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A program’s exceptional behavior can substantially complicate its control flow, and hence accurately reasoning
about the program’s correctness. On the other hand, formally verifying realistic programs is likely to involve
exceptions—a ubiquitous feature in modern programming languages.

In this paper, we present a novel approach to verify the exceptional behavior of Java programs, which
extends our previous work on BYTEBACK. BYTEBACK works on a program’s bytecode, while providing means
to specify the intended behavior at the source-code level; this approach sets BYTEBACK apart from most
state-of-the-art verifiers that target source code. To explicitly model a program’s exceptional behavior in
a way that is amenable to formal reasoning, we introduce Vimp: a high-level bytecode representation that
extends the Soot framework’s Jimple with verification-oriented features, thus serving as an intermediate layer
between bytecode and the Boogie intermediate verification language. Working on bytecode through this
intermediate layer brings flexibility and adaptability to new language versions and variants: as our experiments
demonstrate, BYTEBACK can verify programs involving exceptional behavior in all versions of Java, as well
as in Scala and Kotlin (two other popular JVM languages).

1 INTRODUCTION

Nearly every modern programming language supports exceptions as a mechanism to signal and
handle unusual runtime conditions (so-called exceptional behavior) separately from the main control
flow (the program’s normal behavior). Exceptions are usually preferable to lower-level ad hoc
solutions (such as error codes and defensive programming), because deploying them does not pollute
the source code’s structured control flow. However, by introducing extra, often implicit execution
paths, exceptions may also complicate reasoning about all possible program behavior—and thus,
ultimately, about program correctness.

In this paper, we introduce a novel approach to perform deductive verification of Java programs
involving exceptional behavior. Exceptions were baked into the Java programming language since
its inception, where they remain widely used [27, 29, 33]; nevertheless, as the example of Sec-
tion 2 demonstrates, they can be somewhat of a challenge to reason about formally. To model
together normal and exceptional control flow paths, and to seamlessly support any exception-related
language features, our verification approach crucially targets a program’s bytecode intermediate
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representation—instead of the source code analyzed by state-of-the-art verifiers such as KeY [1] and
OpenJML [13]. We introduced the idea of performing formal verification at the level of bytecode in
previous work [37]. In this paper, we build on those results and implement support for exceptions in
the BYTEBACK deductive verifier.

The key idea of our BYTEBACK approach (pictured in Figure 1) is using JVM bytecode solely as a
convenient intermediate representation; users of BYTEBACK still annotate program source code in a
very similar way as if they were working with a source-level verifier. To this end, we extend the
specification library introduced with BYTEBACK (called BBlib) with features to specify exceptional
behavior (for example, conditions under which a method terminates normally or exceptionally) using
custom Java expressions; thus, such specifications remain available in bytecode after compiling an
annotated program using a standard Java compiler. BYTEBACK analyzes the bytecode and encodes
the program’s semantics, its specification, and other information necessary for verification into
Boogie [3]—a widely-used intermediate language for verification; then, verifying the Boogie
translation is equivalent to verifying the original Java program against its specification.

As we demonstrate with experiments in Section 4, performing verification on bytecode offers
several advantages: i) Robustness to source-language changes: while Java evolves rapidly, frequently
introducing new features (also for exceptional behavior), bytecode is generally stable; thus, our
verification technique continues to work with the latest Java versions. ii) Multi-language support:
BYTEBACK and its BBlib specification library are designed so that they can be applied, in principle,
to specify programs in any language that is bytecode-compatible; while the bulk of our examples
are in Java, we will demonstrate verifying exceptional behavior in Scala and Kotlin—two modern
languages for the JVM. iii) Flexibility of modeling: since exceptional behavior becomes explicit in
bytecode, the BYTEBACK approach extensively and seamlessly deals with any intricate exceptional
behavior (such as implicit or suppressed exceptions). As we further illustrate in Section 5, reasoning
about exceptional behavior of Java (and other JVM languages) is already fully supported also at the
source-code level. In Section 6 we discuss how the aforementioned advantages of targeting bytecode
are largely complementary to the advantages of working at the source level—which is the standard
approach taken by most Java verifiers.

1.1 Contributions and Positioning

In summary, the paper makes the following contributions: i) Specification features to specify excep-
tional behavior of JVM languages. ii) A verification technique that encodes bytecode exceptional
behavior into Boogie. iii) An implementation of the specification features and the verification
technique that extend the BBlib library and BYTEBACK verifier. iv) Vimp: a high-level bytecode
format suitable to reason about functional correctness, built on top of Soot’s Jimple format [22, 47].
v) An experimental evaluation with 60 programs involving exceptional behavior in Java, Scala, and
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Fig. 1. An overview of BYTEBACK’s verification workflow.

Kotlin. vi) For reproducibility, BYTEBACK and all experimental artifacts are available in a replication
package [35]. While we build upon BBlib and BYTEBACK, introduced in previous work of ours [37],
this paper’s contributions substantially extend them with support for exceptional behavior, as well
as other Java related features (see Section 3). For simplicity, henceforth “BBlib” and “BYTEBACK”
denote their current versions, equipped with the novel contributions described in the rest of the
paper.

1.2 Current State of BYTEBACK

This is the third publication on BYTEBACK to date; here is a summary of the new contributions in
each of them.

• “Verifying Functional Correctness Properties At the Level of Java Bytecode”, presented at
FM 2023 [37], introduced the BYTEBACK technique, the BBlib annotation library, and the
first release of the tool. Just like later versions of BYTEBACK, FM 2023’s BYTEBACK uses
Soot to analyze bytecode (precisely, Soot’s Grimp representation) and Boogie as verification
backend.1 In contrast, FM 2023’s BYTEBACK lacks support for specifying or reasoning about
exceptional behavior.

• “Reasoning About Exceptional Behavior At the Level of Java Bytecode”, presented at iFM
2023 [36], revised and extended the BYTEBACK technique, as well as the BBlib annotation
library, to support specifying and reasoning about exceptional behavior. To this end, it also
introduces Vimp: a custom high-level bytecode representation that simplifies expressing

1All versions of BYTEBACK to date use recent versions of Soot and Boogie without modifications: Soot is used through its
API, whereas Boogie is used as a command-line tool.
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some of the new transformations needed to analyze exceptional behavior. iFM 2023’s
BYTEBACK still uses Soot to analyze bytecode and Boogie as verification backend.

• The present paper is an extended version of the iFM 2023 publication [36], which i) describes
in greater detail BYTEBACK’s technique for reasoning about exceptional behavior; ii) intro-
duces new exception-related features of BYTEBACK, such as the handling of more kinds of
implicitly thrown exceptions; iii) includes a more extensive experimental evaluation with
several more benchmark programs in Java, Scala, and Kotlin; iv) is accompanied by a new
release of the BYTEBACK tool, which is made available in a new replication package [35].
While this paper’s release of BYTEBACK benefits from several minor improvements in the
design and fixes a few minor bugs, its architecture is essentially the same as iFM 2023’s
BYTEBACK’s.

2 MOTIVATING EXAMPLE

Exceptions can significantly complicate the control flow of even seemingly simple code; conse-
quently, correctly reasoning about exceptional behavior can be challenging even for a language
like Java—whose exception-handling features have not changed significantly since the language’s
origins.

To demonstrate, consider Figure 2a’s method into, which inputs a reference r to a Resource

object and an integer array a, and copies values from r into a—until either a is filled up or there are
no more values in r to read. Figure 2b shows the key features of class Resource—which implements
Java’s AutoCloseable interface, and hence can be used similarly to most standard I/O classes.
Method into’s implementation uses a try-with-resources block to ensure that r is closed whenever
the method terminates—normally or exceptionally. The while loop terminates as soon as any of
the following conditions holds: i) r is null; ii) i reaches a.length (array a is full), and hence the
assignment to a[i] throws an IndexOutOfBoundsException; iii) r has no more elements, and hence
r.read() throws a NoSuchElementException. Correspondingly, in case i) method into returns
with an (propagated) exception; in cases ii) and iii) the IndexOutOfBounds or NoSuchElement

exceptions that are thrown are immediately caught by the catch block that suppresses them with a
return—so that into returns normally.

Figure 2a’s annotations, which use a simplified syntax for BBlib—BYTEBACK’s specification
library—specify part of into’s expected behavior. Precondition @Require expresses the constraint
that object r must be null or open (not closed) for into to work as intended. Annotation @Raise

declares that into terminates with a NullPointer exception if r is null; conversely, @Return says
that into returns normally if a and r are not null. Finally, postcondition @Ensure says that, if it’s
not null, r will be closed when into terminates—regardless of whether it does so normally or
exceptionally.
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1 @Require(r = null ∨ ¬r.closed)

2 @Raise(NullPointerException, r = null)

3 @Return(a ≠ null ∧ r ≠ null)

4 @Ensure(r = null ∨ r.closed)

5 public static void into(Resource r, int[] a) {

6 try (r) {

7 int i = 0;

8 while (true) {

9 invariant(0 ≤ i ≤ a.length);

10 invariant(r = null ∨¬r.closed);

11 a[i] = r.read(); ++i;

12 }

13 } catch (IndexOutOfBoundsException

14 | NoSuchElementException e)

15 { return; }

16 }

17

(a) Method into copies r’s content into array a. It
is annotated with normal and exceptional pre- and
postconditions using a simplified BBlib syntax.

class Resource

implements AutoCloseable {

public boolean closed;

public boolean hasNext;

@Raise(IllegalStateException, closed)

@Raise(NoSuchElementException, ¬hasNext)

@Return(¬closed ∧ hasNext)

public int read() {

// ...

}

// ...

}

(b) An outline of class Resouce’s interface
with Boolean attributes closed and hasNext,
and method read, annotated using a simpli-
fied BBlib syntax.

Fig. 2. Annotated Java method into and class Resource, which demonstrate some pitfalls of
specifying and reasoning about exceptional behavior.

The combination of language features and numerous forking control-flow paths complicate
reasoning about—and even specifying—into’s behavior. While exception handling has been part of
Java since version 1, try-with-resources and multi-catch (both used in Figure 2a) were introduced in
Java 7; thus, even a state-of-the-art verifier like KeY [1] lacks support for them. OpenJML [13] can
reason about all exception features up to Java 7; however, the try-with-resources using an existing
final variable became available only in Java 9.2 Furthermore, OpenJML implicitly checks that
verified code does not throw any implicit exceptions (such as NullPointer or IndexOutOfBound
exceptions)—thus disallowing code such as Figure 2a’s, where implicitly throwing exceptions is
part of the expected behavior. These observations are best thought of as design choices—rather
than limitations—of these powerful Java verification tools: after all, features such as multi-catch
are syntactic sugar that makes programs more concise but does not affect expressiveness; and
propagating uncaught implicit exceptions can be considered an anti-pattern3 [28, 48]. However,
they also speak volumes to the difficulty of fully supporting all cases of exceptional behavior in a
feature-laden language like Java.

2 https://jcp.org/en/jsr/detail?id=334
3 https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

https://jcp.org/en/jsr/detail?id=334
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
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As we detail in the rest of the paper, BYTEBACK’s approach offers advantages in such scenarios.
Crucially, the implicit control flow of exception-handling code becomes explicit when compiled to
bytecode, which eases analyzing it consistently and disentangling the various specification elements.
For instance, the while loop’s several exceptional exit points become apparent in into’s bytecode
translation, and BYTEBACK can check that the declared invariant holds in all of them, and that
postcondition @Ensure holds in all matching method return points. Furthermore, bytecode is more
stable than Java—thus, a verifier like BYTEBACK can seamlessly handle old, as well as recent, Java
versions. Thanks to these capabilities, BYTEBACK can verify the behavior of Figure 2’s example.

3 SPECIFYING AND VERIFYING EXCEPTIONAL BEHAVIOR

This section describes the new features of BYTEBACK to specify and verify exceptional behavior.
Figure 1 shows BYTEBACK’s workflow, which we revisited to support these new features.

Users of BYTEBACK—just like with every deductive verifier—have to annotate the source code
to be verified with a specification and other annotations. To this end, BYTEBACK offers BBlib: an
annotation library that is usable with any language that is bytecode compatible. Section 3.1 describes
the new BBlib features to specify exceptional behavior. Then, users compile the annotated source
code with the language’s bytecode compiler. BYTEBACK relies on the Soot static analysis framework
to analyze bytecode; precisely, Soot offers Jimple: a higher-level alternative bytecode representation.
BYTEBACK processes Jimple and translates it to Vimp: a verification-oriented extension of Jimple
that we introduced in the latest BYTEBACK version and is described in Section 3.2. As we discuss
in Sections 3.3 and and 3.4, BYTEBACK transforms Jimple to Vimp in steps, each taking care of a
different aspect (expressions, types, control flow, and so on). Once the transformation is complete,
BYTEBACK encodes the Vimp program into the Boogie intermediate verification language [3]; as we
discuss in in Section 3.4.1, the Boogie encoding is mostly straightforward thanks to Vimp’s custom
design. Finally, the Boogie tool verifies the generated Boogie program, and reports success or any
verification failures (which can be manually traced back to source-code specifications that could not
be verified).

3.1 Specifying Exceptional Behavior

Users of BYTEBACK add behavioral specifications to a program’s source using BBlib: BYTEBACK’s
standalone Java library, offering annotation tags and static methods suitable to specify functional
behavior. Since BBlib uses only basic language constructs, it is compatible with most JVM languages
(as we demonstrate in Section 4); and all the information added as BBlib annotations is preserved
at the bytecode level. This section first summarizes the core characteristics of BBlib (to make the
paper self contained), and then describes the features we introduced to specify exceptional behavior.
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3.1.1 Specification Expressions. Expressions used in BYTEBACK specifications must be ag-
gregable, that is pure (they can be evaluated without side effects) and branchless (they can be
evaluated without branching instructions). These are common requirements to ensure that specifica-
tion expressions are well-formed [44]—hence, equivalently expressible as purely logic expressions.
Correspondingly, BBlib forbids impure expressions, and offers aggregable replacements for the
many Java operators that introduce branches in the bytecode, such as the standard Boolean operators
(&&, ||, . . . ) and comparison operators (==, < , . . . ). Table 1 shows several of BBlib’s aggregable oper-
ators, including some that have no immediately equivalent Java expression (such as the quantifiers).
Using only BBlib’s operators in a specification ensures that it remains in a form that BYTEBACK can
process after the source program has been compiled to bytecode [37]. Thus, BBlib operators map
to Vimp logic operators (Section 3.2), which directly translate to Boogie operators with matching
semantics (Section 3.4).

IN JAVA/LOGIC IN BBlib

comparison x < y, x <= y, x == y lt(x, y), lte(x, y), eq(x, y)

x != y, x >= y, x > y neq(x, y), gte(x, y), gt(x, y)

conditionals c ? t : e conditional(c, t, e)

propositional !a, a && b, a || b, a =⇒ b not(a), a & b, a | b, implies(a, b)

quantifiers ∀x : T • P(x) T x = Binding.T(); forall(x, P(x))

∃x : T • P(x) T x = Binding.T(); exists(x, P(x))

Table 1. BBlib’s aggregable operators, used in specification expressions instead of Java’s impure
or branching operators.

3.1.2 Method Specifications. To specify the input/output behavior of methods, BBlib offers
annotations @Require and @Ensure to express a method’s pre- and postconditions. For example,

@Require(𝑝) @Ensure(𝑞) t m(args)

specifies that 𝑝 and 𝑞 are method m’s pre- and postcondition; both 𝑝 and 𝑞 denote names of so-called
behaviors, which are methods marked with annotation @Behavior. As part of the verification process,
BYTEBACK checks that every such behavior 𝑏 is well-formed: i) 𝑏 returns a boolean; ii) 𝑏’s signature
is the same as m’s or, if 𝑏 is used in m’s postcondition and m’s return type is not void, it also includes
an additional argument that denotes m’s returned value; iii) 𝑏’s body returns a single aggregable
expression; iv) if 𝑏’s body calls other methods, they must also be aggregable.

For simplicity of presentation, we henceforth abuse the notation and use an identifier to denote
a behavior’s name, the declaration of the method, and the expression that the behavior’s body
returns. Consider, for example, Figure 3, showing how one would express in actual BBlib syntax
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@Require("r_is_null_or_open")

@Ensure("r_is_null_or_closed")

// ...

public static void into(Resource r, int[] a)

@Behavior

public static boolean r_is_null_or_open(Resource r, int[] a)

{ return eq(r, null) | not(r.isClosed); }

@Behavior

public static boolean r_is_null_or_closed(final Resource r, int[] a)

{ return eq(r, null) | r.isClosed; }

Fig. 3. Pre- and postconditions of Figure 2a’s method into in BBlib syntax.

class Counter {

public int count = 0;

@Ensure("increased_by_one")

public void increment()

{ count = count + 1; }

@TwoState @Behavior

public boolean increased_by_one()

{ return eq(count, old(count) + 1) }

}

Fig. 4. A postcondition using old to refer to the method’s pre-state.

Figure 2a’s method into’s pre- and postcondition. In this example, we can use r_is_null_or_open

to refer to method r_is_null_or_open, to the argument "r_is_null_or_open" of into’s @Require
annotation, or to the behavior’s returned expression eq(r, null) | not(r.closed)—which is
into’s actual precondition.

3.1.3 Two-state Postconditions. A method’s postcondition is, in general, a predicate over two
states: the pre-state (when the method begins execution) and the post-state (when the method
terminates). In BBlib, a behavior 𝑞 used as postcondition may only refer to the pre-state if it is
equipped with annotation @TwoState; in this case, 𝑞’s body may include expressions old(𝑒) to
refer to any expression 𝑒’s value in the pre-state. Accordingly, BYTEBACK checks that two-state
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behaviors (i.e., behaviors annotated with @TwoState) are only used in postconditions, and are only
called by other two-state behaviors (including recursively). Figure 3 shows how one would express
in actual BBlib syntax the postcondition of a method increment that increments attribute count

by one: increased_by_one is a two-state behavior precisely expressing increment’s postcondition
that count’s value in the post-state equals count’s value in the pre-state plus one.

3.1.4 Exceptional Postconditions. Predicate methods specified with @Ensure may refer to
a method’s post-state regardless of whether the method terminated normally or with an excep-
tion; for example, predicate x_eq_y in Figure 5 says that attribute x always equals argument y
when method m terminates. If the postcondition 𝑞 of a method 𝑚 is also equipped with annota-
tion @Exceptional, 𝑞’s body may use operator thrown() to refer to the thrown exception object.
Precisely, isVoid(thrown()) holds if and only if𝑚 terminates normally; if𝑚 terminates with an
exception, thrown() refers to the exception object. Figure 5’s methods x_pos and y_neg demon-
strate using these features of BBlib: x_pos states that if attribute x > 0 when m terminates, then
it must have terminated with a PosXExc exception; y_neg states that if m is called with argument
y ≤ 0, then it terminates normally.

public int x = 0;

@Ensure("x_eq_y") // x = y when m terminates normally or exceptionally

@Ensure("x_pos") // if x > 0 then m throws an exception

@Ensure("y_neg") // if y ≤ 0 then m terminates normally

public void m(int y) {

x = y;

if (x > 0)

throw new PosXExc();

}

@Behavior

public boolean x_eq_y(int y)

{ return eq(x, y); }

@Exceptional @Behavior

public boolean x_pos(int y)

{ return implies(gt(x, 0), thrown() instanceof PosXExc); }

@Exceptional @Behavior

public boolean y_neg(int y)

{ return implies(lte(y, 0), isVoid(thrown())); }

Fig. 5. Examples of exceptional postconditions in BBlib.
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3.1.5 Shorthands. For convenience, BBlib offers annotation shorthands @Raise and @Return

to specify when a method terminates exceptionally or normally. Table 2 shows the semantics
of these shorthands by translating them into equivalent postconditions. The when arguments of
@Raise and @Return implicitly refer to a method’s pre-state through the old expression, since it
is common to relate a method’s exceptional behavior to its inputs. Thus, Figure 5’s postcondi-
tion y_neg is equivalent to @Return(lte(y, 0)), since m does not change y’s value; conversely,
@Raise(PosXExc.class, gt(x, 0)) is not equivalent to x_pos because m reassigns x to y’s value
upon executing.

SHORTHAND EQUIVALENT POSTCONDITION

@Raise(exception = E.class, when = 𝑝) @Ensure(implies(old(𝑝), thrown() instanceof E))

@Raise(when = 𝑝) @Ensure(implies(old(𝑝), not(isVoid(thrown()))))

@Raise(exception = E.class) @Raise(exception = E.class, when = true)

@Raise @Raise(when = true)

@Return(when = 𝑝) @Ensure(implies(old(𝑝), isVoid(thrown())))

@Return @Return(when = true)

Table 2. BBlib’s @Raise and @Return and annotation shorthands.

3.1.6 Intermediate Specification. BBlib also supports the usual intra-method specification ele-
ments: assertions, assumptions, and loop invariants. Given an aggregable expression 𝑒, assertion(𝑒)
specifies that 𝑒 must hold whenever execution reaches it; assumption(𝑒) restricts verification from
this point on to only executions where 𝑒 holds; and invariant(𝑒) declares that 𝑒 is an invariant of
the loop within whose body it is declared. As we have seen in Figure 2a’s running example, loop
invariants hold, in particular, at all exit points of a loop—including exceptional ones.

3.2 The Vimp Intermediate Representation

In our previous work [37], BYTEBACK works directly on Grimp—a high-level bytecode represen-
tation provided by the Soot static analysis framework [22, 47]. In this paper, we target Jimple, a
different high-level bytecode representation provided by Soot, whose three-address-code form is
more germane to analyzing exceptional behavior. In a three-address code, each bytecode instruction
includes a single elementary operation; therefore, the control flow of a program can be modified
by simply adding new instructions at any suitable point. In contrast, if an instruction may include
multiple operations (for instance, a compound expression), modifying the control flow between
those operations would not be as straightforward, and it would require an additional normalization
step. Since supporting exceptional behavior crucially relies on modifying the bytecode control flow
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to make exceptional behavior explicit, a three-address-code form—where such modifications are
simpler to implement—is a more effective target for our purposes.

Both Grimp and Jimple conveniently retain information such as types and expressions, which
eases BYTEBACK’s encoding of the program under verification into Boogie [3]. However, Grimp and
Jimple remain close to bytecode; hence, they represent well executable instructions, but lack support
for encoding logic expressions and specification constructs. These limitations become especially
inconvenient when reasoning about exceptional behavior, which often involves logic conditions that
depend on the types and values of exceptional objects. Rather than reconstructing this information
during the translation from Jimple (or Grimp) to Boogie, we found it more effective to extend Soot’s
bytecode representations into Vimp, which fully supports logic and specification expressions.

Our bespoke Vimp bytecode representation can encode all the information relevant for verification.
This brings several advantages: i) it decouples the input program’s static analysis from the generation
of Boogie code, achieving more flexibility at either ends of the toolchain; ii) it makes the generation
of Boogie code straightforward (mostly one-to-one); iii) BYTEBACK’s transformation from Jimple to
Vimp becomes naturally modular: it composes several simpler transformations, each taking care of
a different aspect and incorporating a different kind of information. The rest of this section presents
Vimp’s key features, and how they are used by BYTEBACK’s Jimple-to-Vimp transformation V.4

Transformation V combines, as detailed in Section 3.4, the following feature-specific transfor-
mations: Vexc makes the exceptional control flow explicit; Vinst translates Jimple instructions (by
applying transformation Vexp to expressions within instructions, Vagg to aggregate Jimple expres-
sions into compound Vimp expressions, and Vtype to infer types); Vloop handles loop invariants.
In the following subsections, we describe the most significant aspects of these transformations—
focusing on those that are non-standard and are especially relevant to reasoning about exceptions.

3.2.1 Expected Types. Transformation Vtype reconstructs the expected type of expressions when
translating them to Vimp. An expression 𝑒’s expected type depends on the context where 𝑒 is used;
in general, it may differ from 𝑒’s type in Jimple, as we explain in the following paragraphs.

3.2.2 Boolean Types. Jimple’s built-in type resolver [7] may assign type int also to Boolean
values and expressions; this is consistent with how bytecode encodes Boolean values as integers: 1
for true and 0 for false. This entails that Jimple code may assign a Boolean value to an integer
variable, and vice versa. This complicates encoding bytecode Boolean expressions into Boogie,
where the boolean and int types are strictly separate.

4In the following, we occasionally take some liberties with Jimple and Vimp code, using a readable syntax that mixes
bytecode instruction and Java statement syntax; for example, m() represents an invocation of method m that corresponds
to a suitable variant of bytecode’s invoke.
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Vtype(𝑒1) = int Vtype(𝑒2) = int

Vtype(𝑒1 ⊲⊳ 𝑒2) = boolean
(1)

Vtype(𝑒1) = boolean Vtype(𝑒2) = boolean

Vtype(𝑒1 ★ 𝑒2) = boolean
(2)

Vtype(𝑒1) = int Vtype(𝑒2) = boolean

Vtype(𝑒1 ★ 𝑒2) = int
(3)

Vtype(𝑒1) = boolean Vtype(𝑒2) = int

Vtype(𝑒1 ★ 𝑒2) = int
(4)

(a) BYTEBACK’s inference rules for the boolean type in expressions. ★ denotes any Boolean (bitwise)
logic connective, and ⊲⊳ any integer comparison operator.

{ · · · boolean v;
· · · v := 𝑒 · · · }

Vtype(𝑒) = boolean
(5)

if (𝑒) goto 𝐿

Vtype(𝑒) = boolean
(6)

boolean m(𝑎1, . . . , 𝑎𝑚)
{ · · · return 𝑒 · · · }
Vtype(𝑒) = boolean

(7)

R m( . . . boolean a . . . )
· · · m( . . . 𝑒 . . . ) · · ·
Vtype(𝑒) = boolean

(8)

(b) BYTEBACK’s inference rules for the boolean type in statements. Each rule’s premise shows a
different context for an expression 𝑒 whose type is inferred as boolean.

Fig. 6. How BYTEBACK handles the boolean type.

To address this issue, Vimp’s transformation Vtype strictly distinguishes between boolean and int

types. Since Jimple’s typing rules correctly identify Boolean types in declarations and signatures,
we only need to define custom typing rules for Boolean expressions as shown in Figure 6a. Since
logic operations in bytecode may mix integers and Booleans, Vtype assigns the more general int
type to such expressions (rules (3) and (4) in Figure 6a). Figure 6b shows how Vtype also assigns
the boolean type to expressions 𝑒 that are used as Boolean conditions or according to their declared
Boolean type: rule (5) applies to the right-hand side 𝑒 of an assignment to any variable v declared as
boolean; rule (6) applies to the condition 𝑒 of a branching instruction; rule (7) applies to value 𝑒
returned by a method m whose return type is boolean; rule (8) applies to a call to a method whose
formal argument a is boolean.

3.2.3 Expressions. Transformation Vexp translates expressions 𝑒 according to their expected
type Vtype(𝑒). For example, it uses the usual operators ¬ , ∧ , ∨ , =⇒ , and constants true and
false to translate expressions involving Booleans (in contrast to bytecode’s using integer operators
for Boolean operations, such as the unary minus- for “not”). Vexp also adds explicit widening cast
conversions to the operands of an expression whose expected type differs from the operator’s required
type. A recurring example are “mixed” Boolean and integer expressions, such as a comparison b = 1

where b is a Boolean variable (hence, Vtype(b) = boolean): according to rule (4), Vtype(b = 1) is
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int, but there is no comparison operator that works to compare a Boolean and an integer; in this
case, the translation Vexp(b = 1) of b = 1 is ((int) b) = 1—casting b to int so that Vimp’s
standard integer comparison operator = can be used.

3.2.4 Quantified Expressions. Transformation Vexpr also identifies quantified expressions and
renders them using Vimp’s quantifier syntax. As shown in Table 1, a quantified variable x of type
T must be declared as x = Binding.T() using BBlib’s Binding factory. Then, this is how Vexpr

translates a quantified expression over x whose scope is predicate 𝑃 (x)—after aggregating 𝑃 (x) as
discussed in Section 3.2.5.

Vexp(Contract.forall(x, 𝑃 (x))) = ∀ Vtype(x) x : : Vexp(Vagg(𝑃 (x)))

Vexp(Contract.exists(x, 𝑃 (x))) = ∃ Vtype(x) x : : Vexp(Vagg(𝑃 (x)))

3.2.5 Expression Aggregation. Transformation Vagg aggregates specification expressions (Sec-
tion 3.1.1), so that each corresponds to a single Jimple pure and branchless expression, which
Vexp can easily translate to Vimp. In a nutshell, Vagg(𝑒) takes the slice of Jimple statements that
𝑒 depends on, converts it into static-single assignment form, and then recursively replaces each
variable’s single usage with its unique definition. For example, consider Figure 2a’s loop invariant
0 ≤ i ≤ a.length; compilation into bytecode breaks this expression down into three assignments
that incrementally compute the various components of the specification expression and store into
local variables, followed by a call to BBlib function invariant with the last variable as argument:
x stores the value of 0 ≤ i, y the value of i ≤ a.length, and z the value of x ∧ y. In order to
translate expression z in invariant z, BYTEBACK first aggregates the three assignments back into
a single Vimp expression as shown in Table 3.

SPECIFICATION SSA-FORM SLICE AGGREGATED

invariant z

x := lte(0, i)

y := lte(i, a.length)

z := x & y

invariant z

invariant lte(0, i) & lte(i, a.length)

Table 3. Aggregating the specification expression that encodes one of Figure 2a’s loop invariants.

3.2.6 Assertion Instructions. Vimp includes instructions assert, assume, and invariant, which
transformation Vins introduces for each corresponding instance of BBlib assertions, assumptions,
and loop invariants. Transformation Vloop relies on Soot’s loop analysis capabilities to identify loops
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k = 0;

while (k < 10) {

invariant(lte(k, 10) & lte(k, X));

k++;

if (k ≥ X) break;

}

return k;

k := 0;

head:
if k ≥ 10 goto exit;

invariant k ≤ 10 ∧ k ≤ X;

k := k + 1;

if k ≥ X goto exit;

back:
goto head;

exit:
return k;

k := 0;

head:
assert k ≤ 10 ∧ k ≤ X;

if k ≥ 10 goto exit;

assume k ≤ 10 ∧ k ≤ X;

k := k + 1;

if k ≥ X goto exit;

back:
goto head;

exit:
assert k ≤ 10 ∧ k ≤ X;

return k;

Fig. 7. A loop in Java (left), its unstructured representation in Vimp (middle), and the transformation
Vloop of its invariant into assertions and assumptions (right). The loop invariant expression is
aggregated as described in Section 3.2.5.

in Vimp’s unstructured control flow; then, it expresses their invariants by means of assertions and
assumptions. As shown in Figure 7, Vloop checks that the invariant holds upon loop entry (label
head), at the end of each iteration (head again), and at every exit point (label exit).

3.3 Modeling Exceptional Control Flow

Bytecode stores a block’s exceptional behavior in a data structure called the exception table.5 Soot
represents each table entry as a trap, which renders a try-catch block in Jimple bytecode. Precisely,
a trap 𝑡 is defined by: i) a block of instructions 𝐵𝑡 that may throw exceptions; ii) the type 𝐸𝑡 of the
handled exceptions; iii) a label ℎ𝑡 to the handler instructions (which terminates with a jump back to
the end of 𝐵𝑡 ). When executing 𝐵𝑡 throws an exception whose type conforms to 𝐸𝑡 , control jumps
to ℎ𝑡 . At the beginning of the handler code, Jimple introduces e := @caught, which stores into a
local variable e of the handler a reference @caught to the thrown exception object. Figure 8 shows
an example of try-catch block in Java (left) and the corresponding trap in Jimple (middle): ℓ1, . . . , ℓ5
is the instruction block, E is the exception type, and handler is handler’s entry label. The rest of
this section describes BYTEBACK’s transformation Vexc, which transforms the implicit exceptional
control flow of Jimple traps into explicit control flow in Vimp. Such a transformation is necessary
since BYTEBACK uses Boogie as backend: the Boogie verification language only includes minimal
imperative programming features, without any support for exceptional control flow; BYTEBACK

makes explicit the exceptional control flow of the program under verification, and encodes this
explicit exceptional behavior using Boogie’s available features.

5 https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.10

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.10
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try {

x = o.size();

if (x = 0) {

throw new E();

}

} catch (E e) {

x = 1;

}

ℓ1: x := o.size();

ℓ2: if x != 0 goto ℓ5;

ℓ3: e := new E();

ℓ4: throw e;

ℓ5: goto ℓ6;

handler:

e := @caught;

x := 1;

ℓ6: ...

ℓ1: x := o.size();

if @thrown = void goto ℓ2;

Vexc (throw @thrown;)
ℓ2: if x ≠ 0 goto ℓ5;

ℓ3: e := new E();

ℓ4: @thrown := e;

if ¬(@thrown instanceof E) goto ℓ5;

goto hE;

ℓ5: goto ℓ6;

handler:
e := @thrown; @thrown := void;

x := 1;

ℓ6: ...

Fig. 8. A try-catch block in Java (left), its unstructured representation as a trap in Jimple (middle,
empty lines are for readability), and its transformation Vexc in Vimp with explicit exceptional control
flow (right).

3.3.1 Explicit Exceptional Control-Flow. Jimple’s variable @caught is called @thrown in Vimp.
While @caught is read-only in Jimple—where it only refers to the currently handled exception—
@thrown can be assigned to in Vimp. This is how BYTEBACK makes exceptional control flow
explicit: assigning to @thrown an exception object e signals that e has been thrown; and setting
@thrown to void marks the current execution as normal. Thus, BYTEBACK’s Vimp encoding sets
@thrown := void at the beginning of a program’s execution, and then manipulates the special
variable @thrown to reflect the bytecode semantics of exceptions as we outline in the following.
With this approach, the Vimp encoding of a try block simply results from encoding each of the
block’s instructions explicitly according to their potentially exceptional behavior.

3.3.2 Throw Instructions. Transformation Vexc desugars throw instructions into explicit assign-
ments to @thrown and jumps to the suitable handlers. A throw e instruction within the scope of
𝑛 traps 𝑡1, . . . , 𝑡𝑛—catching and handling exceptions of types 𝐸1, . . . , 𝐸𝑛 with handlers at labels
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ℎ1, . . . , ℎ𝑛—is transformed into:

Vexc
(
throw e

)
=

©«

@thrown := e;

if ¬ (@thrown instanceof 𝐸1) goto skip1;

goto ℎ1;

skip1 : if ¬ (@thrown instanceof 𝐸2) goto skip2;

goto ℎ2;

skip2 : if ¬ (@thrown instanceof 𝐸3) goto skip3;
...

skip𝑛−1 : if ¬ (@thrown instanceof 𝐸𝑛) goto skip𝑛;

goto ℎ𝑛;

skip𝑛 : return; // propagate exception to caller

ª®®®®®®®®®®®®®®®®®®®®¬
The assignment to @thrown stores a reference to the thrown exception object e; then, a series of
checks determine if e has type that conforms to any of the handled exception types; if it does,
execution jumps to the corresponding handler. As part of this transformation, BYTEBACK also prunes
unreachable handlers: for every two exception types 𝐸𝑥 , 𝐸𝑦 such that 𝑥 < 𝑦 and 𝐸𝑦 ⪯ 𝐸𝑥 (𝐸𝑦 is a
subtype of, or the same type as, 𝐸𝑥 ), it removes the check and handler for 𝐸𝑦 since they are shadowed
by the earlier check for 𝐸𝑥 .

Transformation Vexc also replaces the assignment e := @caught that Jimple puts at the beginning
of every handler with e := @thrown; @thrown := void, signaling that the current exception is
handled, and thus the program will resume normal execution.

3.3.3 Exceptions in Method Calls. A called method may throw an exception, which the caller
should propagate or handle. Accordingly, transformation Vexc adds, after every method call instruc-
tion, code to check whether the caller set variable @thrown and, if it did, to handle the exception
within the caller as if it had been directly thrown by it.

Vexc
(
m(𝑎1, . . . , 𝑎𝑚)

)
=

©«
m(𝑎1, . . . , 𝑎𝑚);

if (@thrown = void) goto skip;

Vexc (throw @thrown)
skip : /* code after call */

ª®®®®®¬
3.3.4 Potentially Excepting Instructions. Some bytecode instructions may implicitly throw
exceptions when they cannot execute normally. In Figure 2a’s running example, r.read() throws
a NullPointer exception if r is null; and the assignment to a[i] throws an IndexOutOfBounds

exception if i is not between 0 and a.length - 1. Transformation Vexc recognizes such potentially
excepting instructions and adds explicit checks that capture their implicit exceptional behavior. Let
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op be an instruction that behaves normally if condition 𝑁op holds, and throws an exception of type
𝐸op otherwise; Vexc transforms op as follows.

Vexc
(
op

)
=

©«
if 𝑁op goto normal;

Vexc

(
e := new 𝐸op();
throw e;

)
normal : op;

ª®®®®®¬
(1)

By chaining multiple checks, transformation Vexc handles instructions that may throw multiple
implicit exceptions. For example, here is how it encodes the potentially excepting semantics of array
lookup a[i], which fails if a is null or i is out of bounds.

Vexc
(
res := a[i]

)
=

©«

if (a ≠ null) goto normal1;

Vexc

(
e1 := new NullPointerException();

throw e1;

)
normal1 : if (0 ≤ i ∧ i < a.length) goto normal2;

Vexc

(
e2 := new IndexOutOfBoundsException();

throw e2;

)
normal2 : res := a[i];

ª®®®®®®®®®®®®¬
3.3.5 Normal and Exceptional Loop Exit. A loop may terminate normally (when the loop
condition becomes false, or with a break statement) or exceptionally (when an exception thrown
within the loop body propagates outside it). In some cases, verification requires distinguishing
between a loop’s exit points that correspond to normal or to exceptional termination. To support
reasoning in these cases, transformation Vexc adds an implicit loop invariant @thrown = void that
is checked only at the normal exit points of a loop.

Figure 9 shows an example where this feature of BYTEBACK’s translation is needed. The loop
terminates normally when i reaches the value 7 (with a break) or 10 (with the loop condition
becoming false); after termination, the whole enclosing method m also returns normally. In contrast,
the loop terminates with an exception when i reaches the value 0; the exception is caught by the try

block wrapping the loop, which then suppresses the exception so that method m still returns normally.
Verifying the postcondition @Return—the method returns normally in all cases6—requires to check
all possible return points: while it’s clear that @thrown = void after the exception handling block
executes, we also need to check that @thrown = void after the normal loop termination points.
Hence, method m verifies correctly only after BYTEBACK has added the implicit loop invariant

6The loop does not terminate when i > 10 initially. BYTEBACK only checks partial correctness, and hence nonterminating
behaviors are ignored.
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@Return

public void m(int i) {

try {

while (i ≠ 10) {

i++;

if (i = 0)

throw new E();

if (i = 7)

break;

}

} catch (E e) {

assertion(eq(i, 0));

return;

}

assertion(eq(i, 10) | eq(i, 7));

}

@Ensure(@thrown = void)

public void m() {

E e; @thrown := void;

head:

if (i = 10) goto exit;

if (i ≠ 0) goto skip;

@thrown = new E();

goto handler;

skip:
if (i ≠ 7) goto exit;

goto head;

exit:

assert i = 10 ∨ i = 7

return;

handler:
e := @thrown;

@thrown := void;

assert i = 0;

return;

}

@Ensure(@thrown = void)

public void m() {

E e; @thrown := void;

head:
assume @thrown = void;

if (i = 10) goto exit;

if (i ≠ 0) goto skip;

@thrown = new E();

goto handler;

skip:
if (i ≠ 7) goto exit;

assert @thrown = void;

goto head;

exit:
assert @thrown = void;

assert i = 10 ∨ i = 7;

return;

handler:
e := @thrown;

@thrown := void;

assert i = 0;

return;

}

Fig. 9. A Java loop that may terminate normally and exceptionally (left), and its Vimp encoding
before (middle) and after (right) Vexc introduces assertions that characterize normal loop exit points.

@thrown = void through all normal executions of the loops (Figure 9 right) whereas it fails
verification without such additional information.

3.4 Order of Transformation

As outlined in Figure 10, BYTEBACK applies the transformations V from Jimple to Vimp in a precise
order that incrementally encodes the full program semantics respecting dependencies.

Like the underlying bytecode that it represents, the Jimple code on which BYTEBACK operates
is a form of three-address code, where each instruction performs one elementary operation (such
as a call, a dereferencing, or a unary or binary arithmetic operation). BYTEBACK applies each
transformation to incrementally translate Jimple into Vimp:

i) BYTEBACK first applies Vexc to make the exceptional control flow explicit.
ii) Then, it applies Vins to every instruction, including, in particular, assertion instructions

(Section 3.2.6). In turn, Vins relies on transformations Vexp to translate expressions within
instructions, and Vagg to aggregate specification expressions (Section 3.2.5).
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Jimple Vexc Vins Vloop Vimp B Boogie

Vexp

Vagg
BYTEBACK

Fig. 10. BYTEBACK applies transformations in a definite order to incrementally translate Jimple to
Vimp, and then Boogie.

iii) Finally, it applies Vloop to encode loop invariants as intermediate assertions; since this
transformation is applied after Vexc, the loop invariants can be checked at all loop exit
points—normal and exceptional.

3.4.1 Boogie Encoding. The very last step B of BYTEBACK’s pipeline takes the fully trans-
formed Vimp program and encodes it as a Boogie program. Thanks to Vimp’s design, and to the
transformation V applied to Jimple, the Vimp-to-Boogie translation is mostly straightforward. A
significant change pertains to the Boogie heap model:

i) A global variable @heap : Heap stores the heap map: a mapping from references and fields
to values.

ii) Every @Behavior C.p(a1, . . . , a𝑚) becomes a Boogie (pure) function with an additional
argument heap: function C.p(heap : Heap, a1, . . . , a𝑚), which is a reference to the heap.
Correspondingly, any specification expression that refers to C.p translates to a Boogie
function application with global heap variable @heap as actual first argument.

iii) Every @TwoState @Behavior C.q(a1, . . . , a𝑚) becomes a Boogie (pure) function with
an additional argument heap': function C.q(heap : Heap, heap' : Heap, a1, . . . , a𝑚),
which is a reference to the heap upon method entry. Correspondingly, any specification
expression that refers to C.q translates to a Boogie function application with old(@heap) as
actual second argument.

As part of its encoding, BYTEBACK also generates a detailed Boogie axiomatization of all logic
functions used to model the heap, as well as other parts of JVM execution—which we described in
greater detail in previous work [37]. Another important addition is an axiomatization of subtype
relations among exception types, used by Boogie’s instanceof function to mirror the semantics
of the homonymous Java operator. Consider the whole tree 𝑇 of exception types used in the
program:7 each node is a type, and its children are its direct subtypes. For every node C in the
7Since the root of all exception types in Java is class Throwable—a concrete class—an exception type cannot be a subtype
of multiple exception classes, and hence 𝑇 is strictly a tree.
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tree, BYTEBACK produces one axiom asserting that every child X of C is a subtype of C (X ⪯ C),
and one axiom for every pair X, Y of C’s children asserting that any descendant types 𝑥 of X and
𝑦 of Y are not related by subtyping (in other words, the subtrees rooted in X and Y are disjoint):
∀𝑥,𝑦 : Type • 𝑥 ⪯ X ∧ 𝑦 ⪯ Y =⇒ 𝑥 ⪯̸𝑦 ∧ 𝑦 ⪯̸ 𝑥 .

3.5 Implementation Details

3.5.1 BBlib as Specification Language. We are aware that BBlib’s syntax and conventions
may be inconvenient at times; they were designed to deal with the fundamental constraints that
any specification must be expressible in the source code and still be fully available for analysis in
bytecode after compilation. This rules out the more practical approaches (e.g., comments) adopted
by source-level verifiers. More user-friendly notations could be introduced on top of BBlib—but
doing so is outside the present paper’s scope.

3.5.2 Class Invariants. BYTEBACK also offers basic support for class invariants. In BBlib, a class
C annotated with @Invariant("inv") declares that behavior method inv defines C’s class invariant.
BYTEBACK simply adds inv as an assumption (a free requires in Boogie) at the beginning of every
instance method of C, and as an additional postcondition of every instance method and constructor of
C. This semantics for class invariants is admittedly quite primitive, but it is still sufficient to express
fundamental validity conditions of objects of the same class C. In future work, we plan to equip
BYTEBACK with substantially more refined invariant methodologies.

3.5.3 Attaching Annotations. As customary in deductive verification, BYTEBACK models calls
using the modular semantics, whereby every called method needs a meaningful specification of
its effects within the caller. To support more realistic programs that call to Java’s standard library
methods, BBlib supports the @Attach annotation: a class S annotated with @Attach(I.class)

declares that any specification of any method in S serves as specification of any method with the
same signature in I. We used this mechanism to model the fundamental behavior of widely used
methods in Java’s, Scala’s, and Kotlin’s standard libraries. As a concrete example, we specified that
the constructors of common exception classes do not themselves raise exceptions.

3.5.4 Implicit Exceptions. Section 3.3 describes how BYTEBACK models potentially except-
ing instructions. The mechanism is extensible, and the current implementation supports the five
widespread kinds of implicit exceptions listed in Table 4:

• NullPointer exceptions are thrown whenever dereferencing a null reference;
• IndexOutOfBounds exceptions are thrown whenever accessing an array with an index outside

its bounds;
• NegativeArraySize exceptions are thrown when creating an array with a negative size;
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EXCEPTING INSTRUCTION EXCEPTION CONDITION

dereferencing o._, o[i] NullPointerException o ≠ null

array access a[i] IndexOutOfBoundsException 0 ≤ i ∧ i < a.length

array creation new t[n] NegativeArraySizeException n ≥ 0

integer division v1 / v2 ArithmeticException v2 ≠ 0

cast (C) o ClassCastException o instanceof C ∧ o ≠ null

Table 4. Potentially excepting instructions currently supported by BYTEBACK.

• Arithmetic exceptions are thrown when dividing an integer by zero;
• ClassCast exceptions are thrown when a cast tries to convert between types that are not

related by inheritance.

Users can choose among three ways of configuring these checks for implicitly thrown exceptions:
i) the default is to model, and allow, potentially excepting instructions as shown in transformation (1);
ii) alternatively, BYTEBACK can model potentially excepting instructions, as well as check that such
exceptions never occur: in this case, an assert false replaces the block immediately following
goto normal in transformation (1); iii) BYTEBACK can also just not model implicit exceptions: in
this case, verification becomes unsound if the program may exhibit implicit exception behavior.

3.5.5 Dependency Analysis. BYTEBACK is implemented as a command-line tool that takes as input
a classpath and a set 𝐸 of class files within that path. The analysis collects the class signatures in all
classes 𝐷 (𝐸) on which the entry classes 𝐸 transitively depend—where “𝐴 depends on 𝐵” means that
𝐴 inherits from, or is a client of, 𝐵. After collecting such information about all classes in 𝐸 ∪ 𝐷 (𝐸),
BYTEBACK feeds them through its verification toolchain (Figure 1) that translates them to Boogie.
BYTEBACK only verifies the implementations of the entry classes in 𝐸 listed explicitly by the user;
the implementations of 𝐷 (𝐸) are ignored (i.e., not translated to Boogie for verification), but their
interfaces and any specifications are still translated to reason about their usages in 𝐸.

3.5.6 Features and Limitations. The main limitations of BYTEBACK’s previous version [37]
were a lack of support for exception handling and invokedynamic. As discussed in the rest of the
paper, BYTEBACK now fully supports reasoning about exceptional behavior. We also added a, still
limited, support for invokedynamic: any instance of invokedynamic is conservatively treated as
a call whose effects are unspecified; furthermore, we introduced ad hoc support to reason about
concatenation and comparison of string literal—which are implemented using invokedynamic since
Java 9.8 A full support of invokedynamic still belongs to future work.

8https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html

https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html
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Other remaining limitations of BYTEBACK’s current implementation are a limited support of string
objects, and no modeling of numerical errors such as overflow (i.e., numeric types are encoded with
infinite precision). Adding support for all of these features is possible by extending BYTEBACK’s
current approach.

4 EXPERIMENTS

We demonstrated BYTEBACK’s capabilities by running its implementation on a collection of anno-
tated programs involving exceptional behavior in Java, Scala, and Kotlin.

4.1 Programs

Table 5 summarizes the key features of the 60 programs that we prepared to demonstrate BYTEBACK’s
capabilities of reasoning about exceptional behavior; all these programs involve some exceptional
behavior in different contexts.9 About half of the programs (31/60) are written in Java: 28 only
use language features that have been available since Java 8, and another 3 rely on more recent
features available since Java 17. To demonstrate how targeting bytecode makes BYTEBACK capable
of verifying, at least in part, other JVM languages, we also included 15 programs written in Scala
(version 2.13.8 of the language), and 14 programs written in Kotlin (version 1.8.0).

Each program consists of one or more classes with their dependencies, which we annotated
with BBlib to specify exceptional and normal behavior, as well as other assertions needed for
verification (such as loop invariants). The examples total 9 121 lines of code and annotations, with
386 annotations of different kinds, and 1 366 methods (including BBlib specification methods)
involved in the verification process. According to their characteristics, the experiments can be
classified into two groups: feature experiments and algorithmic experiments.

4.1.1 Feature Experiments. The programs listed in Table 6 are feature experiments: each of them
exercises a small set of exception-related language features; correspondingly, their specifications
check that BYTEBACK’s verification process correctly captures the source language’s semantics of
those features. For example, experiments 12, 23, and 30 feature different combinations of try-catch
blocks and throw statements that can be written in Java, Scala, and Kotlin, and test whether BYTE-

BACK correctly reconstructs all possible exceptional and normal execution paths that can arise. A
more specialized example is experiment 13, which verifies the behavior of loops with both normal
and exceptional exit points.

4.1.2 Algorithmic Experiments. The programs listed in Table 7 are algorithmic experiments:
they implement classic algorithms in a way that also involves some exception behavior—for example,
9We focus on these exception-related programs, but the latest version of BYTEBACK also verifies correctly the 40 other
programs we introduced in previous work to demonstrate its fundamental verification capabilities.
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ENCODING VERIFICATION SOURCE BOOGIE METHODS ANNOTATIONS

LANGUAGE TIME [s] SIZE [LOC] 𝐵 𝑆 𝐸

Java 8, 17
total 14.1 29.2 7 274 193 563 1 071 149 51 181

average 0.5 0.9 235 6 244 35 5 2 6

Scala 2.13
total 6.8 12.4 956 86 223 141 65 25 52

average 0.5 0.8 64 5 748 9 4 2 3

Kotlin 1.8
total 6.3 12.2 891 82 117 154 64 27 50

average 0.5 0.9 64 5 866 11 5 2 4

all languages
total 27.2 53.7 9 121 361 903 1 366 278 103 283

average 0.5 0.9 152 6 032 23 5 2 5

Table 5. Summary of BYTEBACK’s verification experiments of exceptional behavior. For each LAN-
GUAGE (Java, Scala, Kotlin, and all languages together), the table reports the total and average
wall-clock time (in seconds) taken for ENCODING bytecode into Boogie, and for the VERIFICATION
of the Boogie program; the size (in non-empty lines of code) of the SOURCE program with its
annotations, and of the generated BOOGIE program; the number of METHODS that make up the
program and its BBlib specification; and the number of ANNOTATIONS introduced for verification,
split among: behavior methods 𝐵 (@Behavior), pre- and postconditions 𝑆 (@Require, @Ensure), and
exception annotations 𝐸 (@Raise, @Return).

using exceptions to signal when their inputs are invalid. The main difference between feature and
algorithmic experiments is specification: algorithmic experiments usually have more complex
pre- and postconditions than feature experiments, which they complement with specifications of
exceptional behavior on the corner cases. For example, experiments 34, 48, and 55 compute the
greatest common divisor iteratively, using the subtraction-based version of Euclid’s algorithm;
their “functional” postconditions specify that the value returned by the methods is the same as
that given by a pure, functional recursive definition of the same algorithm, whereas other parts
of their specification say that they will throw an exception to signal when their inputs are invalid.
Experiment 46 is an extension of Figure 2’s running example, where the algorithm is a simple
stream-to-array copy implemented in a way that may give rise to various kinds of exceptional
behavior.

Experiments 43 and 44 are the most complex programs in our experiments: they include a subset of
the complete implementations of Java’s ArrayList and LinkedList standard library classes,10 part
of which we annotated with basic postconditions and a specification of their exceptional behavior
(as described in their official documentation). In particular, ArrayList’s exceptional specification
focuses on possible failures of the class constructor (for example, when given a negative number
as initial capacity); LinkedList’s specification focuses on possible failures of some of the read

10 https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html
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# EXPERIMENT LANG ENCODING VERIFICATION SOURCE BOOGIE MET ANNOTATIONS

TIME [s] SIZE [LOC] 𝐵 𝑆 𝐸

1 Implicit Division By Zero J 8 0.4 0.7 62 5 704 10 3 0 7
2 Implicit Index Out of Bounds J 8 0.5 0.8 84 5 848 16 5 2 8
3 Implicit Invalid Cast J 8 0.4 0.7 63 5 692 36 3 0 8
4 Implicit Negative Array Size J 8 0.4 0.7 50 5 668 8 3 0 4
5 Implicit Null Dereference J 8 0.4 0.8 84 5 869 26 4 0 10
6 Check Division By Zero J 8 0.4 0.7 62 5 704 10 3 0 7
7 Check Index Out of Bounds J 8 0.5 0.8 84 5 848 16 5 2 8
8 Check Invalid Cast J 8 0.4 0.7 63 5 692 36 3 0 8
9 Check Negative Array Size J 8 0.4 0.7 50 5 668 8 3 0 4

10 Check Null Dereference J 8 0.4 0.8 84 5 869 26 4 0 10
11 Multi-Catch J 8 0.4 0.7 68 5 785 10 1 1 4
12 Throw-Catch J 8 0.5 0.9 156 5 954 46 10 0 16
13 Throw-Catch in Loop J 8 0.4 0.7 97 5 818 11 1 0 9
14 Try-Finally J 8 0.5 0.8 125 5 797 15 2 4 6
15 Try-With-Resources J 8 0.5 0.8 197 6 733 26 3 4 13
16 Try-With-Resources on Local J 17 0.4 0.6 43 5 635 6 1 1 1
17 Implicit Division By Zero S 0.4 0.7 62 5 719 10 3 0 7
18 Implicit Index Out of Bounds S 0.4 0.7 44 5 698 7 2 1 4
19 Implicit Invalid Cast S 0.4 0.7 42 5 680 7 2 0 4
20 Implicit Negative Array Size S 0.4 0.7 51 5 678 8 3 0 5
21 Implicit Null Dereference S 0.4 0.6 43 5 677 6 1 0 6
22 Multi-Catch S 0.5 0.6 46 5 748 7 1 1 2
23 Throw-Catch S 0.5 0.8 116 5 903 22 8 0 13
24 Try-Finally S 0.5 0.8 117 5 847 15 2 4 3
25 Implicit Division By Zero K 0.4 0.7 62 5 719 10 3 0 7
26 Implicit Index Out of Bounds K 0.4 0.7 44 5 698 7 2 1 4
27 Implicit Invalid Cast K 0.4 0.7 42 5 680 7 2 0 4
28 Implicit Negative Array Size K 0.4 0.7 51 5 678 8 3 0 5
29 Implicit Null Dereference K 0.4 0.6 43 5 677 6 1 0 6
30 Throw-Catch K 0.5 0.9 110 5 924 22 8 0 12
31 Try-Finally K 0.5 0.8 108 5 843 15 2 4 3

total 13.9 22.9 2 357 179 770 484 97 28 202
average 0.4 0.7 76 5 799 16 3 1 7

Table 6. Verification experiments that demonstrate BYTEBACK’s support for exception-related fea-
tures. Each row corresponds to a feature experiment that verified one program with exceptional
behavior. The columns are as in Table 5 (the LANGuages are abbreviated as J 8 for Java 8, J 17 for
Java 17, S for Scala 2.13, K for Kotlin 1.8).

methods (for example, when trying to get elements from an empty list). Thanks to BBlib’s features
(including the @Attach mechanism described in Section 3.5), we could add annotations without
modifying the implementation of these classes. Note, however, that we verified relatively simple
specifications, focusing on exceptional behavior; a dedicated support for complex data structure
functional specifications [18, 41] exceeds BBlib’s current capabilities and belongs to future work.
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# EXPERIMENT LANG ENCODING VERIFICATION SOURCE BOOGIE MET ANNOTATIONS

TIME [s] SIZE [LOC] 𝐵 𝑆 𝐸

32 Binary Search J 8 0.4 0.7 52 5 680 6 4 4 1
33 Counter J 8 0.4 0.7 51 5 729 6 1 1 4
34 GCD J 8 0.4 0.6 48 5 697 6 4 1 1
35 Linear Search J 8 0.4 0.6 62 5 657 9 6 6 2
36 Max (double) J 8 0.4 0.8 46 5 729 6 4 3 1
37 Max (int) J 8 0.4 0.8 46 5 725 6 4 3 1
38 Selection Sort (double) J 8 0.5 1.9 97 5 882 14 12 3 1
39 Selection Sort (int) J 8 0.4 1.7 97 5 877 14 12 3 1
40 Sequences J 8 0.4 0.7 38 5 711 4 1 1 2
41 Square of Sorted Array J 8 0.4 0.6 61 5 691 7 5 1 1
42 Sum J 8 0.4 0.6 44 5 678 5 3 1 1
43 ArrayList J 8 0.6 3.1 2 630 13 974 288 14 0 24
44 LinkedList J 8 0.6 3.0 2 479 11 814 371 9 4 17
45 Summary J 17 0.4 0.6 48 5 661 5 3 2 1
46 Read Resource J 17 0.4 0.8 102 6 091 18 13 4 6
47 Counter S 0.5 0.7 49 5 703 8 4 3 3
48 GCD S 0.5 0.6 45 5 708 5 3 1 1
49 Linear Search S 0.5 0.6 46 5 609 6 4 3 1
50 Max (double) S 0.5 0.8 47 5 738 6 4 3 0
51 Max (int) S 0.5 0.7 48 5 735 6 4 3 1
52 Selection Sort (double) S 0.5 1.9 100 5 892 14 12 3 1
53 Selection Sort (int) S 0.5 1.5 100 5 888 14 12 3 1
54 Counter K 0.4 0.7 47 5 720 8 4 3 3
55 GCD K 0.4 0.6 44 5 728 5 3 1 1
56 Linear Search K 0.4 0.6 43 5 795 6 4 3 1
57 Max (double) K 0.5 0.7 48 5 924 6 4 3 1
58 Max (int) K 0.4 0.7 48 5 947 5 4 3 1
59 Selection Sort (double) K 0.5 2.0 99 6 073 14 12 3 1
60 Selection Sort (int) K 0.5 2.0 99 6 073 14 12 3 1

total 13.3 30.9 6 764 182 133 882 181 75 81
average 0.5 1.1 233 6 280 30 6 3 3

Table 7. Verification experiments that demonstrate BYTEBACK’s support for verifying algorithms
involving exceptional behavior. Each row corresponds to an algorithmic experiment that verified one
program with exceptional behavior. The columns are as in Table 5 (the LANGuages are abbreviated
as J 8 for Java 8, J 17 for Java 17, S for Scala 2.13, K for Kotlin 1.8).

4.1.3 Implicit Exceptions. As explained in Section 3.5, users of BYTEBACK can enable or disable
checking of implicitly thrown exceptions. Java experiments 1–5, Scala experiments 17–21, and
Kotlin experiments 25–29 demonstrate verifying exceptional behavior triggered by division by
zero (ArithmeticException), out-of-bounds array access (IndexOutOfBoundsException), conver-
sion to incompatible types (ClassCastException), and the ubiquitous null-pointer dereferencing
(NullPointerException). Java experiments 6–10 verify instead the absence of implicit exceptional
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behavior—instead of accepting it as an acceptable method behavior as in the previously mentioned
experiments. Similarly, Java experiment 46 involves implicit exception behavior, whereas Java
experiments 36–39, Scala experiments 50–53, and Kotlin experiments 57–60 verify that no implicit
exception occurs.

4.2 Results

All experiments ran on a Fedora 36 GNU/Linux machine with an Intel Core i9-12950HX CPU
(4.9GHz), running Boogie 2.15.8.0, Z3 4.11.2.0, and Soot 4.3.0. To account for measurement noise,
we repeated the execution of each experiment five times and report the average wall-clock running
time of each experiment, split into BYTEBACK bytecode-to-Boogie encoding and Boogie verification
of the generated Boogie program. We ran Boogie with default options except for experiment 45,
which uses the /infer:j option (needed to derive the loop invariant of the enhanced for loop,
whose index variable is implicit in the source code).

All of the experiments verified successfully. To sanity-check that the axiomatization or any other
parts of the encoding introduced by BYTEBACK are consistent, we also ran Boogie’s so-called smoke
test on the experiments;11 these tests inject assert false in reachable parts of a Boogie program,
and check that none of them pass verification.

As you can see in Table 5, BYTEBACK’s running time is usually below 1.5 seconds; and so is
Boogie’s verification time. Unsurprisingly, programs 43 and 44 are outliers, since they are made
of larger classes with many dependencies; these slow down both BYTEBACK’s encoding process
and Boogie’s verification, which have to deal with many annotations and procedures to analyze and
verify.

As part of the extensions and improvements we introduced for this paper, the latest version
of BYTEBACK is more seamlessly integrated within the Soot framework, and hence performs
significantly better: the running time of BYTEBACK (column ENCODING in Table 5) is more than
halved (down to 0.5 seconds per program on average from [36]’s 1.3 seconds), and also the Boogie
running time (column VERIFICATION in Table 5) has improved (down to 0.9 seconds per program
on average from [36]’s 1.2 seconds) as a result of a streamlined encoding.

5 RELATED WORK

The state-of-the-art deductive verifiers for Java include OpenJML [13], KeY [1], and Krakatoa [15];
they all process the source language directly, and use variants of JML specification language—which
offers support for specifying exceptional behavior.

11Smoke tests provide no absolute guarantee of consistency, but are often practically effective.
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Exceptional Behavior Specifications. Unlike BBlib, where postconditions can refer to both
exceptional and normal behavior, JML clearly separates between the two, using ensures and
signals clauses (as demonstrated in Figure 11). These JML features are supported by OpenJML,
KeY, and Krakatoa according to their intended semantics.

//@ ensures this.a == a;

//@ signals (Throwable) this.a == a;

public void m(int a)

{ this.a = a;

if (𝜖) throw new RuntimeException(); }

@Ensure(this.a = a)

public void m(int a)

{ this.a = a;

if (𝜖) throw new RuntimeException(); }

Fig. 11. Equivalent exceptional specifications in JML (left) and BBlib (right).

Implicit Exceptional Behavior. Implicitly thrown exceptions, such as those occurring when access-
ing an array with an out-of-bounds index, may be handled in different ways by a verifier: i) ignore
such exceptions; ii) implicitly check that such exceptions never occur; iii) allow users to specify
these exceptions like explicit ones. OpenJML and Krakatoa [26] follow strategy ii), which is sound
but loses some precision since it won’t verify some programs (such as Section 2’s example); KeY
offers options to select any of these strategies, which gives the most flexibility; Similarly BYTEBACK

also offers the ability to select any of these strategies, so that users can decide how thorough the
analysis of exceptional behavior should be.

Java Exception Features. OpenJML, KeY, and Krakatoa [15] all support try-catch-finally blocks,
which have been part of Java since its very first version. The first significant extension to exceptional
feature occurred with Java 7, which introduced multi-catch and try-with-resources blocks.12 KeY
and Krakatoa support earlier versions of Java, and hence they cannot handle either feature. OpenJML
supports many features of Java up to version 8, and hence can verify programs using multi-catch or
try-with-resources—with the exception of try-with-resources using an existing final variable, a
feature introduced only in Java 9. As usual, our point here is not to criticize these state-of-the-art
verification tools, but to point out how handling the proliferation of Java language features becomes
considerably easier when targeting bytecode following BYTEBACK’s approach.

Other Deductive Verifiers. The few other deductive verifiers for Java typically focus on features of
the Java language other than exceptions [30]. VerCors [9] is a verifier for concurrent and distributed
software using separation logic for specification; it supports pre-Java 7 exception features13 such

12 https://www.oracle.com/java/technologies/javase/jdk7-relnotes.html
13https://github.com/utwente-fmt/vercors/wiki/Exceptions-&-Goto#support

https://www.oracle.com/java/technologies/javase/jdk7-relnotes.html
https://github.com/utwente-fmt/vercors/wiki/Exceptions-&-Goto#support
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as try/catch/finally blocks, and some JML features to specify exceptional behavior (mainly, the
signals clause), with some restrictions14 such as that any exception that can be thrown must be
mentioned in a throws or signals clause. VeriFast [19, 20] is a modular verifier for C and Java
programs annotated with separation logic specifications; VeriFast supports “most of Java 1.0”15—in
particular, try/catch/finally blocks and throws clauses. Plural [6, 8] is a modular static checker
of object protocols specified using typestates and fractional permissions; given this focus, it lacks
support for some Java features such as exceptions [30, § 2.3].

Intermediate Representation Verifiers. A different class of verifiers—including JayHorn [21, 45],
SeaHorn [17], and SMACK [43]—target intermediate representations (JVM bytecode for JayHorn,
and LLVM bitcode for SeaHorn and SMACK). Besides this similarity, these tools’ capabilities
are quite different from BYTEBACK’s: they implement analyses based on model-checking (with
verification conditions expressible as constrained Horn clauses, or other specialized logics), which
provide a high degree of automation (e.g., they do not require loop invariants) to verify simpler,
lower-level properties (e.g., reachability). Implicitly thrown exceptions are within the purview of
tools like JayHorn, which injects checks before each instruction that may dereference a null pointer,
access an index out of bounds, or perform an invalid cast. In terms of usage, this is more similar to a
specialized static analysis tool that checks the absence of certain runtime errors [2, 10, 38] than to
fully flexible, but onerous to use, deductive verifiers like BYTEBACK.

BML [11] is a specification language for bytecode; since it is based on JML, it is primarily used
as a way of expressing a high-level Java behavioral specification at the bytecode level. This is useful
for approaches to proof-carrying code [34] and proof transformations [31], where one verifies a
program’s source-code and then certifies its bytecode compilation by directly transforming the proof
steps.

6 CONCLUSIONS AND FUTURE WORK

This paper presented the latest extension of the BYTEBACK verification approach, which equipped it
with support to reasoning about exceptional behavior of Java, as well as of other JVM languages
like Scala and Kotlin.

6.1 Bytecode Level vs. Source Level

Reasoning about exceptional behavior (as well as about other behavioral features) at the level of
Java bytecode can complement the more traditional (and mature) approaches that work at the level
of source code.

14https://vercors.ewi.utwente.nl/wiki/#exceptions
15https://verifast.github.io/verifast-docs/java_compilation_units.html

https://vercors.ewi.utwente.nl/wiki/#exceptions
https://verifast.github.io/verifast-docs/java_compilation_units.html
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The main advantages of BYTEBACK’s approach—working at the bytecode level—are its flexibility
and robustness with respect to changes and additions of source-level features. An intermediate
representation like bytecode is invariably more stable (in terms of features and their semantics) than
a feature-laden, modern programming language like Java. As a result, BYTEBACK can seamlessly
analyze programs written in any version of Java (and even in other JVM languages), whereas
source-level verifiers such as KeY and OpenJML are limited to analyzing earlier versions of Java.
Even when updating a source-level verifier to handle a new language feature would be conceptually
straightforward, every new language release aggravates the burden on the verifier’s developers, and
diverts effort that could be better spent on improving the verification capabilities on the currently
supported Java feature set.

At the same time, working at the level of an intermediate representation has its own challenges,
which stem from the wide abstraction gap between the source level and the bytecode level. Whereas
a source-level verifier can use comments, or any other convenient, high-level notation to express
specifications, bytecode-level verification is limited to formats that are expressible as code and
“survive” compilation to bytecode. BYTEBACK introduced BBlib to this effect; while BBlib an-
notations do the job, they tend to be more cumbersome and verbose than if one used a custom
specification language such as JML. Another disadvantage of targeting bytecode-level verification
is that it may make debugging failed verification attempts harder: if Boogie fails when verifying a
program produced by BYTEBACK, the location and nature of the failure may be hard to trace back
to the source level. In particular, there are features of the generated Boogie programs that are just
a figment of BYTEBACK’s encoding (for example, the explicit exceptional control flow, which is
implicit at the source level) or of the compilation to bytecode (for example, a for-each loop in Java
gets compiled down to a bytecode loop with an explicit loop counter variable, which doesn’t exist in
the source code).

Overall, BYTEBACK’s approach is meant to complement—rather than replace—the core work in
source-level deductive verification, and make it readily available to the latest languages and features.

6.2 Future Work

In future work, we plan to address several of BYTEBACK’s main limitations:

• BYTEBACK currently only offers a very primitive support for class invariants, which severely
limits the kinds of properties of complex object structures that it can verify. In future work,
we would like to equip BYTEBACK with a modern invariant methodology [4, 5, 12, 14, 24,
25, 32, 39, 40, 42, 46].

• While BYTEBACK’s current version has some capability of reasoning about invokedynamic
calls, it remains too limited to verify advanced functional features. Here, part of the challenge
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is devising a suitable notation that can be used to specify the behavior of function objects in
a genuinely modular way.

• A natural direction to make BYTEBACK more palatable to the end user is providing a
specification notation that is more natural and concise than BBlib. As discussed in the paper,
we developed BBlib with the primary goal of being fully reusable with any JVM-compatible
language, and fully available at the bytecode level without requiring any processing of the
source code on top of what is done by the standard compilers. We are definitely open to
the idea of relaxing some of these constraints to add support for more standard notations
(JML is the prime example [23]), provided BBlib remains available as a lingua franca for all
situations where its greater flexibility is needed.

• While Boogie remains widely used as an intermediate verification language, it could be
interesting to explore alternatives—in particular, the well-known Why3 platform [16]. Why3
is based on the WhyML language, a member of the ML family of functional languages.
Some of its features (such as exception handling, algebraic data types, termination checks,
and a modular library of theories) make it a somewhat complementary alternative to Boogie,
which could bring advantages to encode and verify features of bytecode such as exceptions,
and the aforementioned functional features.
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