
Automated Repair of Information Flow Security in
Android Implicit Inter-App Communication⋆

Abhishek Tiwari(�)1, Jyoti Prakash2, Zhen Dong3, and Carlo A. Furia1

1 Software Institute, USI Università della Svizzera italiana, Switzerland
abhishek.tiwari@usi.ch, bugcounting.net

2 University of Passau, Germany jyotiprakash1@acm.org
3 Fudan University, China zhendong@fudan.edu.cn

Abstract. Android’s intents provide a form of inter-app communication with im-
plicit, capability-based matching of senders and receivers. Such kind of implicit
addressing provides some much-needed flexibility but also increases the risk of
introducing information flow security bugs and vulnerabilities—as there is no
standard way to specify what permissions are required to access the data sent
through intents, so that it is handled properly.
To mitigate such risks of intent-based communication, this paper introduces
INTENTREPAIR, an automated technique to detect such information flow security
leaks and to automatically repair them. INTENTREPAIR first finds sender and re-
ceiver modules that may communicate via intents, and such that the sender sends
sensitive information that the receiver forwards to a public channel. To prevent
this flow, INTENTREPAIR patches the sender so that it also includes information
about the permissions needed to access the data; and the receiver so that it will
only disclose the sensitive information if it possesses the required permissions.
We evaluated a prototype implementation of INTENTREPAIR on 869 Android
open-source apps, showing that it is effective in automatically detecting and re-
pairing information flow security bugs that originate in implicit intent-based com-
munication, introducing only a modest overhead in terms of patch size.

1 Introduction

Mobile applications (“apps”) are often designed as a collection of specialized compo-
nents that rely on each other to implement functionality for the end user. Thus, inter-
app communication features prominently in their implementations, and mobile operat-
ing systems offer a variety of communication primitives that are sufficiently flexible to
work in an open ecosystem of apps. Unfortunately, ease of communication also brings
risks of introducing information flow security bugs and vulnerabilities that are hard to
prevent, detect, and fix.

A concrete instance of this problem occurs in the popular Android mobile operating
system, which provides intents for flexible, asynchronous inter-app coordination. An
app that wants to delegate an operation (for example, opening a web page) to another
app instantiates an intent object specifying the operation and the data needed to execute
⋆ First and last author’s work partially supported by SNF grant 200021-207919 (LastMile).

abhishek.tiwari@usi.ch
bugcounting.net
jyotiprakash1@acm.org
zhendong@fudan.edu.cn


2 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

it (for example, the web page’s URL), and registers the object with the Android oper-
ating system. Any other app that is capable of executing the operation (for example,
a web browser) can receive that intent object from the system and handle its request.
This kind of implicit communication between apps is suitable for programming in an
open ecosystem, where the app that makes a request (instantiating the intent object)
does not need to know which apps can handle it (receiving the intent object). However,
it may also introduce unintended leaks of sensitive information [14, 17, 18, 22, 24, 26]:
the sender has no way of specifying the sensitivity of the data packed within an intent,
nor can it know in advance which apps will receive and how they will handle the intent.
Conversely, the receivers do not know whether they are handling sensitive data, nor
which privacy policies the sender app would like to enforce.

In this paper, we propose INTENTREPAIR: an automated technique to detect informa-
tion leaks that originate in inter-app intent-based communication, and to automatically
repair them by enforcing a preferred security policy. As we better discuss in Section 5,
INTENTREPAIR’s focus is quite novel: plenty of existing work [5, 6, 12, 17, 18, 24, 26]
deals with detecting information-flow security violations in intent communication, but
most of it focuses on intra-app communication. Furthermore, to our knowledge, no
other work features the automated repair of such security flaws.

To detect leaks, INTENTREPAIR creates a summary of any app’s usage of intents—
whether the app sends or receives intent objects, for which operations, and the infor-
mation flow of the intents’ data. Then, it matches senders and receivers for the same
operation to identify possible information leaks—when a sender’s sensitive data is sent
to a sink in the receiver. Unlike most existing approaches, INTENTREPAIR does not just
detect information leaks but can also automatically repair them. The key idea is to re-
pair both the senders—adding a sensitivity declaration to any data they add to intent
objects—and the receivers—checking that the received data is handled according to
the sender’s preferred policy. To achieve high precision, INTENTREPAIR combines static
analysis of Android bytecode with dynamic taint analysis, which validates whether cer-
tain information flow are actually possible at runtime.

We implemented the INTENTREPAIR technique in a tool with the same name.
We evaluated it on 14 Android open-source apps from the DroidBench [1] and Re-
poDroid [21] curated collections, as well as on 855 larger open-source apps from
the FDroid repository. The experimental evaluation demonstrates that INTENTREPAIR

can analyze apps of realistic size, successfully detect scenarios of insecure intent-
based inter-app communication, and automatically generates patches that avoid the
information-flow security bugs.

In summary, this paper makes the following contributions:

– INTENTREPAIR: an automated technique to detect and repair information flow pri-
vacy leaks in Android apps.

– A prototype implementation of INTENTREPAIR [25].
– An experimental evaluation of INTENTREPAIR on 869 Android apps.

2 Preliminaries

This section provides an overview of inter-app communication and its challenges in
Android apps. First, Sections 2.1 and 2.2 introduce the basics of Android apps and intent



Title Suppressed Due to Excessive Length 3

communication; then, Section 2.3 details the challenges in detecting and repairing the
information flows via intents.

2.1 Android Basics

Android applications are usually written in Java or Kotlin, and consist of a collec-
tion of components of four kinds: activities, broadcast receivers, services, and content
providers [4]. Activities usually implement user interfaces, such as a login screen. Sys-
tem and application events, such as boot-up notifications, are broadcasted to compo-
nents registered as broadcast receivers. Services are active in the background and de-
signed for lengthy or computationally intensive tasks, such as downloading a file in the
background. Content providers shuffle data from one app to another by various means.

Each app contains a manifest file AndroidManifest.xml, which includes essential
information, such as the app’s name, its components, and any libraries it depends on.
The manifest also specifies an app’s permissions, that is the features of the Android
operating system (and of the device that runs it) that the app may access.

2.2 How Intent Communication Works

Android provides intents as a flexible communication means between components. In
a nutshell, intents implement a form of message-passing communication based on the
component’s capabilities (called “actions” in Android parlance).

Precisely, Android intents support two ways of addressing, that is of identifying
the recipients of a message. With explicit intents, the sender explicitly specifies the
component(s) that may receive the message; no other components are allowed to receive
it. With implicit intents, the sender does not specify any explicit recipients, but rather
an action (for example, opening a web page);4 the Android system will dispatch the
message to any components that support the action specified by the sender. In other
words, implicit intents support a kind of implicit, capability-based addressing.

Explicit and implicit intents provide different trade offs between ease of commu-
nication and control over the recipients. Sending sensitive data via explicit intents is
generally safe, in that the sender generally knows exactly who will receive that data
(and how they will use it). In contrast, sending sensitive5 data via implicit intents may
be risky, since the sender of an implicit intent generally does not know exactly who will
receive the data until when the app actually runs. Thus, enforcing privacy rules during
app development is a challenge when using implicit intents; tackling this challenge is
the main focus of the present work.

2.3 An Example of the Challenges of Implicit Intent Communication

Figure 1 illustrates the risks of implicit intent communication through a simple example.
Two sender apps each create an intent object for custom action "action_test": app S
in Figure 1a includes some sensitive data in the object—the host mobile device’s unique

4 Android offers a number of predefined actions, but apps may also define new custom actions.
5 As defined more rigorously in Section 3.2.6, one can associate a permission level to any

piece of data; sending high-permission data to a low-permission channel violates informa-
tion flow security—whereas one is always allowed to send low-permission data to a high-
permission channel.



4 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

1 TelephonyManager tel = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);

2 // sensitive data
3 String imei = tel.getDeviceId();
4 // create intent object
5 Intent i = new Intent("action_test");
6 // add sensitive data to intent
7 i.putExtra("data", imei);
8 // send intent object
9 startActivity(i);

(a) Sender app S: intent with sensitive data.

10// non-sensitive data
11String ping = "Ping";
12// create intent object
13Intent i = new Intent("action_test");
14// add non-sensitive data to intent
15i.putExtra("data", ping);
16// send intent object
17startActivity(i);

(b) Sender app N : intent with normal (non-sensitive)
data.

18 // (This app’s manifest specifies it handles "action_test")
19 // receive intent object for "action_test"
20 Intent i = getIntent();
21 // take data from intent
22 String data = i.getStringExtra("data");
23 // send data to public sink
24 smsManager.sendTextMessage("1234567890", null, data, null, null);

(c) Receiver app R, which handles intents "action_test".

Fig. 1: Android code of sender and receiver apps communicating through implicit intents.

identifier (also known as IMEI number). App N in Figure 1b, instead, only includes
information that is not sensitive.

Figure 1c shows the code of another app R, which is capable of handling action
"action_test".6 In a system where all three apps S, N , and R operate, Android would
dispatch the intent messages sent by S and N to R, which would then retrieve the data
and re-send it through a public channel (i.e., in a text message—Line 24 in Figure 1c).

Such a scenario has two potential problems in terms of information-flow security.
First, S is not aware that R sends its sensitive data to a public channel. Second, R may
not even have the necessary permissions to receive that sensitive data. Both problems
originate in the flexible nature of implicit intent-based communication: the sender of an
implicit intent cannot specify the sensitive nature of the data it sends; and the receivers
of an implicit intent may access its data even if it contains information that is beyond
their permissions.

Addressing these problems when implementing apps S, N , and R would be in-
feasible or too expensive, and fundamentally at odds with the flexibility introduced by
implicit intents. The receiver app R cannot know, in general, the sensitivity of the data
received through intents. Considering a priori all potential sender apps is also practically
impossible in an open ecosystem of apps like Android. To address these issues, we pro-
pose a novel automated repair approach that works at app deployment time, which we
describe in Section 3.2.

3 Methodology

This section presents our approach to automatically detect and repair information flow
security leaks that originate with implicit intent communication. First, Section 3.1 in-

6 An app’s manifest file specifies the actions it can handle.



Title Suppressed Due to Excessive Length 5

Statement ∶∶= i ∈ Intent ∶= createIntent(a ∈ Action) Create intent object and assign it to i
∣ send(i ∈ Intent) Launch intent i
∣ i ∈ Intent ∶= receive(a ∈ Action) Receive intent and assign it to i
∣ put(i ∈ Intent, k ∈ Key, d ∈ Data) Add data d under key k in intent i
∣ d ∈ Data ∶= get(i ∈ Intent, k ∈ Key) Assign to d data under key k in intent i
∣ sink(d ∈ Data,p ∈ Perm) Send data d to sink with security level p

Fig. 2: Tentative: An abstract model of intent programming.

i := createIntent("action_test")
put(i, "data", imei)
send(i)

(a) Intent sender S fragment, corresponding to lines 5–9
in Figure 1a.

i := receive("action_test")
data := get(i, "data")
sink(data, ⊤)

(b) Intent receiver R fragment, corresponding to
lines 20–24 in Figure 1c.

Fig. 3: An example of intent communication in Tentative.

troduces an abstract model of implicit intent-based communication; then, Section 3.2
gives an overview of our intent repair framework, followed by a detailed presentation
of how its components work.

3.1 An Abstract Model of Implicit Intents

Before delving into the details of our framework, we present an abstract model of im-
plicit intents. As is, Android offers a rich API for intent communication [3]. For exam-
ple, there are 25 operations to initialize an intent object, 30 operations to add data to it,
and 42 operations to extract data from it.

In this paper, we only consider implicit intents, where the sender does not know
precisely which components will receive an intent message, but only what actions the
receivers can handle. Figure 2 shows the syntax of Tentative: an abstract, minimal
model of implicit intent communication, which we’ll use in the paper to simplify the
presentation of the core technical concepts. Tentative provides statements to create an
intent object for a certain action a (createIntent(a)), to add a key-value pair k, d to
an intent object i (put(i, k, d)), to retrieve the data stored under k from an intent object
i (get(i, k)), to send send(i) and receive receive(a) an intent object associated with
action a, and to “sink” some information into a channel (sink(d, p))—public, or with
some other security level p. In an Android app, the action associated with a receiver is
declared in the receiver app’s manifest; in Tentative, it is explicit in the call to receive.
Figure 3 shows two snippets of Tentative code modeling a basic sender and receiver:
the sender in Figure 3a captures the same behavior as Figure 1a’s Android code; the
receiver in Figure 3b captures the same behavior as Figure 1c’s Android code, where
sink(data,⊤) denotes that the data is sent to a public sink.

3.2 How Intent Repair Works

Figure 4 pictures the overall workflow of our intent repair framework; Algorithm 1
presents its corresponding high-level algorithm. The input to the intent repair process
is a set of Android apps—given as APK files—whose intent-based information flow
communication will be analyzed. The first step is the receiver analysis (described in
Section 3.2.1): for each app that receives implicit intent objects, we determine which



6 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia



apps

locate
receive

locate
get

data
sinked?

locate
send

locate
put

data
sensitive?

Receiver Analysis

Sender Analysis

has
permissions?

request
permissions

sanitize
data

inject
permissions

p

✓

Repair
receiver r

sender s

patched
apps

Fig. 4: An overview of how INTENTREPAIR works.

Algorithm 1: INTENTREPAIR’s overall algorithm.
Input: a set of apps A
Output: a set of patches P

1 R ← ∅ // Receivers’ summaries

2 S ← ∅ // Senders’ summaries

3 foreach a ∈ A do
4 R ← R ∪ ReceiverAnalysis(a)
5 if R ≠ ∅ then
6 foreach a ∈ A do
7 S ← S ∪ SenderAnalysis(a)
8 P ← ∅ // Patched apps

9 foreach (s, r) ∈ Match(S,R) do
10 s

′
← InjectPermissions(s)

11 r
′
← CheckPermissions(r)

12 P ← P ∪ {s′, r′}
13 return P

actions it supports, and what it does with the data extracted from the intent objects—in
particular, whether it leaks any of it to a sink. Assuming that at least one “potentially in-
secure” receiver exists, the next step is the sender analysis (described in Section 3.2.2),
which summarizes the behavior of apps that send implicit intent objects—in particu-
lar, whether they include any sensitive data in the intents. The next step (described in
Section 3.2.3) matches senders and receivers, identifying pairs (s, r) such that s sends
sensitive information through implicit intents, r may receive such information and send
it to a non-secure sink. For each such pair, the last step performs the actual repair: it
patches the sender s so that it includes information about the permissions required to
use the data it sends via implicit intents (as described in Section 3.2.4); and it patches
the receiver r so that it retrieves this information and uses it to check that it has the
necessary permissions to use the intent data (as described in Section 3.2.5).7

3.2.1 Receiver Analysis. Algorithm 2 outlines INTENTREPAIR’s receiver analysis.
A receiver component is one that includes calls to the receive primitive (line 2).8

7 In general, both the sender and receiver need repairing, as whether information flow security
is enforced depends on how the receiver uses the data send by the sender. For example, a
photo gallery app (sender) sends a private picture to a photo editing app (receiver); as long as
the receiver does not make the private picture public, there is no privacy violation.

8 As explained in Section 3.1, receive corresponds to any of the numerous Android API
primitives to receive an implicit intent object, such as getIntent() in Figure 1c.



Title Suppressed Due to Excessive Length 7

Algorithm 2: Analysis of receivers: ReceiverAnalysis.
Input: an app A
Output: a set of receivers’ summaries R

1 R ← ∅ // Receivers’ summaries

2 foreach intent ∶= receive(action) ∈ A do
3 foreach value ∶= get(intent , key) ∈ Taint(intent) do
4 if sink(value) ∈ Taint(value) then
5 R ← R ∪ {⟨A, action, key⟩}
6 return R

Algorithm 3: Analysis of senders: SenderAnalysis.
Input: an app A
Output: a set of senders’ summaries S

1 S ← ∅ // Senders’ summaries

2 foreach send(intent) ∈ class do
3 foreach intent ∶= createIntent(action) ∈ Slice(intent) do
4 foreach put(intent , key , value) ∈ Slice(intent) do
5 if Permission(value) ≠ ⊤ then
6 S ← S ∪ {⟨A, action, key ,Permission(value)⟩}

7 return S

INTENTREPAIR taints the intent object for each such call to receive, in order to find
program locations that extract data from the object (primitive get, line 3). Then, it also
taints the data objects to determine if they flow into an insecure sink (line 4). If this is the
case, all the collected information about the receiver is stored as the receiver summary
(line 5).

3.2.2 Sender Analysis. Algorithm 3 outlines INTENTREPAIR’s sender analysis. A
sender component is one that includes calls to the send primitive (line 2), which rep-
resents all variants of Android’s sendIntent methods. For each such call to send,
INTENTREPAIR computes the inter-procedural backward slice using the sent intent ob-
ject as slicing criterion; thus, the slice will include all calls to the createIntent and
put primitives that involve the sent intent object. INTENTREPAIR considers all pairs of
createIntent (line 3) and put (line 4) in the slice that target the same action. By an-
alyzing the data that is stored by each put, INTENTREPAIR determines whether handling
that data requires any non-trivial permission (line 5). If this is the case, all the collected
information about the sender is stored as the sender summary (line 6).

3.2.3 Sender-Receiver Matching. Given a sender S’s summary ⟨s, as, ks, p⟩ and
a receiver R’s summary ⟨r, ar, kr⟩, matching them is straightforward: it amounts to
determining if they send and receive intent objects associated with the same action
(as = ar), and exchange data using some shared key (ks = kr).

3.2.4 Sender Repair. If at least one matching pair of sender and receiver exists, it
means there is sensitive information that may flow to a sink; in this case, the repair
process begins. The first step is “repairing” the sender, which means providing means
of communicating its security policies to the receiver site Android provides no built-in



8 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

i := createIntent("action_test")
put(i, "data", imei)
// accessing imei requires
// permission "read phone state"
+put(i, "perm:data", "READ_PHONE_STATE")
send(i)

(a) Repairing Figure 1a’s sender by injecting its intent
object with information about the permissions that is
required to access the intent data.

1i := receive("action_test")
2data := get(i, "data")
3// retrieve required permission
4+perm := get(i, "perm:data")
5// try to acquire permission
6+if (!request(perm)) exit()
7// sanitize data before sinking it
8+data := sanitize(data, ⊤)
9sink(data, ⊤)

(b) Repairing Figure 3b’s receiver by ensuring that it has the
necessary permissions to access the intent data, and sanitizing
the sensitive data before sending it to a non-secure sink.

Fig. 5: Abstract Repairs for the Senders and Receivers

mechanism to allow this kind of identification with intent objects—not even at runtime.
To address this, we explicitly inject the intent object in the sender with additional data.
The main idea is storing in the intent object pairs (k, p), where k is the key of a piece
of data stored in the same object and p is the permission required to access that data.

Figure 5a illustrates this idea on the running example. Figure 1a’s sender includes in
intent object i sensitive data (an IMEI number) under key "data". Android permission
READ_PHONE_STATE is required to access this sensitive data; thus, INTENTREPAIR in-
jects the pair ("data", READ_PHONE_STATE) in the sender’s intent object, using a fresh,
unique key "perm:data".

3.2.5 Receiver Repair. As described in the previous section, INTENTREPAIR injects
intent objects on the sender’s side, so that the receivers know the required permissions.
Correspondingly, INTENTREPAIR modifies all receiver apps so that they retrieve this
information about permissions and use it appropriately.

First, the receiver should have the required permissions to handle the intent object.
If this is not the case, INTENTREPAIR patches the receiver so that it asks the app user to
upgrade its permissions. If the user denies the request, the app is not allowed to continue
and can only abort its operations.

Once the receiver has acquired the necessary permissions—either statically or
dynamically—INTENTREPAIR still has to sanitize the sensitive data it received through
the intent object before dumping it into a public sink, so as not to violate any informa-
tion flow security rules. To this end, INTENTREPAIR provides a simple anonymization
of the data (which could also be used, in a pinch, in the scenario where the client lacks
the necessary permissions). Within the same general repair scheme, one could imple-
ment custom declassification policies for the nature of the sensitive data; for instance,
if the sensitive data is location information, the receiver could replace the precise loca-
tion with an approximation. INTENTREPAIR supports customizing how receiver apps are
repaired, so as to enforce the app developers’ preferred policies and practices.

Figure 5b illustrates this idea on the running example. INTENTREPAIR modifies Fig-
ure 1b’s receiver so that it checks what permission perm is required to handle the data
stored under key "data" in intent object i. If the receiver does not have nor cannot ac-
quire permission perm, it simply terminates, so as to avoid any mishandling of sensitive
information. Conversely, once it has acquired permission perm, it sanitizes the intent
data before sending it to a public sink.



Title Suppressed Due to Excessive Length 9

Repair ∶∶= exit() Terminate the current activity
∣ w ∶= sanitize(v ∈ Data, p ∈ Perms) Sanitize data v to comply with permission p
∣ request(p ∈ Perms) Try to acquire permission p

Fig. 6: Repair operations for Tentative intent programs.

GET
P = (A,R) p = ⟦get(i, "perm:k")⟧

⟨v := get(i, "k"), P ⟩ → (A,R ∪ [v ↦ p])

USE
P = (A,R) R(v) ∈ A

⟨stmt[v], P ⟩ → P

EXIT

⟨exit(), P ⟩ → ✓

SANITIZE
P = (A,R) R(v) ∈ A

⟨w := sanitize(v, p), (A,R)⟩ → (A,R ∪ [w ↦ p])

SINK
P = (A,R) R(w) ≥ q

⟨sink(w, q), P ⟩ → P

UPGRADE
P = (A,R) ⟦request(p)⟧

⟨request(p), P ⟩ → (A ∪ {p},R)

NO-UPGRADE
P = (A,R) ¬⟦request(p)⟧

⟨request(p), P ⟩ → P

Fig. 7: Rules to check whether a Tentative program is information-flow secure.

3.2.6 Repair Correctness. To make the presentation of INTENTREPAIR’s repairs rig-
orous, let’s extend Tentative with the set of fix ingredients shown in Figure 6: INTENT-
REPAIR can avoid an information-flow security flaw in a receiver by terminating its
execution (exit), sanitizing sensitive data (sanitize), or requesting a permission
(request). As for the rest of Tentative, these operations generalize different Android
library calls that can be used to change the permissions and a program’s information-
flow security—as demonstrated in Figure 5b’s example.

Figure 7 shows the main rules that formalize what it means for a Tentative pro-
gram to be information-flow secure. To this end, a permission state P keeps track of
the permission as a program executes; P is a pair (A,R), where A is the set of permis-
sions the running app currently has, whereas R maps each variable v to the permission
R(v) required to access that variable’s content.9 Each rule in Figure 7 has the form
⟨s, P ⟩ → P

′, which denotes that executing statement s when the permission state is P
is successful and leads to permission state P ′ (or to termination if P ′

= ✓). A program
is information-flow safe if we can successfully apply these rules to all its statements.

Rule GET models how the information about which permissions are needed to
access which variables is retrieved by INTENTREPAIR, which, in turn, relies on the
sender repair algorithm described above. Rule USE indicates that, whenever a state-
ment stmt[v] accessing some variable v executes, the app must possess the necessary
permission R(v). Rule SINK deals with primitive sink, which is secure only if the out-
put channel’s security level q is not more restrictive than the permission R(w) required
to access the sinked data w. The program can always safely terminate, without requiring
any special permission (rule EXIT). Sanitizing a variable’s content may change (usually,
reduce) the permission required to access it (rule SANITIZE). Conversely, successfully
acquiring a permission extends the set of current permissions (rules NO-/UPGRADE).

With this formalization, we can support our claim that INTENTREPAIR patches such
as Figure 5b’s are information-flow safe by construction: Line 4 retrieves the required

9 Without loss of generality, we assume that all permissions form a complete lattice, with ⊤

being the least restrictive permission (i.e., public data).



10 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

permission; Line 6 tries to acquire it, and terminates if this is not possible; Line 8
sanitizes the data, so that Line 9 is allowed to sink it.

3.2.7 Sanitize Operations. INTENTREPAIR can be customized and extended by pro-
viding different kinds of implementation of the sanitize primitive that achieve a de-
sired trade off between security preservation and app functionality. We distinguish be-
tween declassify operations, which reduce the precision of the data, and pure sanitize
operations, which completely replace sensitive data with dummy values. The latter are
straightforward to implement using default values or encryption. In contrast, declassify
operations depend on the nature of the data that should be declassified. For example, lo-
cation data can be declassified by replacing a precise location with an approximate one.
Table 1 lists several declassify and sanitize operations implemented in INTENTREPAIR.

Table 1: INTENTREPAIR’s declassification (top) and sanitization (bottom) operations on several
kinds and types of sensitive data d.
DATA d TRANSFORMATION DESCRIPTION

location coarse(d) approximate location d
device id substring(d,n) keep only first n characters of device id d
event d.location = coarse(d.location) approximate event d’s location
step count d + random(−10000,10000) add random noise to number d of walked steps
person height d ∗ random(0.5,1.5) scale person height d by random factor
contacts filter(d, name = person) keep single person’s contact data (instead of all contacts d)

String "" sanitize string data
int/Integer 0 sanitize integer data
T[] {t, t, . . . , t} sanitize array of Ts, where t is T ’s sanitized default value

3.3 Implementation
We implemented our intent repair technique in a prototype tool also called INTENT-
REPAIR. INTENTREPAIR takes APK files or Java source code as input, which it analyzes
as described above, and directly injects patches into the input files. INTENTREPAIR is im-
plemented in Java and comprises around three thousand lines of code. INTENTREPAIR’s
static analysis uses the Wala framework [13] and APKTool [2] and works on the .dex

and Smali intermediate representations. INTENTREPAIR also uses Axplorer [7, 8] to de-
tect sensitive sources based on an app’s permissions. INTENTREPAIR’s implementation
includes a few workarounds to handle unsupported operations of the Android frame-
work. For example, whether the user grants the extra permissions needed by a repair
is stored dynamically as a Boolean flag. If the patch were to be deployed officially, the
extra permissions could be added to an app’s manifest file.

4 Evaluation

We empirically evaluated the capabilities of INTENTREPAIR in repairing information
flow security bugs in Android apps. Our experiments answer the research questions:

RQ1 How effective is INTENTREPAIR? (“Effectiveness” refers to how many informa-
tion flow security bugs INTENTREPAIR can detect and repair.)

RQ2 Is INTENTREPAIR scalable? (“Scalability” refers to whether INTENTREPAIR can
be applied to realistic-size apps.)



Title Suppressed Due to Excessive Length 11

All experiments described in this section ran on a MacBook with a 2.6 GHz 6-Core
Intel Core i7 processor and 16 GB of RAM. For lack of space, we only present the main
results and refer to the artifact package for details.

4.1 RQ1: Effectiveness of INTENTREPAIR

4.1.1 Subjects. To assess INTENTREPAIR’s effectiveness, we selected apps from two
widely used curated collections of open-source Android apps: DroidBench [1] and Re-
poDroid [21]. DroidBench was originally introduced to specifically benchmark taint
analyses, whereas RepoDroid encompasses a broader selection of apps; both include a
ground truth about which apps incur information-flow security leaks.

Starting from 45 apps (21 in DroidBench and 24 in RepoDroid), we selected all
those that i) send sensitive information via implicit intents; or ii) receive information via
implicit intents (regardless of whether they sink it or not). According to DroidBench’s
and RepoDroid’s ground truths, only 14 apps (3 in DroidBench and 11 in RepoDroid)
satisfy one or both these criteria; the selected apps are generally small, as each of them
consists of only 50–100 lines of code over 2–3 classes. This is arguably due to the fo-
cus of DroidBench and RepoDroid, which were curated to mainly include apps that use
(inter-app) communication mechanisms other than implicit intents. (RQ2 will demon-
strate INTENTREPAIR on a larger number of apps of realistic size.) Nevertheless, the 14
apps that we selected as experimental subjects do exhibit—in the small—significant
patterns of information-flow exchanges. Figure 8 shows examples of code from some
of these apps: Figure 8a is a sender that sends out the IMEI device identifier to receivers
that support action testaction; Figures 8b and 8c are receivers supporting such action;
Figure 8b sinks this sensitive data, whereas Figure 8c does not.

4.1.2 Sender/Receiver Analysis. Table 2 summarizes the outcome of INTENT-
REPAIR’s sender and receiver analysis on RQ1’s 14 experimental subjects.

INTENTREPAIR found 23 activities that can receive intent objects with 5 different
actions; and 11 activities that can send intent objects with 4 different actions. This
determines 36 potential instances of sender-receiver communication between activi-
ties. For example, app icc_implicit_src_sink’s MainActivity sends an intent ob-
ject that stores Android device ids under key "data"; this data can be received by
the FooActivity of the same app, as well as of the homonymous activity of apps
icc_implicit_nosrc_sink, icc_implicit_nosrc_nosink, icc_implicit_action,
and icc_implicit_src_nosink. We also confirmed that INTENTREPAIR detected all
information-flow security leaks in DroidBench’s and RepoDroid’s ground truth.

4.1.3 Repair. Out of the 36 sender-receiver communication pairs, INTENTREPAIR re-
ported 17 instances where the receiver may inappropriately send the intent informa-
tion to a public sink. In the previous example, this happens when the receiver is app
icc_implicit_nosrc_sink’s FooActivity. In all these cases, INTENTREPAIR patched
the sender-receiver pairs so as to avoid any information-flow security leaks. We manu-
ally validated these patches by running the communicating apps while monitoring the
information sent to the sink, confirming that the leak occurs in the original app version
(before applying the patch) and no longer occurs with INTENTREPAIR’s patch.



12 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

Table 2: INTENTREPAIR’s sender and receiver summaries of the 14 apps analyzed for RQ1.
For each APP and ACTIVITY, the table reports the actions it RECEIVES and/or SENDS;
the KEY used to store the data in the intent object; the VALUE stored, and any PERMIS-
SION needed to access the data. (Action main is android.intent.action.MAIN; action test is
amandroid.impliciticctest_action.testaction; action send is android.intent.action.SEND; permission
phone is READ_PHONE_STATE; location is ACCESS_FINE_LOCATION, SMS is SEND_SMS.)

APP ACTIVITY RECEIVES SENDS KEY VALUE PERMISSION

Echoer MainActivity send

icc_implicit_action
MainActivity main test "data" device id phone
FooActivity test

icc_implicit_category
MainActivity main test "data" device id phone
FooActivity test

icc_implicit_data1
MainActivity main "data" device id phone
FooActivity test

icc_implicit_data2
MainActivity main test/type "data" device id phone
FooActivity test

icc_implicit_mix1
MainActivity main test_action "data" device id phone
HookActivity test_action2

icc_implicit_mix2
MainActivity main test_action "data" device id phone
FooActivity test_action

icc_implicit_nosrc_nosink
MainActivity main test "data" "noSrc"
FooActivity test

icc_implicit_nosrc_sink
MainActivity main test "data" "noSrc"
FooActivity test

icc_implicit_src_sink
MainActivity main test "data" device id phone
FooActivity test

SendSms
MainActivity main phone, SMS
Button1Listener send "secret" device id phone, SMS

WriteFile
MainActivity main location
Button1Listener send "secret" location location

org.arguslab.icc_implicit_src_nosink
MainActivity main test "data" device id phone
FooActivity test

4.2 RQ2: Scalability of INTENTREPAIR

4.2.1 Subjects. To assess INTENTREPAIR’s scalability, we selected apps from the well-
known app hosting platform FDroid [19]. To only consider realistic-size apps, we first
selected all apps greater than 5 MB in size (1301 apps); out of them, we further selected
all those that use implicit intents (855 apps) as our experimental subjects. Table 3’s
left-hand half lists the five largest apps in this dataset, ranked by their size.

Although the intent communication API is very rich, Figure 9a shows that a small
fraction of them dominate usage in our subjects. Two out of 25 methods to broad-
cast an intent object (abstracted by primitive send in Tentative) are used 80% of
the time; startActivity(Intent) alone covers 65% of usages. Similarly, method
putExtra(String, String) (out of all 30 methods to store data in an intent object)
covers 40% of usages; integer values are stored in another 26% of usages.

4.2.2 Analysis and Repair. INTENTREPAIR found 98 app modules (in 83 apps) that
send sensitive data (location, file system, . . . ) through implicit intents; for 70 of them



Title Suppressed Due to Excessive Length 13

// More code
TelephonyManager tel=(TelephonyManager) getSystemService(TELEPHONY_SERVICE);
String imei = tel.getDeviceId(); // source
Intent i = new Intent("amandroid.impliciticctest_action.testaction");
i.putExtra("data", imei);
startActivity(i); // sink

(a) Sender module MainActivity in app icc_implicit_src_sink app.

// More Code
Intent i = getIntent();
String imei = "" + i.getStringExtra("data");
Log.d("deviceid", imei); //sink

(b) Receiver module FooActivity in app
icc_implicit_src_sink.

// More Code
Intent i = getIntent();
String v = i.getStringExtra("data");
v.trim(); //No Leak

(c) Receiver module FooActivity in app
icc_implicit_nosrc_nosink.

Fig. 8: Snippets of code from Android apps that send sensitive information via implicit intents.

0% 25% 50% 75% 100%

(a) Methods for sending an intent object (send).

0% 25% 50% 75% 100%

(b) Methods for storing data in an intent object (put).

Fig. 9: Statistics about which intent API methods are used more frequently in RQ2’s subjects.

(in 59 apps), INTENTREPAIR could also determine the 10 different intents’ actions:10

android.intent.action.SEND ch.blinkenlights.android.vanilla.action.LAUNCH_PLUGIN
android.intent.action.SENDTO android.speech.action.RECOGNIZE_SPEECH
android.intent.action.RINGTONE_PICKER android.intent.action.VIEW-URI
android.media.action.IMAGE_CAPTURE de.azapps.mirakel.SHOW_TASK_FROM_WIDGET
android.app.action.ADD_DEVICE_ADMIN android.intent.action.CREATE_DOCUMENT

Table 3’s right-hand half lists the five largest apps among these 59 apps, ranked
by their size. INTENTREPAIR also found 98 app modules that match some of these 70
senders; and 23 sender-receiver pairs where information-flow security leaks may hap-
pen. It successfully produced patches for all of these (validated as in RQ1).

4.2.3 Scalability. In our experiments, INTENTREPAIR ran for 10.5 seconds per app on
average: this includes sender and receiver analysis (3.5 seconds), followed by sender-
receiver matching and repair (7 seconds). This performance is reasonable for a proto-
type implementation, and shows that INTENTREPAIR is also applicable to large apps.

4.3 Discussion
INTENTREPAIR repairs information-flow leaks by simultaneously patching senders and
receivers that may communicate; thus, applying the patches only to the receiving apps
10 In the other 28 instances, the action was set dynamically and/or through complex string oper-

ations, which could not be resolved statically by INTENTREPAIR.



14 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

Table 3: The five largest apps among all RQ2’s 855 experimental subjects (left) and among the
59 of them that send sensitive data through implicit intents (right).

AMONG 855 IMPLICIT INTENT APPS AMONG 59 SENDER APPS

APP SIZE (MB) RANK APP SIZE (MB)

org.openttd.fdroid 227 1 com.github.linwoodcloud.dev_doctor 78
org.olpc_france.sugarizer 186 2 org.dslul.openboard.inputmethod.latin 53
com.fr.laboussole.track 174 3 com.celzero.bravedns 47
network.mysterium.vpn 153 4 io.pslab 40
com.zhenxiang.superimage 152 5 org.kiwix.kiwixmobile 40

does not suffice in general. In an ideal scenario, one may equip a receiver with the
information obtained by sender analysis, and use that information at runtime to identify
the sender’s sensitive information (thus avoiding the need for patching the senders).
Clearly, this would incur in all sorts of practical hurdles, as it is generally impossible to
identify the sender apps with implicit intent communication.

Section 4’s empirical evaluation of INTENTREPAIR demonstrated that it is applicable
to realistic apps, and that it generates repairs that are effective at removing the source of
information-flow leaks. While we informally inspected the patched apps, and tried them
out by running them, to gain some confidence that they remain usable and their overall
behavior consistent, we did not perform a rigorous analysis of usability. INTENTREPAIR

repairs senders by simply injecting permission information in their intent objects; since
the size of this information is negligible, we are fairly confident that these changes do
not have any meaningful impact on the sender app’s usability.

INTENTREPAIR’s repairs of receivers are potentially more invasive, as they may:
i) request new permissions to the app user, and ii) terminate an activity to avoid an secu-
rity leak. These actions are necessary, in general, to enforce information-flow security,
but they may worsen the user experience. As we discussed elsewhere, INTENTREPAIR’s
repair policies are customizable; thus, one may change it to achieve a different trade-off
between usability and security (for example, by declassifying data instead of forcing
app termination) depending on the practical application scenario.

5 Related Work

Previous work on automated repair of Android apps focused on bugs such as crashes,
leaks, and configuration and compatibility issues. Tan et al. [23] describe how to re-
pair null-pointer dereference crashes. Huang et al.’s technique [16] repairs inconsistent
XML configuration files across Android versions. Zhao et al. [28] show how to gen-
erate fix templates for system- and device-compatibility issues. Guo et al. [15] detect
and repair data losses that may occur when the user navigates from one UI component
to another. Banerjee et al. [10] present a combined static and dynamic analysis tech-
nique to detect, validate, and repair energy bugs in Android apps. Xu et al. [27] tackle
the problem of UI testing scripts becoming obsolete when an app’s design changes; to
this end, they propose a technique that can identify and remove obsolete testing scripts.
Bhatt and Furia [11] present a static analysis tool that can detect and repair Android re-
source leaks. Unlike all these works, the present paper targets information-flow leaks in



Title Suppressed Due to Excessive Length 15

apps in accordance with the Android permission model; it combines static and dynamic
analyses to automatically detect and repair such leaks.

To our knowledge, this paper is the first that can automatically repair information-
flow security issues that occur in intent communication. In contrast, many ap-
proaches [5, 6, 9, 12, 17, 18, 24, 26] have been proposed to detect information-flow vi-
olations; however, most of them focus on intra-app intent communication [5, 17, 18],
whereas our INTENTREPAIR fully supports inter-app detection (as we demonstrated
in Section 4’s evaluation). The few previous approaches that can deal with inter-
app communication have limitations—such as they only work on older Android ver-
sions [12, 26], or rely on third-party slicers [24]—that restrict their effectiveness on
realistic apps. Following a general-purpose approach, Mesecan [20] is a repair tool for
information-flow bugs that is language- and system-agnostic, as it is based on genetic
algorithms. In contrast to their work, our INTENTREPAIR is more specialized (on the An-
droid permission model, and its intent-communication capabilities) and customizable,
and is also capable of detecting information-flow bugs without requiring tests as input.

6 Conclusions and Future Work

In this paper, we presented INTENTREPAIR: the first automated framework to detect and
repair information flow leaks that may occur in Android when apps communicate using
implicit intents. To address the key issue that senders and receivers communicating
via implicit intents do not have a standard way of identifying the sensitivity of the
data they are sharing, INTENTREPAIR performs repair by injecting this information in
the senders and processing it in the receivers, ensuring that their handling abides by
the necessary permissions. We implemented INTENTREPAIR in a prototype tool with the
same name. In a preliminary evaluation involving 14 apps from the popular DroidBench
and RepoDroid benchmarks, and 855 larger apps from the FDroid repository, INTENT-
REPAIR showed promise, as it was able to precisely identify all known information flow
security flaws in these apps, and to automatically fix them.

INTENTREPAIR is flexible, in that users can decide how to balance enforcing secu-
rity and preserving app functionality when they deploy automatically generated repairs.
INTENTREPAIR’s analysis is also fine-grained, as it can identify different permissions for
different pieces of data sent through intents. As future work, we’ll systematically eval-
uate how to implement common declassification patterns that are found in mature apps.
Note that Android does offer an API to send intent objects only to receivers with certain
permissions; however, this mechanism is coarse-grained and thus inapplicable to many
scenarios of implicit intent communication—as we have seen in our experiments, where
we found several apps that send data associated with different actions and permissions.
In the future, our approach to enable privacy-compliant intent communication could be
the basis for an official Android API, or perhaps be provided as an extension of the
Android framework—for example, providing the capability of annotating any piece of
data with the required permissions. Finally, a rigorous evaluation of INTENTREPAIR’s
practical usability would also benefit from a user study.



16 Abhishek Tiwari(�), Jyoti Prakash, Zhen Dong, and Carlo A. Furia

References

1. Droidbench: A micro-benchmark suite to assess the stability of taint-analysis tools for an-
droid. Github, https://github.com/secure-software-engineering/DroidBench/tree/
develop

2. Apktool: A tool for reverse engineering android apk files (01 2024), https://apktool.org
3. Intent communication in android (04 2024), https://developer.android.com/

reference/android/content/Intent

4. Android platform architecture. https://developer.android.com/guide/platform/, ac-
cessed: 2024-01-15

5. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 259–269. PLDI ’14, Associa-
tion for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/
2594291.2594299, https://doi.org/10.1145/2594291.2594299

6. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. SIGPLAN Not. 49(6), 259–269 (jun 2014). https://doi.
org/10.1145/2666356.2594299, https://doi.org/10.1145/2666356.2594299

7. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S.: On demystifying
the android application framework: Re-visiting android permission specification analysis.
In: Proceedings of the 25th USENIX Conference on Security Symposium. pp. 1101–1118.
SEC’16, USENIX Association, USA (2016)

8. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S.: Github: Axplorer–
android permission mappings. GitHub (Jan 2024), https://github.com/reddr/axplorer/
tree/master

9. Bai, G., Ye, Q., Wu, Y., Botha, H., Sun, J., Liu, Y., Dong, J.S., Visser, W.: Towards model
checking android applications. IEEE Transactions on Software Engineering 44(6), 595–612
(2018). https://doi.org/10.1109/TSE.2017.2697848

10. Banerjee, A., Chong, L.K., Ballabriga, C., Roychoudhury, A.: Energypatch: Repairing re-
source leaks to improve energy-efficiency of android apps. IEEE Transactions on Software
Engineering 44(5), 470–490 (2018). https://doi.org/10.1109/TSE.2017.2689012

11. Bhatt, B.N., Furia, C.A.: Automated repair of resource leaks in android applications.
Journal of Systems and Software 192, 111417 (2022). https://doi.org/https:

//doi.org/10.1016/j.jss.2022.111417, https://www.sciencedirect.com/science/

article/pii/S0164121222001273

12. Bosu, A., Liu, F., Yao, D.D., Wang, G.: Collusive data leak and more: Large-scale threat
analysis of inter-app communications. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. pp. 71–85. ASIA CCS ’17, Association for
Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3052973.
3053004, https://doi.org/10.1145/3052973.3053004

13. Center, I.T.W.R.: Wala t. j. watson libraries for analysis. https://github.com/wala/WALA
(2024 Jan)

14. Groß, S., Tiwari, A., Hammer, C.: Pianalyzer: A precise approach for pendingintent vulner-
ability analysis. In: Lopez, J., Zhou, J., Soriano, M. (eds.) Computer Security. pp. 41–59.
Springer International Publishing, Cham (2018)

15. Guo, W., Dong, Z., Shen, L., Tian, W., Su, T., Peng, X.: Detecting and fixing data loss is-
sues in android apps. In: Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. pp. 605–616. ISSTA 2022, Association for Computing

https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://apktool.org
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/platform/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://github.com/reddr/axplorer/tree/master
https://github.com/reddr/axplorer/tree/master
https://doi.org/10.1109/TSE.2017.2697848
https://doi.org/10.1109/TSE.2017.2697848
https://doi.org/10.1109/TSE.2017.2689012
https://doi.org/10.1109/TSE.2017.2689012
https://doi.org/https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/https://doi.org/10.1016/j.jss.2022.111417
https://www.sciencedirect.com/science/article/pii/S0164121222001273
https://www.sciencedirect.com/science/article/pii/S0164121222001273
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1145/3052973.3053004


Title Suppressed Due to Excessive Length 17

Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3533767.3534402,
https://doi.org/10.1145/3533767.3534402

16. Huang, H., Xu, C., Wen, M., Liu, Y., Cheung, S.: Conffix: Repairing configuration compat-
ibility issues in android apps. ACM (2023). https://doi.org/10.1145/3597926, https:
//doi.org/10.1145/3597926

17. Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis for app sets.
In: Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art
in Java Program Analysis. pp. 1–6. SOAP ’14, Association for Computing Machinery, New
York, NY, USA (2014). https://doi.org/10.1145/2614628.2614633, https://doi.org/
10.1145/2614628.2614633

18. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., McDaniel, P.: Iccta: Detecting inter-component privacy leaks in android apps.
In: Proceedings of the 37th International Conference on Software Engineering - Volume 1.
pp. 280–291. ICSE ’15, IEEE Press (2015)

19. Limited, F.D., Contributors: F-droid (2023), https://f-droid.org
20. Mesecan, I., Blackwell, D., Clark, D., Cohen, M.B., Petke, J.: Hypergi: Automated detection

and repair of information flow leakage. In: 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). pp. 1358–1362 (2021). https://doi.org/10.
1109/ASE51524.2021.9678758

21. Pauck, F.: Repodroid: Android benchmark reproduction framework. Github (Jan 2024),
https://foellix.github.io/ReproDroid/

22. Romdhana, A., Merlo, A., Ceccato, M., Tonella, P.: Assessing the security of inter-app com-
munications in android through reinforcement learning. Computers & Security 131, 103311
(2023)

23. Tan, S.H., Dong, Z., Gao, X., Roychoudhury, A.: Repairing crashes in android apps. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). pp. 187–198.
ACM (2018). https://doi.org/10.1145/3180155, https://doi.org/10.1145/3180155

24. Tiwari, A., Groß, S., Hammer, C.: Iifa: Modular inter-app intent information flow analysis
of android applications. In: Chen, S., Choo, K.K.R., Fu, X., Lou, W., Mohaisen, A. (eds.)
Security and Privacy in Communication Networks. pp. 335–349. Springer International Pub-
lishing, Cham (2019)

25. Tiwari, A., Prakash, J., Dong, Z., Furia, C.A.: Artifacts for automated repair of information
flow security in android implicit inter-app communication. Zenodo (June 2024), https://
doi.org/10.5281/zenodo.11957919

26. Wei, F., Roy, S., Ou, X., Robby: Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of android apps. ACM Trans. Priv. Secur. 21(3)
(apr 2018). https://doi.org/10.1145/3183575, https://doi.org/10.1145/3183575

27. Xu, T., Pan, M., Pei, Y., Li, G., Zeng, X., Zhang, T., Deng, Y., Li, X.: Guider: Gui structure
and vision co-guided test script repair for android apps. In: Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 191–203. ISSTA
2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3460319.3464830, https://doi.org/10.1145/3460319.3464830

28. Zhao, Y., Li, L., Liu, K., Grundy, J.: Towards automatically repairing compatibility issues
in published android apps. In: Proceedings of the 44th International Conference on Soft-
ware Engineering. pp. 2142–2153. ICSE ’22, Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3510003.3510128, https://doi.org/
10.1145/3510003.3510128

https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3597926
https://doi.org/10.1145/3597926
https://doi.org/10.1145/3597926
https://doi.org/10.1145/3597926
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1145/2614628.2614633
https://f-droid.org
https://doi.org/10.1109/ASE51524.2021.9678758
https://doi.org/10.1109/ASE51524.2021.9678758
https://doi.org/10.1109/ASE51524.2021.9678758
https://doi.org/10.1109/ASE51524.2021.9678758
https://foellix.github.io/ReproDroid/
https://doi.org/10.1145/3180155
https://doi.org/10.1145/3180155
https://doi.org/10.1145/3180155
https://doi.org/10.5281/zenodo.11957919
https://doi.org/10.5281/zenodo.11957919
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128

	Automated Repair of Information Flow Security in Android Implicit Inter-App Communication

