% ranked candidates
through validation.

In addition to a timeout, RESTORE’s implementation also
uses at most 1500 suspicious program entities in each run.
LIANA’s implementation lifts this cap, since we found that it
can often search efficiently through a large number of enti-
ties thanks to the ranking model’s guidance. This difference
in the implementation of LIANA reflects its larger fix space
compared to RESTORE’s.

The implementation of LIANA uses the WALA frame-
work [71] to perform static analysis.

3.5.1 Ranking Model Implementation
LIANA’s ranking model is implemented using XGBoost [9],
a widely-used open-source implementation of the gradient
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TABLE 2: A high-level overview of the similarities and differences between the APR techniques JAID, RESTORE, and LIANA.
Each tool is associated with a color ( green for LIANA, red for RESTORE, and blue for JAID) and a column; an items in
each tool’s implementation is colored according to which techniques it originates from. For example, LIANA uses the same
state abstraction as JAID, the same validation process as RESTORE, but its own original ranking model, which it also uses to
extend JAID’s fix generation process.

JAID RESTORE LIANA

state abstraction snapshots (entities) = JAID = JAID

fault localization input program + tests JAID + partial validation = JAID

algorithm spectrum-based mutation-based = JAID

fix ingredients from target method JAID + target class RESTORE + method calls

fix generation in order of suspiciousness (fault localization) = JAID JAID + ranking model

validation full/partial full (all tests) JAID + partial (failing tests) = RESTORE

ranking based on suspiciousness (fault localization) = JAID ranking model

boosting machine learning algorithm. In a nutshell, XGBoost
uses decision tree ensembles to represent classifying infor-
mation that it learns from labeled examples (supervised
learning). This statistical model is highly customizable to
encode different classification tasks and error models, in-
cluding the listwise learning-to-rank model with normal-
ized discounted cumulative gain (NDCG) used by LIANA

for ranking candidate fixes. XGBoost also supports “training
continuation”, which refines a learned model with new
datapoints without having to train it from scratch. LIANA

uses this feature to update the fix ranking model (Sec. 3.4)
with new progress candidate fixes incrementally as new
candidates are generated.

We followed standard practices [65] to tune the hyper-
parameters to be used with XGBoost. First, we selected,
using random search, a group of 30 hyperparameters that
produced generally high NDCG scores. Then, using grid
search [65], we looked for values adjacent to these hyperpa-
rameters that produced the highest NDCG score, and used
the values in our experiments.3

3.5.2 LIANA, RESTORE, and JAID

LIANA ’s implementation is based on RESTORE, and RESTORE

extends JAID. After presenting the details of how LIANA

works, we are in a good position to explain the relations
between these three tools.

Tab. 2 gives an overview of the similarities and differ-
ences in terms of state abstraction, fault localization, fix
ingredients and generation, validation, and ranking. All
three tools use program entities (called snapshots in JAID [7])
to abstract program states in terms of a location and a
(sub)expression to modify. JAID and LIANA both use a
spectrum-based algorithm for fault localization, which sum-
marizes the execution paths of the program under fixing on
the given tests; RESTORE, in contrast, introduced a form of
mutation-based fault localization (called retrospective fault
localization), which also uses the information from partial
validation.

3. LIANA uses XGBoost with the following non-default hyperparame-
ter values: objective = rank:ndcg, eval_metric = ndcg, max_depth = 8,
min_child_weight = 0.1, min_split_loss = 0, num_boost_round = 200,
reg_lambda = 1, reg_alpha = 0, learning_rate = 0.2.

The fix space of JAID is the smallest of the three, as it
only includes fix ingredients from the target method (under
repair); RESTORE extends it with fix ingredients from the
whole target class; LIANA further extends it by supporting
fixes that introduce new method calls (Sec. 3.1.2). The fix
generation order is based on suspiciousness in both JAID

and RESTORE (but their suspiciousness scores are in general
different); LIANA refines the suspiciousness order using a fix
ranking model, which is updated dynamically based on the
information from partial validation (Sec. 3.2). Validation is
full in JAID, as it always runs all available tests; RESTORE per-
forms partial validation, using only failing tests, to support
its fault localization process; LIANA also performs partial
validation, but uses it to update its ranking model (Sec. 3.4).
Valid fixes are ranked by both JAID and RESTORE according
to their suspiciousness (which, again, differ in general in the
two techniques); LIANA’s key contribution is a fix ranking
model that is used to guide fix generation and validation
(Sec. 3.2).

4 EXPERIMENTAL EVALUATION

We experimentally evaluated the effectiveness and effi-
ciency of the LIANA tool using Java bugs from 3 popular
benchmarks. Our experiments address the following re-
search questions:

RQ1: How effective and efficient is LIANA in repairing faulty
Java programs? RQ1 assesses LIANA’s effectiveness
(correct fixes) and performance, and compare it di-
rectly to RESTORE (on which LIANA’s implementation
is based).

RQ2: How does LIANA compare with existing APR tools in
repairing faulty Java programs? RQ2 compares LIANA’s
effectiveness to the state-of-the-art APR tools for Java.

RQ3: How useful are the individual features of LIANA’s fix
ranking model? RQ3 investigates the different impact
of the 17 features used by LIANA’s fix ranking model.

RQ4: Is LIANA generally applicable to G&V APR techniques?
RQ4 looks for evidence that the LIANA technique is
applicable to G&V APR techniques other than RESTORE.
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4.1 Subject Faults
Our experiments target all 732 faults from 3 widely used
benchmark collections of Java bugs: DEFECTS4J [27], INTRO-
CLASSJAVA [14], and QUIXBUGS [36].

DEFECTS4J [27] (revision #895c4e6) includes 395 bugs
from 6 open source Java projects (Chart, Closure, Lang, Math,
Time, and Mockito); the median size of a subject program in
DEFECTS4J is 129 592 lines of code. DEFECTS4J has become
the standard benchmark to evaluate APR tools.

INTROCLASSJAVA [14] is a Java translation of the Intro-
Class benchmark [33], including 297 buggy student-written
solutions to 6 small assignments given in an introductory
undergraduate programming course. Each program in IN-
TROCLASSJAVA comes with two JUnit test suites: a black-box
one written by the instructor based on the program’s spec-
ification, and a white-box one generated using a symbolic
execution tool. Following the practice of other studies [33],
[31], [73], [8], LIANA had access only to the black-box
tests; the white-box tests feature only in the experimental
evaluation, where we used them to determine which of the
fixes outputted by LIANA were correct. The average size of
a subject program in INTROCLASSJAVA is 230 lines of code.

QUIXBUGS [36] collects 40 faulty programs from the
Quixey Challenge [37], where programmers had to fix a
single-line bug in a Java implementation of a classic algo-
rithm; the average size of a subject program in QUIXBUGS

is 190 lines of code. The diverse origins and complexity
of the faults from the three benchmarks help ensure that
the experiments are representative of LIANA’s behavior in
different conditions.

4.2 Experimental Setup
The benchmarks provide, for each bug (fault) b in their
collection, a buggy program Pb and tests Tb such that Pb

fails on at least one of the tests in Tb—thus triggering b.
Each run of LIANA targets a specific bug b: it inputs Pb and
Tb and eventually produces a (possibly empty) list of fixes
Vb. All fixes Vb output by LIANA are valid, that is they pass
all tests Tb.

As customary in the APR literature [41], we determined
correct fixes to a bug in DEFECTS4J or QUIXBUGS by man-
ually going through the valid fixes in Vb and comparing
each of them to the manually-written fix for the fault under
repair: a valid fix is correct if it is semantically equivalent,
in terms of input/output behavior, to the fix manually
written by the developers and included in the benchmark.
“Semantically equivalent” means that: (i) the valid inputs
(i.e., those for which the program terminates normally) and
the exceptional inputs (i.e., those for which the program
terminates with an exception) are the same for the two
programs; (ii) the two programs return the same values for
the same inputs; (iii) the two programs change the object
state in the same way for the same inputs. Concretely, we
inspect two programs (programmer-written and automati-
cally repaired) and look for syntactic changes that preserve
input/output behavior, along the lines of the rules discussed
in [41]. Conservatively, we mark as incorrect fixes that we
cannot conclusively establish as equivalent in a moderate
amount of time (around 15 minutes per fix).

The fix of a bug in INTROCLASSJAVA is correct if it
passes all available white-box tests (which LIANA had not

access to), in addition to the black-box tests that LIANA uses
directly for validation. Programs and bugs in INTROCLASS-
JAVA are sufficiently simple that passing all white-box tests
provides high confidence in their correctness.

For each experiment, we record: the number of valid fixes
in the output; the rank of the first correct fix (if any is found);
the overall wall-clock running time; the running time until
the first valid fix is found; and the number of fixes validated
as well as the running time until the first correct fix is found
(if any is found).

All the experiments ran on the cloud infrastructure
provided by the authors’ institution. Each experiment uses
exclusively one virtual machine instance running Ubuntu
14.04 and Oracle’s Java JDK 1.8 on one core of an Intel Xeon
Processor E5-2630-v2 with 8 GB of RAM, and runs for up to
6 hours, after which it times out and is forcefully terminated.
We chose a 6-hour timeout since it is similar to the time
limits used in other tools’ experimental evaluation [69],
[48], [35], it is compatible with the typical running times
of RESTORE,4 and is consistent with our research questions
(which do not assess the usage of LIANA as a real-time tool,
which would require much shorter running times).

Initial fix ranking model. As discussed in Sec. 3, each
run of LIANA also needs an initial fix ranking model R0

as input, which it then updates based on the intermediate
outcomes of validating the candidate fixes for the program
currently under repair. To bootstrap this process, we built
a stripped-down version of LIANA called LIANA−. LIANA−

basically implements only LIANA’s “backbone” workflow
(blue boxes in Fig. 3): it does not use a ranking model and
simply enumerates all candidate fixes in batches based on
the information that comes from fault localization.

Then, an experiment with LIANA targeting a bug b in
some of the benchmarks uses an initial fix ranking model
R0 built with leave-one-out cross validation [22] as follows.
(i) We run LIANA− on all bugs in DEFECTS4J except b, 5 with
a timeout of 15 hours per bug.6 (ii) We collect all candidate
fixes generated during these runs, and manually inspect
the valid ones to identify those that are correct (equivalent
to the programmer-written fix in DEFECTS4J). (iii) If a run
produced at least one correct fix, we use all the candidate
fixes it generated to train a fix ranking model R0 as in
Sec. 3.4; if a run didn’t produce any correct fixes, we do
not use its output for training; (iv) Finally, we run LIANA on
b using R0 as initial fix ranking model.

This time-consuming bootstrapping process is useful to
set up a uniform, informative input for all experimental runs
of LIANA. However, it would not be needed if LIANA were
used regularly to fix new bugs as they are discovered during

4. The original experiments with RESTORE [80] did not use timeouts
but rather bounded the number of suspicious entities to be processed.
In practice, this bound corresponds to total running times that rarely
exceed 6 hours per bug; LIANA can process many more suspicious
entities in the same time, and hence we use a timeout rather than a
bound on the entities in its experiments.

5. For simplicity, if b is from a benchmark other than DEFECTS4J, the
initial ranking model is still based on all bugs in DEFECTS4J, which is the
most realistic and widely-used benchmark; hence, information learned
on it is also serviceable for fixing other programs.

6. This longer timeout helps generate an initial fix ranking model
using LIANA−: since LIANA’s efficiency crucially depends on the ranking
model, LIANA− needs considerably more time to explore a significant
portion of the search space.
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TABLE 3: Experimental results of LIANA and RESTORE in repairing faults from the 3 benchmarks. For each BENCHMARK,
the table reports: the number of BUGS the benchmark includes, and the average size in LOC (lines of code) of a program in
the benchmark. For each tool LIANA and RESTORE: the number # of bugs that the tool fixed with a VALID fix and the median
time T2V to produce the first valid fix; the number of bugs that the tool fixed with a CORRECT fix ranked in FIRST, TOP-10,
or ANY position among the output, and the median time T2C to produce the first correct fix. All times are in minutes.

LIANA RESTORE

BENCHMARK BUGS LOC VALID CORRECT VALID CORRECT

# T2V FIRST TOP-10 ANY T2C # T2V FIRST TOP-10 ANY T2C

DEFECTS4J 395 129 592 110 13.5 28 42 53 14.1 98 11.6 19 29 41 21.3
INTROCLASSJAVA 297 230 95 9.3 47 57 71 10.4 82 4.3 31 43 68 9.7
QUIXBUGS 40 190 14 5.5 8 9 10 5.5 11 8.9 4 8 9 15.1

Overall 732 – 219 9.6 83 108 134 10.4 191 6.6 54 80 118 14.9

development: in this usage scenario, one would simply use
the latest fix ranking model (trained on all previous runs of
LIANA) as input to the next run.

LIANA on SIMFIX. To support our claim that the LIANA

technique is compatible with G&V APR techniques other
than RESTORE, we developed SIMFIX+L: an extension of
the SIMFIX APR tool [26] with LIANA’s technique. SIMFIX

is another state-of-the-art APR technique for Java that has
been extensively evaluated on DEFECTS4J and whose source
code and experimental artifacts are publicly available.7

SIMFIX generates candidate fixes in an order that de-
pends on the suspiciousness of statements identified by its
spectrum-based fault-localization algorithm. SIMFIX+L does
the same but only for the first batch of candidate fixes—to
bootstrap the learning process; successive iterations of fix
generation follow the order given by a fix ranking model
trained, as in LIANA, on the outcome of validation. More
precisely, SIMFIX+L generates candidate fixes for 5 more
suspicious locations, and validates the top 30% of the newly
generated candidates in each iteration. By default, SIMFIX

terminates as soon as it finds a valid fix; to better compare
it with SIMFIX+L—which needs multiple validation runs
to retrain its fix ranking model—we allowed SIMFIX to
generate up to 10 valid fixes in our experiments. As in the
original experiments [26], both SIMFIX and SIMFIX+L ran
with a 5-hour timeout per bug.

In our experiments, we only ran SIMFIX and SIMFIX+L
on DEFECTS4J bugs: some details of SIMFIX’s implementa-
tion rely on DEFECTS4J scripts to compile fixes and run
tests; thus, applying it to other benchmarks would require
a non-trivial amount of tweaking, which is outside our
evaluation’s scope.

4.3 Comparison with Other Tools

We compared LIANA with all tools for Java that satisfy
the following criteria, which enable a meaningful and fair
comparison: (i) the tool has been evaluated on at least one
of the 3 benchmarks; (ii) the tool’s evaluation reports the
number of all correct fixes produced by the tool; (iii) the tool
does not rely on “perfect” fault localization information;
(iv) the tool can produce correct fixes for at least 10 bugs
from the benchmark when it comes to DEFECTS4J. Tools like

7. SIMFIX’s characteristics make it a suitable tool to extend with LIA-
NA’s technique. However, other tools among those listed in Tab. 5 that
are also publicly available—such as Avatar [38] and PARFixMiner [29]—
could be modified in a similar way.

Cardumen [53] and DeepRepair [74] are excluded because
they don’t fulfill (ii); this also excludes a recent experimental
evaluation [13] which does not analyze correctness of fixes.
Tools like CoCoNuT [48] and SketchFixPP [24] are excluded
because they don’t fulfill (iii). Earlier approaches such as
xPAR [30] are excluded because they don’t fulfill (iv)—
outperforming earlier approaches would not be especially
meaningful.

According to these criteria, we selected the 21 tools listed
in Tab. 5. The table reports the data from each tool’s main
publication or replication package, which we used for our
comparison without rerunning the tools. The exceptions are
the rows about RESTORE, SIMFIX, and TBar. (i) RESTORE’s
original publication [80] only evaluated it on DEFECTS4J;
since LIANA is based on RESTORE, we designed an extensive
evaluation of the two tools, and hence we ran RESTORE on all
of the bugs in DEFECTS4J, INTROCLASSJAVA, and QUIXBUGS

bugs with a time out of 6 hours per bug. (ii) As we discuss
in the next paragraph, we also reran SIMFIX and TBar on the
benchmarks after modifying their stopping conditions to al-
low them to generate multiple valid fixes; this modification
did not alter the tools’ behavior, and in fact the number of
fixed bugs that SIMFIX and TBar produced in our repetition
(Tab. 5’s columns FIRST) coincides with those in the tools’
publications [69], [41].

Most evaluations only consider the first valid fix output
by the tool; the exceptions are JAID, RESTORE, and HDA. In
order to get a broader view of the capabilities of the tools,
we also tried to assess their effectiveness when allowed to
generate more than one valid fix per run. To keep this part
of the evaluation manageable, we only considered tools that
are above the median in terms of number of DEFECTS4J
bugs fixed with a correct fix in first position: these are the
tools CapGen, DLFix, Elixir, PARFixMiner, HERCULES, SIMFIX,
SOFix, and TBar; among them, only SIMFIX and TBar have
made their source code publicly available together with
instructions on how to build the tool and run experiments.
This allowed us to modify SIMFIX’s and TBar’s implementa-
tions so that they can generate up to 10 valid fixes per run;
and to run both modified tools on DEFECTS4J bugs with a
timeout of 6 hours per bug (the same as in our experiments
with LIANA). Columns TOP-10 in Tab. 5 report the results
of these experiments. Note that these modifications were
limited to the tools’ stopping conditions, and did not alter
in any way their core program repair algorithms.

Most Java APR tools can only generate single-location
fixes (also known as “single-hunk”); the exception is HER-
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CULES, which was designed specifically to generate multi-
location fixes. To better understand this distinction, Tab. 5
separately reports the number of single-hunk fixes and the
number of all fixes (including multi-location ones) that HER-
CULES generated.

4.4 Results
4.4.1 RQ1: Effectiveness and Efficiency
Table 3 summarizes the main experimental results with
LIANA, and compares them with RESTORE. Overall, LIANA

produced valid fixes for 219 bugs, and correct fixes for 134
bugs—thus significantly outperforming RESTORE with 15%
more valid fixes and 14% more correct fixes. However, the
bugs successfully fixed by LIANA are not a superset of those
fixed by RESTORE: LIANA failed to produce valid fixes for
19 faults and correct fixes for 19 faults8 where RESTORE

succeeded; on the other hand, RESTORE failed to produce
valid fixes for 48 faults and correct fixes for 35 faults where
LIANA succeeded. While this confirms that LIANA’s search
strategy is generally more successful, it also indicates that
RESTORE’s heuristics may be more effective in certain cases.
After manually inspecting these cases, we did not find a
clear pattern for why RESTORE works better. It’s plausible
that some fix ingredients, which are available to both LIANA

and RESTORE, are simply more likely to be identified as
useful by RESTORE’s fault localization process. Such corner
cases are always possible when dealing with techniques
that are ultimately best effort, with no absolute a priori
guarantees of success. Combining RESTORE’s and LIANA’s
approaches is thus a natural extension of this work that
would further improve overall effectiveness in a practical
way.

A correct fix is the more valuable the higher it is ranked
in the output; in fact, numerous APR tool evaluations just
consider the first fix in the output [50]. LIANA produced
correct fixes ranked first for 83 bugs—54% more than
RESTORE—and correct fixes ranked in the top 10 for 108
bugs—35% more than RESTORE. This is further evidence
that LIANA’s ranking model improves effectiveness not only
by generating more correct fixes but also by ranking them
higher.

The median time taken by LIANA to produce a valid fix
is 9.6 minutes—45% slower than RESTORE’s median time.
In contrast, the median time taken by LIANA to produce a
correct fix is 10.4 minutes, that is, 30% faster than RESTORE.
This indicates that LIANA’s search is generally more efficient
to produce correct fixes. More generally, the running time
performance is reasonable for a tool based on dynamic
analysis.

The violin plots in Fig. 5 compare the distributions of
ranks in the output as well as the time and numbers of fixes
validated till the first correct fixes are found (for bugs on
which LIANA or RESTORE were successful). LIANA’s distri-
bution of ranks (Fig. 5a) is widest around 1 (i.e., most correct
fixes are ranked first), and quickly becomes narrow for
higher values; in contrast, RESTORE still has a considerable
fraction of bugs that have quite a high rank (around 100).
The running times until a correct fix is found (Fig. 5b) vary
in both tools; however, RESTORE’s plot has more weight

8. The two sets of 19 faults do not coincide.

TABLE 4: Numbers of correct fixes generated by LIANA

using any of the available repair actions in any of the
benchmarks DEFECTS4J, INTROCLASSJAVA, QUIXBUGS.

REPAIR ACTION

BENCHMARK α1 α2 α3 α4 α5

DEFECTS4J 7 19 15 17 14
INTROCLASSJAVA 99 0 103 23 15
QUIXBUGS 6 0 7 2 2

OVERALL 112 19 125 42 31

in the top part: since the time scale is logarithmic, this
corresponds to a marked difference in practice. LIANA also
tends to be more efficient in terms of number of candidate
fixes that are generated and validated until a correct fix is
found (Fig. 5c). Validation can be quite time consuming—
since it may involve running a large number of tests—
whereas fix generation is comparatively quick; therefore,
the fewer candidates need to undergo validation, the more
efficient the whole APR process usually is.

As explained in Sec. 3.1.2, LIANA uses five different kinds
of repair actions—α1 through α5. To better understand
the individual usefulness of these actions, we analyzed all
correct fixes that LIANA produced and ranked in the top 10,
and determined which kinds of actions they used; Tab. 4
shows the analysis results. Overall, all actions are necessary
in some cases. If we only consider DEFECTS4J bugs, the
distribution of used actions is fairly balanced; DEFECTS4J is
a diverse and heterogeneous collection of real-world bugs,
and hence it is not surprising that the more kinds of fixes
we can generate the more bugs we can successfully patch.
In contrast, the distribution of used actions is more skewed
for the other two benchmarks. In INTROCLASSJAVA, in par-
ticular, actions α1 and α3 are disproportionately successful,
whereas α2 is never needed. Remember that INTROCLASS-
JAVA consists of simple programs written by students; ap-
parently, forgetting an update statement (supplied by action
α1) or using an incorrect condition (corrected by action α3)
are the most common mistakes in these programs.

LIANA produced valid fixes for 219 bugs and correct fixes for
134 bugs. For 83 bugs, the correct fix is the first in the output.
The median running time to build a correct fix is 10.4 minutes.
LIANA consistently outperforms RESTORE.

4.4.2 RQ2: Comparison

Tab. 5 compares LIANA with 21 recent APR tools for Java
on bugs from the 3 benchmarks in terms of number of
valid and correct fixes, and the corresponding measures of
precision (number of bugs with correct fix / number of bugs
with valid fix) and recall (number of bugs with correct fix /
number of bugs in the benchmarks).

Comparison results: DEFECTS4J. When only the first
valid fix produced by a tool is considered, which is how
most tools are evaluated, LIANA produced more correct fixes
for DEFECTS4J bugs than all the other tools except DLFix (2
more fixes), SIMFIX (5 more fixes) and HERCULES (18 more
fixes, only if we consider multi-location fixes). In contrast
to recall, LIANA’s precision is somewhat lackluster—even
though it clearly improves over RESTORE’s precision, which
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Fig. 5: Violin plots comparing the distributions of different measures in LIANA vs. RESTORE for all bugs that the tools can
correctly fix. Vertical axes use logarithmic scales.

TABLE 5: A comparison of LIANA with 21 other APR tools for Java in fixing bugs from different BENCHmarks. For each
tool, the table reports the number of bugs for which the tool produced VALID fixes, and CORRECT fixes in FIRST, TOP-10, or
ANY position in the output; it also shows the corresponding PRECISION and RECALL with respect to the benchmark’s bugs.
Finally, column UNIQUE lists the number of bugs that each tool can correctly fix that no other tools in the table can (this
data is available only for DEFECTS4J). Question marks indicate data that was not available in the tool’s cited publication or
replication package.

B
E

N
C

H FIRST TOP-10 ANY

TOOL VALID CORRECT PRECISION RECALL CORRECT PRECISION RECALL CORRECT PRECISION RECALL UNIQUE

D
E

F
E

C
T

S4
J

LIANA 110 28 25% 7% 42 38% 11% 53 48% 13% 3
ACS [79] 23 18 78% 5% ? ? ? ? ? ? 4
ARJA [84] 59 18 31% 5% ? ? ? ? ? ? 3
Avatar [41] 57 19 33% 5% ? ? ? ? ? ? 2
CapGen [73] 25 21 84% 5% ? ? ? ? ? ? 0
DLFix [35] 65 30 46% 8% ? ? ? ? ? ? 0
Elixir [67] 41 26 63% 7% ? ? ? ? ? ? ?
PARFixMiner [29] 32 26 81% 7% ? ? ? ? ? ? ?
HDA [30] ? 13 ? 4% 23 ? 6% ? ? ? 1
HERCULES (single hunk) [68] 43 26 60% 7% ? ? ? ? ? ? 1
HERCULES (all) [68] 63 46 73% 12% ? ? ? ? ? ? 8
LSRepair [40] 38 19 50% 5% ? ? ? ? ? ? 10
JAID [8] 94 14 15% 4% 25 27% 6% 35 37% 9% 0
RESTORE 98 19 20% 5% 29 30% 7% 41 42% 10% 3
SIMFIX [69] 55 33 60% 8% 34 62% 9% ? ? ? 7
SketchFix [24] 26 19 73% 5% ? ? ? ? ? ? 0
SOFix [43] ? 23 ? 6% ? ? ? ? ? ? 1
ssFix [77] 60 20 33% 6% ? ? ? ? ? ? 0
TBar [41] 72 24 33% 6% 28 39% 7% ? ? ? 1

IN
T

R
O

C
L

A
SS

JA
V

A LIANA 95 47 49% 16% 57 60% 19% 71 75% 24% 13
JAID [8] 84 30 36% 10% 43 51% 14% 69 82% 23% 1
CapGen [73] ? 25 ? 8% ? ? ? ? ? 0 0
JFix [31] ? 19 ? 6% ? ? ? ? ? ? ?
RESTORE 82 31 38% 10% 43 52% 14% 68 83% 23% 0
S3 [32] ? 22 ? 7% ? ? ? ? ? ? ?

Q
U

IX
B

U
G

S

LIANA 14 8 57% 20% 9 64% 23% 10 71% 25% 3
JAID [8] 11 4 36% 10% 9 82% 23% 9 82% 23% 0
Astor [52] 11 6 55% 15% ? ? ? ? ? ? ?
Nopol [82] 4 1 25% 3% ? ? ? ? ? ? ?
RESTORE 11 4 36% 10% 8 73% 20% 9 82% 23% 0

is the most direct comparison yardstick. All tools that out-
perform LIANA in terms of precision incorporate knowledge
learned from human-written fixes mined from code reposi-
tories. This suggests a similar approach to improve LIANA’s
precision, which we plan to investigate in future work.

If we consider up to 10 valid fixes per bug (for the tools
for which we could collect this information, under columns
TOP-10 in Tab. 5), SIMFIX built correct fixes for 34 bugs (1 fix

ranked below first); TBar for 28 bugs (4 ranked below first).
LIANA outperforms both of them in terms of recall, as it fixes
42 DEFECTS4J bugs with a fix that is ranked in the top 10 (14
fixed ranked below first); in contrast, SIMFIX and TBar still
outperform LIANA in terms of precision. LIANA finds even
more correct fixes (for 53 DEFECTS4J bugs) if we consider all
valid fixes it can generate during a run, regardless of their
position in the output. It is clear that SIMFIX and TBar were
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designed with a focus on generating the first valid fix; they
do a very good job at that, and hence their success does not
increase much if they are allowed to continue past that. On
the other hand, there may be value in generating more valid
fixes for the same bug—especially given that the fixes pro-
duced by APR tools are typically succinct; hence, analyzing
more than one suggestion requires moderate effort.

Comparison results: other benchmarks. For bench-
marks INTROCLASSJAVA and QUIXBUGS, LIANA consistently
produced correct fixes for more faults than all other tools
evaluated on these benchmarks. In particular, LIANA cor-
rectly fixed 47 INTROCLASSJAVA bugs ranked in first posi-
tion, 16 more than the runner-up RESTORE; if we disregard
the rank and consider all valid fixes produced by the tools,
LIANA still fixes more bugs correctly but its advantage
over the other tools becomes quite narrow (LIANA’s 71
correctly fixed bugs vs. JAID’s 69 and RESTORE’s 68). This
illustrates once again the relation between fix space and
search heuristics, which was also apparent in Sec. 2’s exam-
ple: not only does LIANA offer a larger fix space; crucially,
its heuristics can search it effectively. On the INTROCLASS-
JAVA and QUIXBUGS benchmarks, LIANA is also the most
precise tool—at least among those that provide data about
their precision. Together, these results confirm that LIANA

manages to improve both precision and recall by combining
an extended fix space with a ranking model that tends to
perform well on it in practice.

LIANA is among the most effective APR tools for Java in terms
of number of correct fixes it produces: 7% recall on DEFECTS4J
bugs, 16% recall on INTROCLASSJAVA bugs, and 20% recall
on QUIXBUGS bugs. LIANA’s precision is not as competitive on
DEFECTS4J bugs (25% precision), whereas it outperforms other
tools on INTROCLASSJAVA (49% precision) and QUIXBUGS

(57% precision) bugs.

4.4.3 RQ3: Feature Usefulness
To empirically assess the usefulness of each individual fea-
ture used by LIANA’s fix ranking model, we perform a so-
called ablation study. Tab. 6 shows how LIANA’s effective-
ness changes if we remove any of the 17 features described
in Sec. 3.2. More precisely, in each experiment: (i) we remove
one feature from the ranking model; (ii) we run LIANA with
this modified ranking model on all bugs in DEFECTS4J, with
the same experimental protocol as for the main experiments;
(iii) we collect LIANA’s output, and determine how many
correct fixes it produced and in which position in the output.

The most common outcome of removing a feature is that
LIANA’s effectiveness worsens. For very specific scenarios
it may slightly improve: for example, LIANA can rank two
more correct fixes as first in the output if we remove features
4, 7, or 14; in these cases, however, it’s only the rank of a
few fixes that improves, whereas LIANA finds fewer correct
fixes overall. On the other hand, the differences caused by
removing any one feature are small in absolute value; thus,
the ranking model is relatively robust and no feature has a
uniquely crucial role.

All features of LIANA’s ranking model contribute somewhat to
LIANA’s overall bug-fixing effectiveness.

Another component of LIANA’s ranking model that
needs an empirical validation are the scores (labels) that

TABLE 6: Impact of features used by LIANA’s fix ranking
model. Each column labeled k reports the number of bugs in
DEFECTS4J that LIANA could fix with a correct fix using a fix
ranking model without feature φk. Different rows consider
correct fixes in the FIRST position, in a TOP-10 position, or in
ANY position in the output.

OMITTED FEATURE φ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FIRST 20 29 27 30 24 24 30 22 27 27 27 26 21 30 26 24 26
TOP-10 37 40 39 43 43 39 44 37 39 40 37 39 40 42 39 39 37
ANY 51 51 51 52 53 50 52 50 52 53 52 50 51 54 52 51 49

TABLE 7: A comparison of SIMFIX and SIMFIX+L in repair-
ing bugs from DEFECTS4J. For each tool, the table reports the
number of bugs for which the tool produced a Valid fix, and
a Correct fix in FIRST or TOP-10 position in the output.

TOOL V C (FIRST) C (TOP-10)

SIMFIX 56 33 34
SIMFIX+L 65 35 36

we give to new datapoints, corresponding to whether a
fix is progress, valid, or correct (Sec. 3.4). We took all 53
DEFECTS4J bugs that LIANA can correctly fix, and trained
a model using slightly different scores: in addition to the
original (1, 3, 5, 10), we also tried (2, 6, 10, 20), (1, 3, 5, 14),
and (2, 6, 10, 20). Changing scores did change the ranking
of candidate fixes in a few cases; however, the changes
are unlikely to affect LIANA’s overall effectiveness (which
bugs it can successfully fix). We also tried the much larger
scores (10, 30, 50, 100); this drastic change degraded LIA-
NA’s behavior, as training its ranking model sometimes
failed. Indeed, we found out that the developers of XGBoost
recommend9 using scores in the range 0–10; using much
larger numbers may introduce numerical overflows, which
makes XGBoost’s implementation misbehave. In all, there is
some leeway in choosing different ranking scores, provided
they remain within a small range to avoid numerical errors.

4.4.4 RQ4: Generality
Tab. 7 shows that adding LIANA’s technique on top of
SIMFIX improves its effectiveness only slightly: more pre-
cisely, it increases recall (more correct fixes) but decreases
precision. In contrast, LIANA brought clear improvements
to performance. Fig. 6 shows a scatterplot comparing SIMFIX

and SIMFIX+L in terms of the time it took them to produce
the first correct fix for each DEFECTS4J bug. The regression
line has a slope of about 0.36, which means that SIMFIX+L
was 2.7 = 1/0.36 times faster on average.

LIANA could have a stronger impact on SIMFIX if we
searched a larger (or different) fix space rather than just
searching the same space with different heuristics: in our
experiments, SIMFIX+L used the same “catalog” of fixes
as SIMFIX (which was generated by mining programmer-
written repairs, and we took from SIMFIX’s replication pack-
age without changes). SIMFIX is quite effective at searching
this fix space, but several bugs have fixes that fall outside it;
for example, SIMFIX couldn’t fix DEFECTS4J’s bugs Lang45

9. https://discuss.xgboost.ai/t/very-large-ndcg-result/1712/4
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Fig. 6: Performance comparison of SIMFIX and SIMFIX+L. A
dot with coordinates (x, y) corresponds to a DEFECTS4J bug
that both tools could fix: SIMFIX produced a correct fix in x
minutes, whereas SIMFIX+L produced it in y minutes. The
regression line indicates that SIMFIX+L is faster on average.

and Math80 (both of which LIANA can correctly fix) even
though it exhaustively searched all the fix space. If it could
target a larger fix space, SIMFIX+L would automatically
adjust the search strategy to this larger space based on
validation results. This is an interesting direction for future
work.
Applying LIANA’s technique to SIMFIX does not noticeably
affect its effectiveness (2 more correct fixes are generated), but it
clearly improves its efficiency (a 2.7x speedup on average).

4.5 Threats to Validity

In this section, we outline possible threats to the validity of
our experimental findings, and discuss how we mitigated
them.

Construct validity concerns whether the measures used
in the experiments capture salient features. We classify a
fix as correct if it is equivalent to a given programmer-
written fix. Since we assess equivalence manually, others
may disagree with some of our assessments. To mitigate
this threat, we were conservative in evaluating equivalence:
if a fix does not clearly introduce the same behavior as the
reference fix, we classify it as incorrect. In addition, one
author reviewed the classification made by another. This
approach is consistent with how other researchers in this
area assess correctness.

Internal validity concerns whether the experiments con-
trolled for possible confounders. One obvious threat comes
from possible mistakes in our implementation of LIANA.
To mitigate this threat, we reviewed each other’s code
and experimental scripts to ensure their correctness before
conducting the final experiments. Another threat has to do
with the initial fix ranking models used in the experiments
(Sec. 4.2). It is possible that training the initial ranking model
with different or more data may lead to different results.
We applied a form of leave-one-out validation, which is
a standard approach and ensures that the initial ranking
model is not cherry-picked. In the future, we may carry out
more experiments to further assess LIANA’s sensitivity to
the initial fix ranking model.

External validity concerns whether the experimental
findings generalize to other contexts. We mitigated these
threats by conducting a large-scale experimental evaluation
involving 3 different benchmarks. We also implemented
LIANA’s technique on top of two different G&V APR tools
(RESTORE and SIMFIX), so as to ascertain that the technique is
successfully applicable to more than one existing approach.

5 RELATED WORK

Following the influential work of GenProg [72], many APR
techniques that target general classes of faults are test-driven:
they use tests as examples of correct (passing tests) and in-
correct (failing tests) behavior. Since tests cannot completely
capture program correctness, a fix that passes all available
tests may still be incorrect. This gap between passing all
tests and being actually correct is referred to as the overfitting
problem in APR [63], [59], [75]. A lot of recent work in this
area tried to better characterize the problem [64], [55], [12]
and to limit its practical negative impact [17], [78], [83], [75].

According to how they search through the space of all
possible fixes, test-driven APR techniques can be classified
as constraint-based or heuristic [20], [13]. Constraint-based
techniques [57], [81], [58], [56] replace suspicious expres-
sions in the faulty program with symbolic variables, build
constraints on those variables, and then solve the constraints
to find concrete fixes that achieve that program behavior
by construction. Since a constraint must encode program
behavior in purely logic form, practical challenges faced by
constraint-based techniques include handling expressions
with side effects and generating patches that introduce
complete statements.

The majority of test-driven APR techniques are heuris-
tic [3], [72], [28], [63], [59], [45], [30], [47], [77], [44], [7], [79],
[73], [24], [19], [26], [68], [80]: they follow a process that
starts with fault localization, continues with fix generation,
and concludes with fix validation. In contrast to constraint-
based techniques, fix validation is necessary in heuristic
APR techniques, since fix generation is driven by heuristics
and provides no guarantee that the generated candidate
fixes are adequate. The space of all possible fixes is typically
huge, whereas the correct fixes are rather sparse in that
space [46]—a “needle in a haystack” problem. Thus, iden-
tifying information that is useful to effectively search this
space is a crucial challenge of heuristic APR. In the rest of
this section we outline various such sources of information.

Program context. It is common that the “ingredients”
to build a correct fix can be found around the failure
location [11], [54]. For example, GenProg [72] is based on
the assumption that defects can be repaired by taking code
elements from other locations in the program under repair.
ssFix [77] matches contextual information at the fixing lo-
cation to a database of human-written fixes, and uses the
matching code elements to drive fix generation. SimFix [26]
combines the information extracted from existing patches
and snippets similar to the code under fix to make the
search for correct fixes more efficient. CapGen [73] priori-
tizes ingredients based on a notion of programming context.
Hercules [68] can build multi-hunk fixes by first identifying
a set of repair locations with similar code—which are there-
fore expected to need similar changes—and then generating
fixes that modify all those locations consistently.
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Learning from correct fixes. Another popular approach
is summarizing the characteristics of correct fixes, and
then generating fixes automatically that have similar char-
acteristics. PAR [28] is based on ten manually-generated
patterns, which reflect common characteristics of human-
written fixes. This approach is inflexible as it is based on a
fixed hardcoded set of patterns [59]. More recent approaches
are instead completely automated (called “learning-aided
repair” in [20]), and hence are applicable to different pro-
grams with consistent performance. SPR [45] is a technique
that systematically generates candidate fixes according to
a set of predefined transformation functions. Prophet [47]
adds on top of SPR a probabilistic model learned from
human-written fixes, which is effective in prioritizing the
generated candidate fixes. Genesis [44] infers code trans-
formations with template variables from human-written
patches. Elixir [67] specializes in repairing buggy method
invocations; to this end, it machine learns a model that
captures the characteristics of correct fixes of this kind.
TBar [39] systematically applies fix patterns summarized
from the literature to generate fixes. FixMiner [29] extracts
patterns of correct fixes based on their abstract syntax trees.

Dynamic analysis. Some search-based APR techniques
reuse some of the information that comes from dynamic
analysis (i.e., from the validation phase) to guide the fix
generation phase. In approaches based on genetic algo-
rithms [3], [2], [72], the fitness function typically includes
information that comes from validation: the more tests a
candidate fix passes, the more “fit” it is. The history-driven
approach [30] is based on a stochastic search process that
views candidates fix candidates as mutants, and selects
those mutants that match the characteristics learned from
fix history.

LIANA is based on the design idea of combining dif-
ferent sources of information about the characteristics of
suitable fixes into a single model, so that complementary
information can inform the generation of new fixes. LIANA’s
model includes measures of code similarity, it can learn
from correct (or valid) fixes, and it is updated based on the
outcome of validation.

Deep learning techniques have been successfully ap-
plied to countless application domains in recent year—
including APR. DeepRepair [74] uses deep learning mod-
els to capture the ingredients of programmer-written fixes
without explicitly selected features. DeepFix [21] predicts
locations responsible for compilation errors in C programs
along with suitable patches. Several applications of deep
learning to APR [23], [70], [10], [6], [48], [35] treat program
repair as a machine translation task that converts buggy
code to correct code. The techniques differ in the kinds
of deep neural network architecture they use, how they
process the input data, and how they encode programs
as text. As we discussed in the rest of the paper, a key
difference with LIANA is that all these techniques train
models offline, whereas LIANA continues the learning phase
while the program repair is ongoing.

Benchmarks such as DEFECTS4J [27], INTROCLASS-
JAVA [14], QUIXBUGS [36], and Bears [49] have been instru-
mental in enabling quantitative comparisons of APR tools,
and in motivating the development of new capabilities. As
we mentioned in Sec. 4, DEFECTS4J has become the de facto

standard to evaluate APR for Java [13]; using additional
benchmarks helps avoid overfitting it, and can identify
specialized techniques that are especially effective in certain
domains.

6 CONCLUSIONS AND FUTURE WORK

We presented the LIANA technique for APR. LIANA incor-
porates the essential information about the quality of fixes
in a fix ranking model, which it updates online during its
runs based on the outcome of validation. LIANA can build
correct fixes for 134 bugs in 3 popular benchmarks, placing
it among the most competitive G&V APR tools for Java.

LIANA improves over RESTORE in its overall effectiveness
in fixing bugs; nevertheless, there remain a few cases (19
faults in our experiments) where RESTORE is successful
whereas LIANA is not. More generally, it is often the case
that each program repair tool has unique capabilities of
fixing certain kinds of bugs (column UNIQUE in Tab. 5),
whereas it is less effective on others. These observations
suggest that combining the ingredients of different program
repair techniques is a natural direction for future work.

By implementing the LIANA technique on top of SIM-
FIX (Sec. 4.4.4), we demonstrated that it can be usefully
deployed on different APR systems. In our experiments,
however, we did not modify SIMFIX’s search space; as a
result, even though LIANA considerably sped up the search
in that space, it found only two more correct fixes. In
future work, we would like to extend this experiment: after
applying LIANA to another APR system, and ascertaining
that it helps speed up its search for correct fixes, we will also
extend the system’s fix space to determine if more correct
fixes can be found within the same time budget.

As we mention in Sec. 4.2, SIMFIX is not the only recently-
developed open-source APR tool for Java that could be
extended with the LIANA technique. On the other hand, the
experience with SIMFIX suggests that implementing LIANA’s
ranking model on top of an existing tool would have a
greater effectiveness if we could tailor LIANA’s techniques
to the characteristics of the tool (for example, to its actual
fix space). As future work, we could investigate the imple-
mentations of other open-source Java APR tools, such as
Avatar [38] and PARFixMiner [29], looking for opportunities
of applying LIANA’s techniques in the most effective way.

LIANA’s fix ranking model uses 17 features that mainly
capture “syntactic distance” from different angles (Tab. 1).
These features are fairly common measures used in pro-
gram analysis; as we demonstrated in Sec. 4.4.3, all features
contribute to LIANA’s effectiveness, even though omitting
any one feature has at most a modest negative impact on
effectiveness. Nevertheless, any choice of features is heuris-
tic and may overlook characteristics that become relevant
in certain contexts. This suggests to experiment with deep
learning models as fix ranking models. The appeal of these
models is their capability of identifying features in the
training data that are useful to improve the accuracy of
classification. In future work, we plan to look into these
machine learning techniques.
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