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Abstract. Subtyping in object-oriented languages is widely based on Liskov’s
substitution principle, which offers static correctness guarantees of type safety
while abstracting implementation details. Unfortunately, the type systems of lan-
guages like Java cannot statically enforce full behavioral substitutability, and in
fact there are numerous examples of libraries some of whose components are
related by inheritance but not substitutable (for example, because they do not
implement “optional” operations).
In this paper, we present a novel approach to precisely specify and reason about
substitutability in JVM languages. A distinctive feature of our approach is that
it targets JVM bytecode, as opposed to a program’s source code, as it is based
on the BYTEBACK deductive verifier. To support reasoning about substitutabil-
ity, we extended BYTEBACK with ghost specifications, a (restricted) form of class
invariants, and substitutability-preserving specification inheritance (precondition
weakening and postcondition strengthening). Equipped with these features, BYTE-
BACK can now reason precisely about behavioral substitutability violations in a
way that is applicable to realistic examples (such as with optional operations of
Java’s List interface). Our experiments also demonstrate that BYTEBACK can an-
alyze substitutability in programs written in a combination of JVM languages,
including multi-language code where Scala or Kotlin code interacts with Java
libraries.

1 Introduction
Since Liskov and Wing’s influential work [17], behavioral substitutability is a widely
accepted, fundamental requirement of types related by subtyping—especially relevant
for object-oriented programming [20]. Informally, a type T is substitutable for another
type S if replacing an instance of S with an instance of T does not break the behavior of
the code using it. Thus, a type system that can statically check substitutability combines
correctness guarantees (absence of behavioral incompatibility errors) with flexibility
(transparently switching between different implementations through polymorphism).
This is why most modern statically typed object-oriented languages are designed with
type systems that enforce substitutability.

Unfortunately, other features of a programming language may still allow developers
to bypass a type system’s static checks and introduce subtypes that are not truly substi-
tutable. Take the example of Java: the overriding of a method m in a class D that inherits
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from another class C can simply throw an UnsupportedOperation exception; then, D is
not substitutable for C, because the call o.m() terminates normally if o is an instance of
C, and exceptionally if it is an instance of D—even though D is a subtype of C because
they are related by inheritance. This substitutability-breaking pattern is not merely a
theoretical possibility: there is empirical evidence that it is (deliberately) adopted in
popular Java libraries to selectively enable or disable inherited operations [27,18,19].

In this paper, we introduce an approach to model behavioral substitutability con-
straints within a deductive verification framework, which we use to precisely reason
about the behavior of programs involving these features. We develop our approach on
top of our BYTEBACK verifier [23,22], which works on JVM bytecode. Extending BYTE-
BACK makes our approach applicable to different languages that run on the JVM, such
as (any versions) of Java, as well as (subsets of) Scala and Kotlin. This capability is
especially relevant when verifying Scala or Kotlin programs that use Java libraries with
optional operations, such as in Sec. 2’s capsule example; using our approach, we are
able to consistently check substitutability violations (or to prove their absence) even in
multi-language programs.

To support reasoning about substitutability, we extend BYTEBACK with three speci-
fication features, which we present in detail in Sec. 3: i) Ghost specification predicates,
which we use as “flags” denoting whether a certain operation is or is not available;
ii) A (restricted) form of class invariants, which specify, in each concrete class, which
specification predicates hold; iii) Substitutability-preserving specification inheritance
(precondition weakening and postcondition strengthening), which propagates the infor-
mation about available operations through the inheritance hierarchy.

While these specification features are fairly standard in source-level deductive ver-
ifiers for object-oriented languages (for example, JML-based verifiers such as KeY [1]
and OpenJML [6] support them), they become considerably more challenging to imple-
ment at the level of bytecode—in a way that is applicable to multi-language programs,
and without access to any source code of clients or libraries. As we discuss in Sec. 3.6,
our approach relies on mechanisms to “attach” a specification to existing classes in the
system, as well as to correctly propagate such attached specifications to other classes
that are related by inheritance.

The extension of BYTEBACK described in the present paper is, to our knowledge,
the first deductive verification technique that can reason about behavioral properties of
programs combining different JVM languages. Even when applied to single-language
programs, working at the level of bytecode has the advantage of handling robustly any
versions of Java (and other JVM languages); in contrast, as we discuss in Sec. 5, source-
level deductive verifiers usually only support older versions of Java. Another distin-
guishing capability of our approach is verifying programs that use complex libraries
(such as the JDK) by directly analyzing the compiled bytecode, without need to build
or access the libraries’ source code. Sec. 4 discusses several experiments that demon-
strate these capabilities on benchmark examples in Java, Kotlin, and Scala.
Contributions and positioning. In summary, the paper makes the following contribu-
tions: i) Specification features to express substitutability properties on top of the type
system of JVM languages; ii) A verification technique based on these specification fea-
tures; iii) An implementation of the verification technique built on top of the BYTEBACK

verifier [23]; iv) An experimental evaluation with 22 programs involving unsupported
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operations in Java, Kotlin, and Scala; v) For reproducibility, our version of BYTEBACK

and all experimental artifacts are available in a replication package [24].
While our implementation is based on BYTEBACK’s previous instances [23,22], this

paper’s contributions substantially extend our previous work with specification and ver-
ification features necessary to reason about behavioral substitutability, and with a newly
engineered implementation that makes them applicable to single- and multi-language
bytecode programs. For simplicity, “BYTEBACK” will refer to the new verification tech-
nique, and its implementation, described in the rest of this paper—unless we explicitly
point out that we are referring to earlier work.

List<Integer> ml = new ArrayList<Integer>();
// valid call: ml is mutable
ml.add(42);

List<Integer> il = List.of(1, 2);
// invalid call: il is immutable
il.add(42);

(a) The second call to method add is accepted by the
Java compiler, but results in an exception at runtime
because List.of returns an immutable List.

val bi: Buffer[Int] = java.util.List.of(1, 2).asScala
// invalid call: bi is immutable
bi.append(42)

(b) The call to method append is accepted by the Scala compiler,
but results in an exception at runtime because Java’s List.of returns
an immutable List, but asScala converts all instances of List to
instances of mutable Buffer.

@Attach(java.util.List)
interface ListSpec<T> {

@NoState @Behavior
boolean is_mutable();

@Raise(UnsupportedOperationException.class, when =¬is_mutable())
@Return(when = is_mutable())
boolean add(T element);

@Abstract
@Ensure(¬result.is_mutable())
static <E> List<E> of(E e1, E e2)
{ return null; }

}

(c) An excerpt of BYTEBACK’s specification of java.util.List.

@Attach(java.util.ArrayList)
@Invariant(Ghost.of(
ListSpec.class, this
).is_mutable())
public class ArrayListSpec<T> {
// ...

}

@Attach(java.util.LinkedList)
@Invariant(Ghost.of(
ListSpec.class, this
).is_mutable())
public class LinkedListSpec<T> {
// ...

}

(d) Class invariants of java.util’s
ArrayList and LinkedList.

@Require(Ghost.of(classOf[ListSpec[A]], this).is_mutable())
@Return
def asScalaBufferConverter[A](l: java.util.List[A]): AsScala[Buffer[A]]

(e) An excerpt of BYTEBACK’s specification of Scala’s asScalaBufferConverter, called
by asScala to convert a Java List to a mutable Scala Buffer.

Fig. 1: An example of behavioral substitutability errors that are uncaught by the Java and Scala
type systems, which can be precisely analyzed with this paper’s deductive verification technique.
The annotations use a simplified BBlib syntax, similar to the one used in previous work on BYTE-
BACK [23,22].

2 Motivating Example
The best-known example of Java libraries that violate behavioral substitutability is prob-
ably that of java.util’s collections—in particular, interface List. Operations such as

3



add are denoted optional, and hence some concrete classes inheriting from List may
choose not to implement those operations, or to implement them only for a restricted
set of valid inputs.

Fig. 1a shows a snippet of Java code that incurs this issue. First, there is a call of add
on target ml, which is an instance of ArrayList. Since ArrayList is a subtype of List
that implements all optional operations, the call ml.add(42) returns without errors.
Then, there is a call of add on target il, which is an instance of List returned by static
method List.of. As explained by the JDK’s documentation, List.of always returns
immutable lists;[a] therefore, the call il.add(42) fails with an UnsupportedOperation

exception. However, the compiler accepts this code because, according to the type sys-
tem’s rules, every instance of List should support method add.

Fig. 1b demonstrates the same kind of problem in Scala code that uses Java data
structures. Scala’s library function asScala converts instances of java.util.List to
instances of mutable.Buffer; this is usually sound, because Java lists are generally
mutable. However, List.of actually returns an immutable list, which asScala simply
wraps around; hence, calling modification operations, such as append, on instance bi of
Buffer results in an exception at runtime. Even though Scala’s own collection library
has been carefully designed to avoid such behavioral substitutability problems, Scala
code may still indirectly suffer from the limitations of Java’s collections design.

To round off this brief diagnosis of the problem, we observe that the issue with
using methods such as List.of is twofold: i) first, this method returns instances of
List where some operations are not available (breaking List’s behavioral interface);
ii) second, there is no type1 corresponding to an immutable variant of List that we can
explicitly convert List.of’s output to.

Specifying substitutability. Fig. 1 outlines how our approach supports precisely spec-
ifying different behavioral variants of List. Fig. 1c shows how we equip type List with
a behavioral specification predicate is_mutable(), which returns true iff the current
instance of List is indeed modifiable. Since we do not have access to the source code
of List, BYTEBACK provides the @Attach annotation to augment any compiled class in
the system with specification elements. Method is_mutable() is marked with BYTE-
BACK annotations @Behavior (it is used for behavioral specifications, and hence any of
its implementations must be side-effect free) and @NoState (its value does not depend
on the current instance of List’s state, since a list cannot become immutable after it is
initialized).

After provisioning predicate is_mutable(), we can use it to specify any other mem-
bers of List: Fig. 1c shows the specification of methods add and of.2 For add, the speci-
fication says that it returns normally when is_mutable() is true, and with an exception
when is_mutable() is false. For of, the specification says that it returns an instance
result of List for which is_mutable() does not hold—which is how we specify
that List.of returns unmodifiable lists. Since Java does not allow static abstract

methods, we provide a dummy implementation of static method List.of, but the
@Abstract annotation instructs BYTEBACK to effectively ignore it.

1 While there is a class ImmutableCollections in the JDK,[b] it is not part of the public API,
and hence it is inaccessible to clients.

2 For simplicity, we only show the two-argument variant of List.of.
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Fig. 2: An overview of BYTEBACK’s verification workflow.

Fig. 1d lists other specifications that use is_mutable(). Precisely, we equip con-
crete classes ArrayList and LinkedList—both subclasses of List—with a class
@Invariant: is_mutable() always holds for their instances. The syntax of these class
invariants is somewhat cumbersome, as it uses a utility method Ghost.of that we
designed as part of this paper’s contributions. Since specification predicates such as
is_mutable() are only supplied during BYTEBACK’s analysis—after the Java program
under verification has been compiled into bytecode—we cannot rely on Java’s stan-
dard inheritance mechanisms to propagate specification elements to subclasses. In-
stead, BYTEBACK deploys a custom specification propagation algorithm, which weaves
usages of Ghost.of into the type hierarchy during analysis. In Fig. 1d, Ghost.of is
used to equip this (the current instance of ArrayList or LinkedList) with predicate
is_mutable() declared in ListSpec.

Fig. 1e uses is_mutable() to specify a precondition for asScalaBufferConverter,
to which asScala delegates the conversion of a Java List to a Scala mutable Buffer.
Using in Scala the same mechanisms seen in ArrayList’s specification, Fig. 1e states
that only mutable Java lists can be converted to mutable Scala buffers.
Verifying substitutability. Equipped with Fig. 1c and Fig. 1d’s specifications, BYTE-
BACK can reason precisely about Fig. 1a’s example. Thanks to ArrayList’s class in-
variant, it knows that ml.add(42) terminates normally; thanks to List.of’s postcon-
dition, it knows that il.add(42) terminates by throwing an UnsupportedOperation

exception—which may or may not be correct behavior, depending of whether the sur-
rounding code expects that exception. BYTEBACK also issues a verification error for
Fig. 1b’s example: the call to asScala violates Fig. 1e’s precondition, and hence it is
invalid.

3 How BYTEBACK Specifies and Verifies Substitutability
Fig. 2 overviews how the deductive verification technique described in this paper works.
Since our contributions is built atop BYTEBACK, the overall workflow remains similar
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to the one introduced in BYTEBACK’s previous work [23,22]—with some important
differences that we outline in Sec. 3.1 and Sec. 3.5 and describe in greater detail in the
other subsections.

3.1 BYTEBACK Specification: Overview

Users of BYTEBACK add specifications the source code by means of BBlib—BYTE-
BACK’s source-level annotation library. Sec. 3.2 summarizes the core annotations pro-
vided by BBlib (such as pre- and postconditions), as well as those that are especially
geared towards the present paper (such as class invariants). A key novel feature are at-
tached specifications: users can list specification elements in separate ghost classes, and
instruct BYTEBACK to weave them into the project under verification’s implementation.
Sec. 3.3 describes this mechanism, which is especially useful to supply specifications
for components whose source code is not available (including system libraries). In an
object-oriented language, subtyping is connected to class inheritance; correspondingly,
Sec. 3.4 describes how BBlib’s specifications are also inherited, following rules that
are consistent with behavioral subtyping (i.e., precondition weakening and postcondi-
tion strengthening).

3.2 BBlib Specification Elements

BBlib annotations include all fundamental behavioral specification elements; since they
were introduced in the previous work on BYTEBACK, we only summarize them here to
make the paper self contained. Method specification elements include preconditions
(@Require) and postconditions (@Ensure), as well as annotations to specify exceptional
vs. normal behavior: @Raise(E, when = c) specifies a method that throws an excep-
tion of class E when it is called on an object where condition c holds; conversely,
@Return(when = c) specifies a method that returns normally when it is called on an
object where condition c holds. For example, Fig. 1c specifies that method List.add

terminates normally if this.is_mutable() holds, and with an UnsupportedOperation

exception otherwise.
Method bodies may include generic assertions (assertion(c) leads to a verifica-

tion error iff c does not hold when execution reaches it), assumptions (assumption(c)
ignores all executions where c does not hold), and loop invariants (invariant(c) cap-
tures the fundamental inductive property of the loop where it appears).

Class-level specifications use annotation @Invariant(c), which asserts that prop-
erty c must hold for all instances of the specified class. For instance, Fig. 1d anno-
tates class ArrayList with the invariant ℓ.is_mutable(), which every object ℓ of
class ArrayList must satisfy. Such support for class invariants has been introduced
in BYTEBACK only recently, as it is necessary to reason about substitutability. Nev-
ertheless, BYTEBACK’s class invariants are still limited in expressiveness: a class C
with @Invariant(I) is simply equivalent to annotating every method of C with a
“free”3 precondition I and a (regular) postcondition I , and every constructor of C with
a postcondition I . This simple class invariant semantics is sufficient for this paper’s
purposes, but it falls short of a full-fledged invariant methodology [15,16,28,5,12,26],
which should support temporary violations of the class invariant (for example, by pri-

3 A free precondition is an assumption about a method’s pre-state.
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vate methods), as well as expressing invariants that depend on the state of multiple
objects.

BBlib expresses specification predicates as methods marked with @Behavior. BYTE-
BACK checks that every method m equipped with such annotation can be expressed as a
purely logic predicate: i) m must return a boolean, ii) have a signature consistent with
m, iii) be pure and aggregable,4 and iv) only call other @Behavior methods. Annotation
@Behavior generalizes the @Predicate annotation used in previous work [23,22], since
@Behavior also allows recursive calls in a behavior method body. Other annotations
further constrain what a behavior method can predicate over. By default, a behavior
method b used to specify a method m has access to m’s arguments (possibly including
its returned value, if m does not return void), as well as to the current object’s state
(e.g., through its fields). If b is annotated with @NoState, it cannot depend on the ob-
ject state directly. Conversely, if b is annotated with @TwoState, it can also access the
current object’s pre-state (the state just before executing m). Thus, @TwoState behaviors
are used in postconditions, where they relate the post-state to the pre-state. On the other
hand, @NoState behaviors are useful to specify properties that hold “absolutely”, such
as is_mutable() in Fig. 1c: an instance of List is either mutable or immutable, and
cannot change this property without being explicitly converted into a new object. Thus,
annotation @NoState is especially useful for behavioral substitutability properties like
those we reason about in this paper; declaring them as @NoState simplifies framing,
since BYTEBACK only needs to check that their definitions do not refer to the object
state.

3.3 Attached and Ghost Specifications

In previous work, all BBlib annotations had to be introduced in the source code of the
element they refer to; for example, a method m’s postcondition had to appear just before
m’s declaration in the program. This mechanism is limiting in all cases where we do not
have access to a program’s source code, or we simply do not want to alter it in any way.
Fig. 1’s example is a representative instance of this scenario: even if we had access to
the source code of the JDK’s collections library, recompiling them just to introduce a
handful of specification elements would be practically very inconvenient. In this work,
we introduce the attaching mechanism, which enables users to add specifications to any
element of the program under verification, regardless of whether they have access to its
source code.

Attached specifications. A class S annotated with @Attach(C) instructs BYTEBACK

to apply all specification features introduced in S to class C. Precisely, the specification
of any method m in S whose signature matches that of a method with the same name in
C is used as specification of m in C. The attaching mechanism is compositional: users
can attach multiple specification classes to the same class C—each specifying only a
part of C’s interface. If C includes some source-level specification of its own, users
can selectively keep some of them, while overriding (or adding) the specifications of
other methods. Take the example of Fig. 1c: specification class ListSpec only provides
specifications for methods add and of in List. An “attached” specification class may

4 Intuitively, “aggregable” means that it does not translate to branching instructions in bytecode;
see previous work on BYTEBACK for a precise definition [22].
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also include additional methods, typically to introduce predicates and other specifica-
tion elements—such as method is_mutable() in Fig. 1c’s attached specification class
ListSpec.
Ghost specifications. Ghost code denotes code that is introduced only for the pur-
pose of expressing a specification (or other annotations needed for deductive verifica-
tion purposes) [9]. The term “ghost” was chosen because it suggests that it could be
removed without having any effects on the program’s behavior. According to this def-
inition, all BBlib annotations are ghost code; however, in this paper we will use the
term “ghost specification” in a stricter sense to denote only attached specifications.
The distinction matters for BYTEBACK because an attached specification, unlike a reg-
ular source-level specification, is not processed by the compiler consistently with its
intended semantics. In particular, ghost specifications are not propagated by inheri-
tance because the compiler does not know that they refer to methods in a different
class from where they are declared. To work around this limitation, we equipped BBlib

with the Ghost.of operator, which provide a means to link elements of ghost spec-
ifications introduced in different attached specification classes. Fig. 1d shows exam-
ples of using Ghost.of to specify the class invariants of ArrayList and LinkedList:
Ghost.of(ListSpec.class, this).is_mutable() refers to specification predicate
is_mutable(), introduced in specification class ListSpec, and evaluated on an instance
this of the specified classes ArrayList and LinkedList. During analysis, BYTEBACK

will first weave is_mutable() into List, propagate it to its subtypes ArrayList and
LinkedList, and finally rewrite the Ghost.of annotation so that it correctly refers to
this attached method is_mutable().

@Invariant(IA)
class A {

@Require(PA)

@Ensure(QA)

S m()

}

@Invariant(jB)
class B extends A {

@Override

@Require(rB)
@Ensure(eB)
S m()

}

@InvariantOnly(IC)
class C extends A {

@Override

@RequireOnly(PC)

@EnsureOnly(QC)

S m()

}

Fig. 3: Three classes A, B, and C related by inheritance, and their specifications.

3.4 Specification Inheritance

Behavioral substitutability constrains how the specification of a method can change
between classes that are related by inheritance [20]. Consider two classes A and B such
that B is a subclass of A; a method m is defined in A and overridden in B; PA and QA

denote A.m’s pre- and postcondition.

precondition weakening: B.m’s precondition PB must be weaker or as strong as PA; in
formulas: PA =⇒ PB.
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postcondition strengthening: B.m’s postcondition QB must be stronger or as strong as
QA; in formulas: QB =⇒ QA.

As it is customary in behavioral specification languages [10], BYTEBACK interprets
pre- and postcondition annotations in a way that enforces such overriding constraints.
Fig. 3 shows classes A and B as above, whose methods m are annotated with BBlib’s
@Require and @Ensure, which define the following pre- and postconditions:

– B.m’s precondition PB is the disjunction PA ∨ rB; since PA =⇒ PA ∨ rB, this is a
weakening of A.m’s precondition.

– B.m’s postcondition QB is the conjunction QA ∧ eB; since QA ∧ eB =⇒ QA, this is a
strengthening of A.m’s postcondition.

When more freedom in the definition of the specification of overridden methods is
needed, BBlib offers annotations @RequireOnly and @EnsureOnly, also demonstrated
in Fig. 3’s class C: C.m’s precondition is just PC, and C.m’s postcondition is just QC as
declared. When verifying a program annotated with @RequireOnly or @EnsureOnly,
BYTEBACK generates additional explicit verification conditions that check that all the
@RequireOnlys introduce weaker formulas, and the @EnsureOnlys introduce stronger
formulas. In Fig. 3’s example, BYTEBACK would check that formulas PA =⇒ PC and
QC =⇒ QA are valid.

Finally, the inheritance of class invariants is consistent with their semantics (dis-
cussed in Sec. 3.2): the class invariant IB of a class B inheriting from A must be stronger
or as strong as A’s class invariant IA. The @Invariant annotation enforces this constraint
by taking the conjunction of all declared invariants: in Fig. 3, class B’s class invariant IB
is IA∧jB, which is a strengthening of IA. Similarly to pre- and postconditions, annotation
@InvariantOnly declares a full class invariant explicitly, and checks that it is indeed a
strengthening during verification. In Fig. 3, the class invariant of class C is literally IC,
but BYTEBACK will check that IC =⇒ IA holds.

3.5 BYTEBACK Verification: Overview

BYTEBACK’s verification process inputs a project’s bytecode, usually packed in a .jar

file that includes all compiled source code and BBlib annotations in several classes.
BYTEBACK queries Soot [13,11]’s scene object to extract static information about the
bytecode under analysis, and to ultimately translate the input program’s semantics into
the intermediate verification language Boogie [3]. To this end, BYTEBACK first performs
attaching (described in Sec. 3.6): it weaves the specification elements supplied in sepa-
rate classes into the source code they refer to. Then, as outlined in Sec. 3.7, BYTEBACK

performs a series of incremental, mostly local transformations of each method’s byte-
code, which explicitly model the program’s behavior—such as the modular semantics of
method calls, or the exceptional control flow. These transformations work on the Vimp
intermediate representation: an extension with specification features of Soot’s Jimple
readable bytecode representation [22]. Since specifications are provided as BBlib anno-
tations (possibly even in separate classes, using the @Attach mechanism), they are not
available, in general, down the inheritance hierarchy, since the compiler is not aware
of their intended semantics. Therefore, BYTEBACK also takes care of explicitly propa-
gating specifications according to inheritance from the Vimp methods where they were
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explicitly introduced (see Sec. 3.8). After all these transformations, BYTEBACK finally
encodes the ensemble Vimp components into a Boogie program that faithfully encodes
the semantics of the input program and its specification. BYTEBACK’s output Boogie
program can be verified with the Boogie intermediate verifier to determine whether the
input JVM program is correct.

@Attach(A)

@Invariant(IASpec)
abstract class ASpec {

@Require(PASpec)

@Ensure(QASpec)

S m() { /* ... */ }

@Behavior

abstract boolean f();

}

(a) Attached specification class ASpec.

abstract class A {

abstract S m();

@Require(PA)

S n() { /* ... */ }

}

(b) Partially specified class A.

@Invariant(IASpec)
abstract class A {

@Require(PASpec)

@Ensure(QASpec)

S m() { /* ... */ }

@Require(PA)

S n() { /* ... */ }

@Behavior

abstract boolean f();

}

(c) Class A after attaching ASpec to it.

Fig. 4: An example of how attaching works in BYTEBACK. Empty padding added for clarity.

3.6 Attaching

By querying Soot’s scene for the program under analysis, BYTEBACK retrieves all sorts
of information about classes, their inheritance relation, their member declarations and
implementations, and so on. BYTEBACK first processes each class S annotated with
@Attach(C), and copies the specification elements from S to C. If an element specified
in S already has a specification in C, the attaching process replaces C’s specification
with S’s. Attaching can also be used to replace implementations: if a method is declared
as abstract in C but is given an implementation in S, the attaching process copies this
implementation into C. Fig. 4 shows an example of attaching: class A in Fig. 4b includes
an abstract method m and a concrete method n; the latter is annotated with a precondition
PA. The process of attaching Fig. 4a’s class ASpec to A produces what shown in Fig. 4c:
now, A includes a class invariant and a specification predicate f; in contrast, attaching
does not modify method n or its specification, since n is not declared in ASpec; finally,
method m gets the specification declared in ASpec, as well as its implementation.

Attaching can also target the parts of a program that are only available as external li-
braries, without access to their implementation. In such cases, attaching equips a library
with a specification, which BYTEBACK then uses to reason about client code that uses
that library. For example, Fig. 1d equips library class ArrayList with a class invariant;
BYTEBACK does not have access to ArrayList’s implementation, but can still use this
class invariant as a property of every instance of ArrayList used in the program under
verification.
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Fig. 5: BYTEBACK incrementally transform Vimp code to encode the semantics of bytecode in-
structions and specifications.

3.7 Vimp-level Transformations

After attaching, BYTEBACK performs a series of transformations to all components of
the program under verification, incrementally taking care of modeling a different aspect
of a program in a form suitable for verification. For example, there are transformations
to model the exceptional control flow, to process specification expressions, to translate
bytecode instructions, and to handle loop invariants. Fig. 5 outlines the first two lo-
cal transformations: Texc expresses the implicit exceptional control flow as an explicit
control flow; Tspec “aggregates” BBlib specification expressions, so that they can be
encoded as pure logic expressions suitable for usage as specification constructs.

All these transformations use the Vimp bytecode representation as an intermedi-
ate format, which they use to incrementally encode the semantics of the input program
and its specification in a form that is amenable to deductive verification. Vimp was
introduced in previous work [22]; in the present paper, we further extended it to accom-
modate a broader range of features that are needed for verification (in particular, a heap
model and background axioms). As a result, the final encoding of Vimp into the Boogie
intermediate verification language is even simpler than in previous versions of BYTE-
BACK; relying on Vimp even more extensively also has the advantage that if we need
to revise or extend the transformations (for example, to support a new construct with a
different semantics), retaining a consistent Boogie encoding would be straightforward
in many cases. Thus, we expect that our Vimp revision will also be useful to develop
future extensions of BYTEBACK.

Ghost inlining. We introduced two new Vimp transformations to handle some of the
features introduced in this paper. One is invariant instantiation, which we describe in
Sec. 3.8 because it is applied after specification propagation. The other is ghost inlin-
ing, which handles all calls to specification method Ghost.of described in Sec. 3.3. For
every call Ghost.of(cls, obj)—where cls is a class object representing the class
where the referenced specification element was declared, and obj is a reference to an
object to which the specification should be applied—BYTEBACK first checks that class
cls is attached to a class of type compatible with obj’s type. If that’s the case, it sim-
ply replaces the whole Ghost.of(cls, obj) with obj. For example, consider again
Fig. 1d’s class invariant: Ghost.of(ListSpec.class, this).is_mutable(); after at-
taching, this class invariant annotates class ArrayList. When it processes this annota-
tion, BYTEBACK checks that ListSpec is attached to (i.e., provides a specification for)
List, and this is of type ArrayList—one of List’s subtypes; thus, it simply rewrites
the class invariant as this.is_mutable(). Writing directly this.is_mutable() as
class invariant of ArrayList would have been rejected by the compiler: is_mutable()
is only available in List and its subclasses after attaching. Thus, BYTEBACK provides

11



the dummy method Ghost.of, which is accepted by the compiler and then rewritten by
ghost inlining.

Algorithm 1 Specification Propagation
procedure PROPAGATE(DAG)

for C ∈ TOPOLOGICALSORT(DAG) do ▷ For every class C in inheritance order
for B : C B do ▷ For every direct supertype B of C

if ¬ONLY(IC) then ▷ If C’s invariant was not an @InvariantOnly

INV(C)← INV(B) ∧ INV(C) ▷ Conjoin B’s and C’s invariants
for m ∈ OVERRIDES(C) do ▷ For every method m that C overrides

if ¬ONLY(PC.m) then ▷ If C.m’s precondition was not a @RequireOnly

▷ Disjoin B.m’s and C.m’s preconditions
PRE(C.m)← PRE(C.m) ∨ PRE(B.m)

if ¬ONLY(QC.m) then ▷ If C.m’s postcondition was not an @EnsureOnly

▷ Conjoin B.m’s and C.m’s postconditions
POST(C.m)← POST(C.m) ∧ POST(B.m)

procedure TOPOLOGICALSORT(DAG)
S ← [ ] ▷ S store the list of classes in DAG sorted by subtyping
for R ∈ ROOTS(DAG) do ▷ For every root class R

P ← [R] ▷ Initialize stack P of classes to process
while P ̸= ∅ do

C ← P.POP( ) ▷ C is the next class to process
S.APPEND(C) ▷ Add C to the end of the sorted list of classes
for D : D C do ▷ For each direct subtype of C

▷ If D is not already sorted, and all direct supertypes of D are already sorted
if D ̸∈ S ∧ ∀T : (D T ) =⇒ (T ∈ S) then

P.PUSH(D) ▷ Process D next
return S

3.8 Specification Propagation

The Vimp transformations outlined in Sec. 3.7 are mostly local to each method. Before
producing a Boogie program, BYTEBACK needs to propagate the specification elements
of classes (class invariants) and methods (pre- and postconditions) according to the in-
heritance hierarchy of the program. In fact, BYTEBACK cannot rely on the compiler to
propagate BBlib specifications, because specifications are given as BBlib annotations,
whose semantics the compiler ignores. Besides, even if the compiler could propagate
specifications given at the source-code level, it would still not be able to process at-
tached specifications, which are declared in a separate class.

Algorithm 1 presents BYTEBACK’s specification propagation algorithm. The algo-
rithm’s input is a directed acyclic graph (DAG) that represents the overall inheritance
hierarchy among classes/types; henceforth, C B denotes that class C is a child
(heir, direct descendant) subclass of B in such graph. Since Java (as well as other
JVM languages) supports a form of multiple inheritance via interfaces, inheritance
is not simply a tree but a DAG, which may have multiple roots (while all classes in-
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herit from java.lang.Object, interfaces can only inherit from other interfaces). First,
BYTEBACK uses topological sorting to produce a total ordering of all classes that re-
spects the partial inheritance order (procedure TOPOLOGICALSORT in Algorithm 1).
Then, the main procedure PROPAGATE goes through the sorted list of classes (from
supertypes to subtypes). For every class C, it defines its class invariant as the con-
junction of C’s explicitly declared class invariant and the invariants of all direct su-
perclasses of C. Similarly, for every method m overridden in C, it defines m’s pre-
condition (resp. postcondition) as the disjunction (resp. conjunction) of m’s explicitly
declared precondition (resp. postcondition) in C and the preconditions (resp. postcon-
ditions) of m in all direct superclasses of C. In all these cases, if class C’s declared
class invariant uses @InvariantOnly, or m’s declared pre-/postcondition in C uses
@RequireOnly/@EnsureOnly, the specification is not propagated from C’s superclasses.
Instead, BYTEBACK generates additional side verification conditions (not shown in Al-
gorithm 1), checking that the following implications hold:

INV(C) =⇒
∧

B : C B

INV(B) (1)∨
B : C B

PRE(B.m) =⇒ PRE(C.m) (2)

POST(C.m) =⇒
∧

B : C B

POST(B.m) (3)

Invariant instantiation. After specification propagation, BYTEBACK performs an addi-
tional Vimp transformation to express the class invariant semantics described in Sec. 3.2;
this transformation has to run after propagation, because it depends on knowing the full,
propagated class invariant of every class. First, every method m of class C with propa-
gated invariant IC is equipped with a “free” precondition (equivalent to an assumption)
IC and (regular) postcondition IC; constructors of C are also equipped with the latter. Sec-
ond, every method c_in(... C a ...) with an argument a of type C is equipped with a
free precondition a.IC (i.e., C’s invariant holds for a); and every method C c_out(...)

that returns an object of type C is equipped with a (regular) postcondition result.IC
(i.e., C’s invariant holds for the returned object). With this encoding, BYTEBACK can
reason about every usage of an object of class C according to C’s invariant.

4 Experiments
This section describes several verification experiments that demonstrate BYTEBACK’s
capabilities to reason about substitutability properties of Java data structures used by
clients in Java and other JVM languages.

4.1 Experiment Description

Each experiment consists of client code that uses data structure libraries, namely im-
plementations of java.util’s List, Set, and Map provided by Java 17’s JDK or by
Google’s Guava.[c] In each experiments, BYTEBACK inputs the client code, together
with a basic input/output specification of the data structures’ APIs—specified using the
@Attach mechanism described in the paper. The verification goal is checking that the
client code uses the data structures’ operations consistently with their specified behavior
(as well as with the expected substitutability properties).
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# EXPERIMENT LANG BYTEBACK BOOGIE SOURCE BOOGIE MET CLS ANNOTATIONS

TIME [s] SIZE [LOC] B A

1 Mutable Lists J 17 0.69 1.20 449 11 374 61 5 33 4
2 Mutable Sets J 17 0.51 0.89 451 10 193 58 6 30 5
3 Mutable Maps J 17 0.52 0.88 469 10 430 64 6 31 5
4 Nonnullable Lists J 17 0.51 0.80 470 9 571 64 6 36 5
5 Nonnullable Sets J 17 0.50 0.80 405 9 471 54 5 29 4
6 Nonnullable Maps J 17 0.51 0.89 427 9 551 60 5 30 4
7 Unmodifiable Lists J 17 0.54 0.77 450 11 399 61 6 35 5
8 Unmodifiable Sets J 17 0.52 0.76 384 10 554 51 5 28 4
9 Unmodifiable Maps J 17 0.62 0.87 405 10 632 57 5 29 4

10 Nonresizeable Lists J 17 0.70 1.11 413 11 826 55 5 32 4
11 Guava Immutable Lists J 17 0.72 0.96 390 10 004 56 5 31 4
12 Guava Immutable Sets J 17 0.51 0.72 348 9 471 48 5 25 4
13 Guava Immutable Maps J 17 0.52 0.73 374 9 375 54 5 26 4
14 Invariant Strenghtening J 17 0.45 0.63 66 7 592 7 3 4 0
15 Precondition Weakening J 17 0.53 0.84 87 7 681 15 3 6 0
16 Postcondition Strengthening J 17 0.46 0.72 91 7 668 15 3 6 0
17 Lists Conversion S 2.13 0.73 1.37 349 22 564 55 9 23 7
18 Sets Conversion S 2.13 0.69 1.31 309 20 292 47 9 17 7
19 Maps Conversion S 2.13 0.70 1.30 331 20 377 53 9 18 7
20 Lists Conversion K 1.8 0.81 1.15 457 12 187 65 5 37 3
21 Sets Conversion K 1.8 0.65 1.11 415 12 263 57 5 31 3
22 Maps Conversion K 1.8 0.53 0.88 413 9 985 59 5 30 3

total 12.90 20.67 7 953 254 460 120 1 116 567 86

average 0.59 0.94 362 11 566 51 5 26 4

Table 1: Experiments demonstrating how BYTEBACK can specify and verify substitutability prop-
erties of standard software components. Each row corresponds to an EXPERIMENT, consisting
of several pieces of client code that use library components that we specified using the features
presented in this paper. For each experiment, the table reports the LANGuage (Java, Scala, and
Kotlin) of the client code (all non-Java experiments also use JDK 17 data structures, and hence
they are multilingual); the wall-clock time (in seconds) taken by BYTEBACK to produce a Boogie
program, and by BOOGIE to verify it; the size (in non-empty lines of code) of the SOURCE pro-
gram with its annotations, and of the generated BOOGIE program; the number of methods (MET)
and classes (CLS) that make up the program and its specification; the number P of specification
predicates (@Behavior), and the number A of attached specification classes (@Attach) .

Tab. 1 gives some details about the experiments: out of 22 experiments, 16 are writ-
ten in Java 17, 3 in Scala 2.13, and 3 in Kotlin 1.8. These are the languages of the
verified client code, which uses data structure libraries written in Java 17; therefore, the
Scala and Kotlin experiments are effectively multi-language, as they involve manipu-
lating Java data structures within a different JVM language. Java experiments 14–16
are different than the others: they are simpler, as they focus on demonstrating BYTE-
BACK’s support for non-inherited class invariants, pre-, and postconditions defined with
@InvariantOnly, @RequireOnly, and @EnsureOnly (discussed in Sec. 3.4).
Data structure properties. Here is a summary of the data structure behavioral prop-
erties that we specified in our experiments.

Mutability. A collection is mutable if it supports adding and removing elements to it,
as well as replacing existing elements; LinkedList and ArrayList are examples
of mutable collections. Conversely, a collection is immutable if it does not support
adding, removing, or replacing its elements; Collections.unmodifiableList is
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an example of method that returns lists that are immutable. Since adding and re-
moving are optional operations of the various collection interfaces, the implemen-
tations of methods such as List.add in an immutable collection simply throw an
UnsupportedOperation exception (as demonstrated in Sec. 2’s example).

Resizeability. A collection is nonresizeable if it does not support adding and remov-
ing elements to it; conversely, it is resizeable if it does support such operations.
A mutable data structure is also resizeable; thus, LinkedList and ArrayList are
also examples of resizeable collections. In contrast, there exist collections that are
nonresizeable but are still modifiable: method Arrays.asList produces an array-
backed list whose elements can be replaced, but not added or removed (because its
size is fixed to be that of the backing array).

Nullability. With a little abuse of terminology, we call a collection nullable if it can
store null as elements; and nonnullable otherwise. Method List.of produces lists
that are immutable and nonnullable: passing a null value to this method is accepted
by the Java compiler but results in a NullPointer exception at runtime.

Java experiments. In the experiments, we equipped the various collection classes with
specifications that characterize whether they are mutable, resizeable, and nullable; and
their operations with pre- and postconditions that express when they are available (for
example, add terminates exceptionally in nonresizeable collections) and the properties
of the objects they return. These specification rigorously express the information that
is available in the natural-language documentation of the corresponding Java libraries,
but is not accurately captured by the (public) types in the actual implementations. As
we discussed in Sec. 2, equipping these specifications relies on the attach mechanism
to annotate libraries whose implementation is not directly available to BYTEBACK. With
these annotations, BYTEBACK can precisely verify the expected behavior of client code,
such as distinguishing between the List instances in Fig. 1a—one of them is mutable,
the other is not.
Scala and Kotlin experiments. The experiments with Scala and Kotlin client code
demonstrate how these fine-grained properties of collections interact with the conver-
sion mechanisms these other JVM languages provide to reuse Java collections. Scala
and Kotlin have their own collections libraries, designed based on a detailed type hi-
erarchy that properly distinguishes between mutable, immutable, and other kinds of
collections. When converting a Java data structure, there is the problem of choosing the
most suitable corresponding Scala or Kotlin type. For performance reasons, the utili-
ties in Scala’s JavaConverters do not copy the content of a Java data structure into
a Scala data structure; instead, they create a mutable Scala collection that wraps the
Java collection by delegating operations to it. If the underlying Java collection is ac-
tually immutable, some operations of the Scala collection will fail with an exception.
Short of performing an expensive data-structure copy, the designers of Scala’s convert-
ers had no way of properly handling such scenarios, given that the information about
which Java types correspond to immutable collections is simply not available statically
(e.g., List.of returns an instance of a private class) and, even if it were, it would be
inconsistent with the type hierarchy.

Kotlin’s type system also distinguishes between mutable and immutable collections;
thus, if we want to explicitly convert a Java collection to a Kotlin collection, we can
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choose the most appropriate Kotlin type corresponding to the actual properties of that
collection. Even though Kotlin’s List and MutableList types both still represent, at
the level of bytecode, objects of type java.util.List, the Kotlin compiler can keep
track of which operations are allowed on which variant of list. Nevertheless, Kotlin’s
extensive support for Java interoperability still presents other means of introducing in-
consistent behavior when Kotlin code interacts with Java code after compilation. Any
Java type can seamlessly be used as a Kotlin type; compatibility rules are designed
to be as general as possible—but this generality comes at the expense of soundness
in some cases. For example, consider a Java method with an argument lst of type
java.util.List that modifies lst (e.g., by removing an element). When the method is
called from Kotlin, the compiler accepts any instance of Kotlin’s List and MutableList

as actual argument; if we pass an instance of immutable List, the method will actually
succeed and mutate the list, which is an obvious violation of an immutable list’s con-
tract. In all these cases, using BYTEBACK’s annotations, we can still reason statically
about the precise behavior of different lists or other collections, and hence soundly
check that every operation will perform as intended.

4.2 Experiment Results

The experiments ran on a GNU/Linux machine with an Intel Core i9-12950HX CPU
(4.9 GHz), running Boogie 2.15.8.0, Z3 4.11.2.0, and Soot 4.3.0. We repeated the execu-
tion of the experiments six consecutive times; we report the average wall-clock running
time of each experiment over all repetitions except the first one (which we discard to
account for possible cold-start delays).

The central columns of Tab. 1 show some statistics about the experiments’ results—
all of which verified correctly as expected. The encoding time is usually around 2/3 of
a second, and roughly (linearly) proportional to the size of the annotated code; Boogie’s
verification time is around 1 second per experiment, and also roughly proportional to
the number of methods and classes to be verified. The Boogie code produced by BYTE-
BACK is more than twice larger for the Scala examples (64 lines of Boogie code per line
of source code) compared to the Java and Kotlin examples (27 lines of Boogie per line
of source); the difference is explained by the numerous class definitions that are used
by the Scala runtime: even though BYTEBACK does not process these system classes’
implementations, it still needs to reason about their specifications and signatures, and
how they are (indirectly) used by the program under verification. In fact, the Scala
examples also required a larger number of @Attached classes to annotate the (implicit)
classes used by Scala’s converters.

5 Related Work
Empirical evidence of substitutability violations. As mentioned in Sec. 1, substi-
tutability violations in languages like Java are not merely a theoretical possibility. On
the one hand, an empirical study of over 200 thousand classes from open-source Java
projects found that “almost all” inheritance relations have some subtype use [29]. This
evidence confirms that programmers design software that relies on substitutability via
subtyping.

On the other hand, there is also abundant, direct or indirect, evidence that substi-
tutability violations occur in practice. An analysis of over 20 million Java classes found
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that up to 28% of overridden method may introduce exceptional behavior that is incom-
patible with substitutability [18]; the same study found similar results when investigat-
ing other kinds of effects that break substitutability. Applying random testing techniques
to detect substitutability violations [27] found that 30% of the analyzed classes (taken
from three popular Java libraries) include crashing substitutes, that is subclasses that
may lead to a crash (e.g., with an exception) when they replace an instance of the super-
class they inherit from. A recent study of exception preconditions (i.e., preconditions
that characterize when a method throws an exception) targeting 46 open-source Java
projects and several modules of Java 11’s JDK [19] found several instances of methods
that unconditionally throw an UnsupportedOperation exception, possibly leading to a
violation of substitutability.
Static analysis of substitutability. Extended type checkers are tools that enrich a pro-
gramming language’s core type checker with annotations that capture more expressive
properties as types. The Checker Framework [25,7][d] augments the Java compiler with
several of such extended type annotations, to detect errors such as for null-pointer deref-
erencing, optional data, out-of-bound index, and so on. While the Checker Framework
does not currently include any checker for immutable or nullable collections,5 it is ex-
tensible with new annotations (and some third-party checkers support some form of im-
mutability annotations). The Checker Framework also offers stub files[e]—a mechanism
similar to BYTEBACK’s @Attach—to annotate libraries whose source code is not avail-
able. Of course, an extended type checker like the Checker Framework and a deductive
verifier like BYTEBACK have distinct applications: a type checker is a lightweight tool,
which statically verifies, with limited annotation effort, specific properties at the pub-
lic interface of clients and suppliers; in contrast, a deductive verifier can, in principle,
verify arbitrarily complex behavioral properties of every code feature, but also usually
requires a substantial annotation effort and highly trained users. Besides, the Checker
Framework is primarily a source-level tool, and works only for Java code, whereas
BYTEBACK targets bytecode, and supports multi-language programs.

Other forms of static analysis may also support custom annotations that express
immutability or similar properties, providing a similar usability as an extended type
checker. For example, the Infer analyzer [4]’s impurity plugin includes an @Immutable

annotation,[f] which can be used to constrain any kind of object to be immutable.
Deductive verification. A comprehensive behavioral specification language such as
JML [14] subsumes the specification features that we introduced in this paper. There-
fore, deductive verifiers based on JML, such as OpenJML [6] and KeY [2], can fully
reason about behavioral substitutability (and its violations) in a similar fashion as BYTE-
BACK. As in previous work [23,22], our version of BYTEBACK and verifiers such as KeY
and OpenJML offer largely complementary strengths and weaknesses: while the latter
support a comprehensive set of specification features, and are much more mature tools,
BYTEBACK’s strengths follow from its unique angle of targeting bytecode-level verifi-
cation: it seamlessly supports recent versions of Java (in contrast, OpenJML supports
mostly Java features up to version 8, and KeY mostly targets a subset of Java 6), and
it can also verify programs written in (subsets of) other JVM languages such as Scala
and Kotlin, as well as multilingual programs made of components written in different

5 Here, “nullable” means that may include null—see Sec. 4.
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languages (such as in Sec. 2’s example). The @Attach mechanism introduced in the
present paper supports adding annotations to an existing component without access to
the source code; OpenJML’s specification files[g] provide a similar functionality for a
source-level verifier.6 In all, our contributions to BYTEBACK further demonstrate how
bytecode-level deductive verification can be useful, but are not meant as a replacement
of the full-fledged deductive verifiers for Java out there.

On a more theoretical level, there has been work on modeling and reasoning about
notions of substitutability that are more flexible than Liskov and Wing [17]’s. Examples
include lazy behavioral subtyping [8] and behavioral interface subtyping [21]. These
contributions are usually only demonstrated on a core object-oriented language with
minimal features; mainstream programming languages such as Java are designed based
on stricter (and simpler) typing rules, which are more accessible to ordinary program-
mers.

6 Conclusions
In this paper, we described an extension of our BYTEBACK technique [23,22] to rea-
son about behavioral substitutability properties at the level of JVM bytecode. To this
end, we equipped BYTEBACK with capabilities to specify and reason about ghost spec-
ification predicates, a simple form of class invariants, specification inheritance, and a
mechanism to annotate library components indirectly, without access to their source
code. Our experiments demonstrate that this extension can precisely verify programs
that use “optional” features of widely used Java libraries (such as immutable vs. mu-
table collections), even in multi-language program where client code and libraries are
written in two different JVM languages.

The most natural continuation of this work would be equipping BYTEBACK with a
more expressive class invariant specification methodology, which would support rea-
soning about behavioral substitutability for more complex multi-object structures.

6 In BYTEBACK, a class specification can be split into multiple @Attached modules, which in turn
can augment (or redefine) an existing source-level specification of the same class; furthermore,
BYTEBACK’s attach mechanism can also redefine implementations of a method in another part
of the project under analysis. This makes @Attach a somewhat more flexible mechanism than
OpenJML’s spec files and the Checker Framework’s aforementioned stub files, which do not
support such a piecemeal specification style and cannot replace implementations.
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