
Static Analysis Warnings and Automatic Fixing:
A Replication for C# Projects

Martin Odermatt
Software Institute

USI Università della Svizzera italiana
Lugano, Switzerland

martin.odermatt@usi.ch

Diego Marcilio
Software Institute

USI Università della Svizzera italiana
Lugano, Switzerland
dvmarcilio.github.io

Carlo A. Furia
Software Institute

USI Università della Svizzera italiana
Lugano, Switzerland

bugcounting.net

Abstract—Static analyzers have become increasingly popular
both as developer tools and as subjects of empirical studies.
Whereas static analysis tools exist for disparate programming
languages, the bulk of the empirical research has focused on the
popular Java programming language.

In this paper, we investigate to what extent some known results
about using static analyzers for Java change when considering
C#—another popular object-oriented language. To this end, we
combine two replications of previous Java studies. First, we
study which static analysis tools are most widely used among C#
developers, and which warnings are more commonly reported by
these tools on open-source C# projects. Second, we develop and
empirically evaluate EagleRepair: a technique to automatically
fix code in response to static analysis warnings; this is a
replication of our previous work for Java [20].

Our replication indicates, among other things, that 1) static
code analysis is fairly popular among C# developers too; 2) Re-
Sharper is the most widely used static analyzer for C#; 3) several
static analysis rules are commonly violated in both Java and C#
projects; 4) automatically generating fixes to static code analysis
warnings with good precision is feasible in C#. The EagleRepair
tool developed for this research is available as open source.

I. INTRODUCTION

Static analysis tools (SATs) are nowadays regularly used by
developers to help them detect defects and to enforce a consis-
tent programming style throughout the development lifecycle.
Reflecting this increasing uptake by practitioners, SATs have
also become a popular target for software engineering research
(see Sec. VIII)—both to understand how developers use them
and to improve their overall usability. Most of the empirical
work on SATs targets the Java programming language. This
paper is a replication of some of these studies that targets
instead the C# programming language.

C# is a populara object-oriented programming language,
which shares several similarities with Java but also some
interesting differences. Its user community, in particular, is
somewhat narrower than Java, as it revolves around the .NET
framework—which was initially focused on the Windows
operating system, but has gradually become available in other
systems as well. To our knowledge, no previous studies
looked into how SATs are used by C# developers nor how
to automatically fix some of their common warnings. This

aC# ranks 6th in the 2021 IEEE Spectrum ranking;1 Java ranks 2nd.

paper fills this knowledge gap, and contributes a tool that can
automatically fix SAT warnings flagged in C# projects.

More precisely, our replication is in two parts, each targeting
different previous work about Java. First, we consider studies
of how SATs are used in Java projects [9], [14], [18]: what
SATs are more popular among practitioners, and what warn-
ings they commonly report. Second, we consider our previous
work [19] introducing SpongeBugs: a technique to automat-
ically fix warnings reported by SonarQube (a popular SAT),
and analyzing its effectiveness on real-world Java projects.

In the present paper, we perform a partial replication of the
first line of work: we present an empirical study of SonarQube
and ReSharper (two of the SATs used by C# developers) where
we ran them on 100 open-source C# projects to determine
which defects they most commonly detect in these projects.
Following up on these results, we perform a full replication of
the second line of work: we present the EagleRepair technique,
which automatically builds suggestions for source-code fixes
of some static-analysis rule violations that commonly occur in
C# projects. We implemented the EagleRepair technique as a
tool, and validated its effectiveness by running it on the same
100 projects identified in the first part of this study.

The main results of our replication are as follows. Regarding
the first part, we confirm that SATs are used in C# projects
as well; comparing the most frequent warnings, we found
several rules that are frequently violated both in Java and in
C#. Regarding the second part, EagleRepair demonstrates that
automatically fixing SAT warnings is possible in C# too. In
our experiments, EagleRepair achieved precision and recall
(78% and 58%) that are lower than those of SpongeBugs (the
Java technique we replicated), but still good enough to be
practically useful. Like with SpongeBugs, we also confirmed
the acceptability of EagleRepair’s fixes by submitting 281 of
them as pull requests—89% of which were accepted by the
project developers.

In summary, the main contributions of this paper are:

• A partial replication—on 100 C# projects—analyzing
which SATs are more widely used, and which warnings
are more frequently raised.

• A full replication in C# of a technique to automatically
fix SAT warnings.

1

dvmarcilio.github.io
bugcounting.net

• A dataset [21] with 4.6 M warnings flagged by Sonar-
Qube and ReSharper on 100 open-source C# projects.2

• An open-source implementation of the EagleRepair tech-
nique supporting 20 ReSharper and SonarQube rules
available at https://marodev.github.io/EagleRepair/.

II. BACKGROUND: STATIC ANALYSIS TOOLS

Static analyzers are automatic tools that process a project’s
source code and report anomalies, bad smells, and stylistic
issues that are often indicative of bad programming practices.

SATs like SonarQube or ReSharper offer a range of rules
that users can select for checking. Each rule corresponds to a
pattern whose violations the SATs can identify. For example,
SonarQube’s rule 11863 requires that “Methods should not
be empty”; whenever SonarQube finds a method with a
completely empty body, it will report a violation of rule 1186.
A SAT’s rule violation report is also called a warning (or an
issue); therefore, each warning corresponds to the violation of
a certain rule at a certain location in the source code. Fixing a
warning means modifying the source code so that the SAT no
longer triggers that warning. For example, a fix for a violation
of rule 1186 consists of adding some executable code or some
comments to fill the empty method body.

III. ORIGINAL STUDIES

A. Frequency of Static Analysis Warnings in Java

Most recent empirical studies of SAT usage in Java target the
SonarQube static analyzer, which gained significant popularity
among Java developers [14]. Therefore, the first part of our
study (Sec. IV-B,V-B) performs, on C# projects, similar anal-
yses as 3 recent studies [9], [14], [18] of SonarQube usage on
Java projects. Lenarduzzi et al. [14] ran SonarQube on all com-
mits of 33 Java projects from the Apache Software Foundation,
collecting—among other things—1.8 M SonarQube warnings.
Digkas et al. [9] analyzed how the maintainers of 57 open-
source Java projects fix SonarQube issues. Marcilio et al. [18]
mined SonarQube usage in 246 projects—including both large
open-source projects and private government ones. Among
their many findings, we focus on those about the rules that
are most frequently violated in Java projects, which we recall
in Sec. V-B.

B. Automatically Fixing Static Analysis Warnings in Java

In previous work [19]b, we investigated the feasibility of
automatically generating fixes that address static analysis
warnings in Java projects. To this end, we designed and
implemented SpongeBugs, a technique that can automatically
fix 11 commonly used SonarQube rules.

1) Original Approach: SpongeBugs targets SonarQube
rules that developers are more likely to violate and fix [9],
[16], [18].

SpongeBugs’s implementation uses Rascal, a domain-
specific language for meta-programming. This dependency

bWe refer to the JSS journal publication [19], which extends the original
study published at SCAM [20].

implies that SpongeBugs can only analyze source code com-
patible with Java version 8. SpongeBugs uses Rascal’s pattern
matching features to detect rule violations; therefore, it does
not use SonarQube’s output (and may detect rule violations
slightly differently). More precisely, SpongeBugs performs
matching in two steps: first, it does a textual “linear” matching
that is fast but imprecise; then, it confirms any textual match-
ing with a more accurate AST matching. To fix any detected
violations, it instantiates pre-defined rule-specific fix templates
using the information collected during matching.

2) Original Research Questions: SpongeBugs’s evaluation
targets three main research questions:c

ORQ1. How widely applicable is SpongeBugs?
ORQ2. Does SpongeBugs generate fixes that are acceptable?
ORQ3. How efficient is SpongeBugs?

ORQ1 looks into how many rule violations SpongeBugs de-
tects and fixes; ORQ2 evaluates how many of fix suggestions,
submitted as pull requests, were accepted by project main-
tainers; ORQ3 measures SpongeBugs’s scalability in terms of
running time on large codebases.

3) Original Study Design: SpongeBugs’s evaluation targets
15 large open-source Java projects, selected using standard
criteria [13] such as active projects, with several open issues,
stars, and contributors. In addition, it only includes projects
registered in SonarCloud (a cloud service used to run Sonar-
Qube), so as to ensure that SonarQube is routinely used in
those projects.

To answer ORQ1, [19] first ran SonarQube on each se-
lected project, collecting the violations of the 11 rules that
SpongeBugs can fix. Then, it ran SpongeBugs on the same
projects, collecting all the generated fixes. Finally, it ran Sonar-
Qube again on the project modified by applying all the fixes
generated automatically by SpongeBugs, counting how many
original warnings no longer appeared. By manually analyzing
a sample of these experiments’ output, the original study
evaluated the correctness of fixes produced by SpongeBugs,
and the false positive and false negative rates of its violation
detection—using SonarQube’s detection as ground truth.

To answer ORQ2, [19] identified which projects were inter-
ested in fixing SonarQube violations (12 out of 15 projects). It
then submitted 38 pull requests to these projects, including 946
SpongeBugs-generated fixes complemented with manually-
written natural language descriptions of the violated rules.

To answer ORQ3, [19] measured the running time of
SpongeBugs on each project.

4) Original Results: Considering SpongeBugs’s applicabil-
ity (ORQ1), the original study found that it could automatically
fix 85% of all violations detected by SonarQube (for the
supported rules). All of SpongeBugs’s fixes are syntactically
correct (they compile without errors). Only 0.6% of all rule
violations reported by SpongeBugs are false positives that
do not correspond to SonarQube warnings (i.e., precision is
99%). In contrast, SpongeBugs misses 15% of all SonarQube

cA fourth research question is specific to the Java benchmark De-
fects4J [12], and we don’t include it in our C# replication.

2

https://marodev.github.io/EagleRepair/

warnings (false negatives in SpongeBugs’s detection, i.e.,
recall is 85%).

Considering the acceptability of SpongeBugs’s fixes
(ORQ2), the original study reports that the developers ac-
cepted 34 out of 38 submitted pull requests (including 825
SpongeBugs-generated fixes out of 946, or 87%).

Considering scalability (ORQ3), the original study reports
that SpongeBugs takes 1.2 minutes to process 1,000 lines of
code on average. Unsurprisingly, very large files and methods
may take up a disproportionate amount of running time.

IV. OUR REPLICATION STUDY DESIGN

The overall aim of our study is replicating for C# some
findings about static analysis in Java. Since C# features much
less frequently than Java in empirical studies of open-source
software, we first have to cover some groundwork to discover
what static analysis tools are used by C# projects, which leads
to our first research question:
RQ1. Which static analysis tools do open-source C# projects

commonly use?
After identifying a few popular static analyzers for C#, we

should understand which of their rules are more frequently
violated in C# projects. This is captured by our second
research question:
RQ2. What static analysis rules do C# projects more fre-

quently violate?
After establishing this basic knowledge about static analysis

tools and warnings in C#, we can address the main research
question:
RQ3. Is it feasible to automatically generate fixes that address

static analysis warnings in C# projects?
As we explain in detail in the rest of the section, answering

RQ3 involves: 1) developing a technique to automatically fix
static analysis warnings; 2) evaluating it on the same C#
projects analyzed to answer RQ1 and RQ2; 3) assessing its
applicability (RQ3.1), the acceptability of its fixes (RQ3.2),
and its runtime efficiency (RQ3.3).

A. Project Selection

To study static analysis usage “in the wild”, we collect
large and popular open-source C# projects. As customary in
experiments based on mining software repositories, we assume
that prominent open-source projects are more likely to be
realistic and mature, following practices that are representative
of professional software development—including using static
analysis tools.

We first used the GHS online tool [7] to broadly query
GitHub and retrieve 44,848 C# projects.d We then filtered
the projects to select those with least 100 stars (a common
heuristic to select “popular” projects [10]), and at least one of
the following: issues, pull requests, forks. This led to 34,430
projects. We then selected non-archived projects with at least
15 contributors and some recent activity in the third quartile of
the following GitHub metrics: commits, watchers, stars, total

dSample collected in March 2021.

issues, forks, and pull requests. This led to 1,810 projects.
Finally, we kept only projects that could be compiled in our
build environment, that is need no more than 10 GB of disk
space and 6 GB of RAM, and can be fully analyzed in no
more than 6 hours. This finally led to 1,050 projects, from
which we randomly selected 100 for the rest of the study.
These 100 projects total over 31 M LOC; the average project
size is 316 K LOC, the smallest project is 18 K LOC and the
largest is 3.2 M LOC.

B. Static Analysis Tools and Warnings

To answer RQ1, we searched the 100 projects’ repositories
for build configuration files that may indicate the regular
use of static analysis tool: continuous integration files (e.g.,
ci.yml, travis.yml), build scripts (e.g., build.sh), and
configuration files of static analysis tools (e.g., SonarQube’s
sonar-project.properties).

As Sec. V-A discusses in more detail, the analysis identified
ReSharper and SonarQube as suitable subjects. In our exper-
iments, we ran both tools with default settings on the latest
commit all projects. At the time of this research, SonarQube
for C# checks 269 rules when run in SonarCloud;ReSharper
version 2021.2 checks over 700 rules for C#.4

To answer RQ2, we collected statistics about which rules
were violated more frequently in the source code of the
100 C# projects. We paid heed to the static analyzers’ clas-
sification of their many rules: ReSharper groups rules into
9 categories (BestPractice, CodeSmell, ConstraintViolation,
DeclarationRedundancy, CodeRedundancy, LanguageUsage,
CodeStyleIssues, FormattingIssues, and CompilerWarning),5

whereas SonarQube groups rules into 3 categories (CodeSmell,
Vulnerability, and Bug).6

C. Automatically Fixing Violations

To address RQ3, we designed and implemented EagleRepair,
a technique to automatically fix static analysis warnings in
C# projects. EagleRepair can detect and fix violations of 15
ReSharper rules and 5 SonarQube rules.

Several ReSharper and SonarQube rules are similar, but
there is no one-to-one mapping because the two tools use
rules of different granularity. The 5 SonarQube rules roughly
correspond to 12 ReSharper rules: in particular, 7 different
ReSharper rules capture a series of issues that can affect LINQ
expressions; SonarQube lumps all of these issues in 1 rule. To
uniformly detect and fix warnings from both static analyzers,
EagleRepair summarizes these 17 = 5 + 12 rules by means
of 9 fix templates, which capture both the violations of a rule
(or group of similar rules) and the modifications needed to fix
such violations.

When run on a project, EagleRepair processes all source
code referenced in the project’s .sln solution file. After gener-
ating an AST of the source code by compilation, EagleRepair
performs the following step for each template:

1) It finds all template matches, which correspond to rule
violations;

3

2) It uses the matching information to modify the AST so
that it fixes the violation;

3) It checks that the fixes are well-formed.
A fix is well-formed if it corresponds to code that compiles
correctly. EagleRepair’s final output consists of the project’s
source code patched with all fixes that pass the checks.

EagleRepair’s implementation uses the Roslyn C# Com-
piler;7 this entails that every C# program that can be compiled
with the standard compiler can also be analyzed by EagleRe-
pair. Similarly to SpongeBugs, EagleRepair does not use the
output of ReSharper or SonarQube but independently and
directly checks for violations of their rules. As we observed
in SpongeBugs, this means that EagleRepair’s detection may
incur false positives and false negatives (with respect to
ReSharper’s or SonarQube’s).

To evaluate EagleRepair, we ran it on the 100 C# project that
we also used to study static-analysis warnings. In each run,
we collected EagleRepair’s generated fixes and we compared
them to the warnings reported by SonarQube and ReSharper
on the same projects. More precisely, we address the following
research questions, which mirror those used in SpongeBugs’s
empirical evaluation Sec. III-B.

Applicability: To answer RQ3.1:
RQ3.1 How widely applicable is EagleRepair?
we manually analyzed a sample of its fixes to determine their
correctness, and how many false positives and false negatives
it incurs (using SonarQube and ReSharper as ground truth).

Acceptabilty: To answer RQ3.2:
RQ3.2 Does EagleRepair generate fixes that are acceptable?
we selected 281 automatically-generated fixes and submitted
them as 27 pull requests of the corresponding projects. This
indicates whether developers find EagleRepair’s fixes mean-
ingful and of quality sufficient to be included in their codebase.

Efficiency: To answer RQ3.3:
RQ3.3 How efficient is EagleRepair?
we measured the running time of EagleRepair on the 100
projects. We used C#’s Stopwatch8 to measure running time.

V. REPLICATION RESULTS: STATIC ANALYSIS
TOOLS AND WARNINGS IN C#

A. Static Analysis Tools Used by C# Projects

Tab. I shows the results of our analysis of which SATs are used
by the 100 C# projects we selected. ReSharper is clearly the
most widely used, with 28 projects that include a configuration
file for running it. ReSharper’s popularity is consistent with the
findings of a survey of 375 Microsoft developers [6], which
indicated ReSharper as the most widely used code analyzer.

CodeQL9, Dependabot,10 and StyleCop11 are considerably
less used than ReSharper but still significantly so. CodeQL and
Dependabot are part of GitHub’s ecosystem,12,13 and hence
they are easy to integrate into GitHub pipeline workflows;
since we only considered projects on GitHub, this may be
part of the reason for their significant usage. Compared to
tools like ReSharper, CodeQL and Dependabot are more
specialized to find specific issues: CodeQL automates security

Tool % of Projects Using Tool

ReSharper 28 %
CodeQL 10 %
Dependabot 10 %
StyleCop 8 %
SonarQube 4 %
CredScan 3 %

TABLE I: For each static analysis tool, the percentage of the
100 C# projects used in our replication that use that tool.

checks, whereas Dependabot detects insecure and out-of-date
dependencies. StyleCop14 is a static analyzer that focuses on
style consistency rules (as the name suggests); ReSharper
includes most of StyleCop’s rules together with many others
that are not just about stylistic conventions.15 CredScan16

is another specialized tool (developed by Microsoft), which
detects sources of credential leaks in source code and config-
uration files; it was used by 3 projects in our sample. Finally,
Java developers’ favorite SonarQube was definitely used by
only 4 C# projects; this may indicate that it is not as popular
among C# developers as it is in Java.

ReSharper is the most widely used static analyzer in our
C# projects. SonarQube is considerably less popular in C#.

Following these results, we will focus on ReSharper and
SonarQube for the rest of our study. We consider ReSharper
because it’s clearly the most popular tool among C# projects;
but we also include SonarQube so that we can more directly
compare our results to those about Java. In contrast, the other
tools used by our projects are too specialized to support a
meaningful comparison with SonarQube’s usage in Java.

B. Static Analysis Warnings in C#

Warnings: As shown in Tab. II, running ReSharper and
SonarQube reported millions of warnings for our 100 projects.
ReSharper reported more than 9 times more warnings than
SonarQube (3.8 M vs. 413 K), which may partly be due to the
fact that ReSharper’s rules are designed specifically for C#,
whereas SonarQube aims at being a multi-language tool. The
distribution of warnings per projects has a long tail of 6–8
standard deviations for both tools.

Unsurprisingly, a project’s size is often a proxy for how
many warnings the SATs will report. Take QuickFIXn17 as
an example: it is the largest project in our dataset (2.3 M
LOC), and also first in terms of number of ReSharper warnings
(over 939 K) and fifth in terms of number of SonarQube
warnings (over 23 K). Upon closer inspection, we found that
a disproportionate fraction of all warnings in this project
(97% of ReSharper’s and 96% of SonarQube’s warnings) are
due to 585 files (such as Fields.cs18) that repeat the same
rule violations over and over. The comments and structure
of all these files clearly indicate that they were automatically
generated using inconsistent naming. Symmetrically, projects
that trigger a small number of warnings tend to be smaller,
such as project aliyun-open-api-netsdk19, which is the second
smallest in our dataset and also second in terms of the fewest
warnings from ReSharper.

4

In contrast, projects that diligently heed the recommenda-
tions of static analyzers as an integral part of their development
process tend to trigger fewer warnings, even relative to their
size. For instance, MaterialDesignInXamlToolkit’s20 contribu-
tion guidelines prominently mention the usage of ReSharper;21

it is then unsurprising that its size approximately matches the
80% percentile of all project sizes, but triggers the smallest
number of ReSharper warnings (and the 5th smallest of
SonarQube warnings) among all projects.

TABLE II: Warnings reported by ReSharper and SonarQube
on the 100 C# projects. All numbers are in thousands.

Tool Mean Std Min Med Max Total

Per Project

ReSharper 39.5 116.4 0.236 13.0 939.0 3800.0
SonarQube 4.1 8.9 0.048 1.4 58.3 413.6

Per Rule

ReSharper 8.0 50.3 0.001 0.2 881.7 3800.0
SonarQube 1.9 4.2 0.001 0.2 22.8 413.6

ReSharper vs. SonarQube Rules: If we break down the
warnings by violated rule (in all projects), we find that Re-
Sharper reported warnings violating 481 of its over 700 default
rules, and SonarQube reported reported warnings violating 211
rules of its 269 default rules.

ReSharper offers more rules compared to SonarQube be-
cause its rules feature a combination of finer granularity and
more extensive checks. Finer granularity means that ReSharper
often breaks down a single SonarQube rule into multiple
more specialized rules. For instance, SonarQube rule S297122

checks several features of LINQ IENumerable queries that
should be simplified; ReSharper breaks down the same checks
into 7 different rules, each targeting one feature that can be
simplified (e.g., Where, Count, etc.).

More extensive checks means that ReSharper sometimes
lifts to a broader scope some checks that SonarQube only
performs locally. For example, SonarQube’s rule S114423

checks that each source file includes no unused private types
or members; this check is performed locally on each file
independent of the others. ReSharper includes two rules,
UnusedMember.Local24 and UnusedMember.Global,25 that corre-
spond to the same check that there are no unused types or
members. UnusedMember.Local has the same single-file scope
as SonarQube’s matching rule; UnusedMember.Global applies
the same check to non-private types or members and across all
files. Note that using more extensive rules give more flexibility
but can also backfire: for example, ReSharper’s documentation
remarks that rule UnusedMember.Global may be inapplicable to
libraries or APIs that export members to public clients (but
have no clients within the project). These global rules offer
annotations to suppress warnings in these cases;26 indeed, we
found 10 projects (e.g., eddi27) using these annotations.

To perform a systematic mapping between SonarQube and
ReSharper rules, we first considered all warnings reported by

the two analyzers that flag lines that are very close in the
project’s source code (precisely, they flag lines ℓ1, ℓ2 such that
|ℓ1−ℓ2| ≤ 2). Then, we went through several hundred of such
pairs of warnings, and read the warnings’ natural-language
messages to determine if they correspond to a violation of
the same condition. With this process, we managed to map
35 ReSharper rules to 21 SonarQube rules: 1 SonarQube rule
corresponds to 7 ReSharper rules; each of 2 SonarQube rules
corresponds to 5 ReSharper rules; the remaining 18 (= 21−1−
2) SonarQube rules match 1-to-1 the remaining 18 ReSharper
rules (= 35− 1 · 7− 2 · 5).

ReSharper’s rules often are finer-grained and more
extensive than SonarQube’s. 35 ReSharper rules

correspond to 21 SonarQube rules.

C. Static Analysis Warnings: C# vs. Java

SonarQube’s rules are classified into 4 categories: Bugs,
Vulnerabilities, Security Hotspots, and Code Smells. Previous
work [9], [14], [18] (see Sec. III-A) consistently found that
Code Smells rules are disproportionately violated in Java
projects: 96% of all warnings in 33 Apache projects corre-
spond to violations of Code Smells rules [14]; 55% of the
fixes analyzed in [9] and 80% of the fixes analyzed in [18] fix
violations of Code Smells rules.

In order to understand whether a similar finding applies to
C# projects, we looked at the top-10 most frequently violated
rules in C# project. All top-10 most frequently violated
SonarQube rules (Tab. IV) indeed belong to category Code
Smells. As for the top-10 most frequently violated ReSharper
rules (Tab. III), we tried to find which of them to SonarQube’s
Code Smells, which are “a maintainability-related issue[s] in
the code”. ReSharper has its own categorization of rules into
9 categories, one of which is indeed called “CodeSmell”; one
of the rules belong to this category. In addition, we further
investigated the other 9 rules in Tab. III: 6 are equivalent
to SonarQube rules that belong to category Code Smells; 4
have no direct SonarQube equivalent rule, but all correspond
to checks that SonarQube commonly classifies as Code Smells
(redundant qualifiers, style and formatting issues).

Since SonarQube was used in our study as well as in
the original studies [14], [18]—albeit on projects written in
different languages—we can directly see which of the most
frequently violated rules in our C# experiments also feature
prominently in the Java experiments.f Tab. V includes all
SonarQube rules that were violated at least once in our
experiments, as well as in the Java studies [14], [18]. While
the absolute frequencies can vary considerably, there is overall
a remarkable similarity between the frequency of violations of
the same rules in different languages.

Exceptions to this trend are also interesting to discuss.
Violations of three SonarQube rules (S1199, S1481, and S1905
in Tab. V) feature proportionally much more frequently in
C# than in Java. Two of them (“nested blocks should not be

fNote that SonarQube for Java’s default ruleset includes 485 rules, signifi-
cantly more than C#’s 269 rules.

5

TABLE III: Top-10 most frequently violated ReSharper rules in C# projects: number of warnings (Counts) and percentage of
all warnings (%).

TypeId CategoryId Severity Description Counts %

RedundantNameQualifier Code Redundancy Warning Redundant name qualifier 881,541 25.46
UnusedMember.Global Declaration Redundancy Suggestion Type member is never used: Non-private accessib... 421,576 12.17
InconsistentNaming Constraint Violation Warning Inconsistent Naming 346,990 10.02
MemberCanBePrivate.Global Best Practice Suggestion Member can be made private: Non-private accessi... 187,061 5.40
ArrangeAccessorOwnerBody Code Style Issues Suggestion Use preferred body style: Convert to property, ... 144,293 4.17
BadControlBracesIndent Formatting Issues Suggestion Incorrect indent: Around statement braces 126,693 3.66
RedundantAssignment Code Redundancy Warning Assignment is not used 112,507 3.25
RedundantUsingDirective Code Redundancy Warning Redundant using directive 86,862 2.51
SuggestVarOrType_BuiltInTypes Code Style Issues Hint Use preferred ’var’ style: For built-in types 81,457 2.35
VirtualMemberCallInConstructor Code Smell Warning Virtual member call in constructor 55,096 1.59

Total 2,444,076 70.58

TABLE IV: Top-10 most frequently violated SonarQube rules in C# projects: number of warnings (Counts) and percentage
of all warnings (%).

Squid Severity Type Title Counts %

S3776 Critical CSe Cognitive Complexity of methods should not be t... 22,836 5.52
S1104 Minor CS Fields should not have public accessibility 22,466 5.43
S1905 Minor CS Redundant casts should not be used 19,553 4.73
S125 Major CS Sections of code should not be commented out 18,007 4.35
S101 Minor CS Types should be named in PascalCase 17,084 4.13

S4136 Minor CS Method overloads should be grouped together 16,818 4.07
S112 Major CS General exceptions should never be thrown 15,660 3.79

S2933 Major CS Fields that are only assigned in the constructo... 15,486 3.74
S1481 Minor CS Unused local variables should be removed 13,418 3.24
S927 Critical CS Parameter names should match base declaration a... 12,656 3.06

Total 173,984 42.06

used” and “redundant casts should not be used”) may simply
reflect different conventions in the usage of some language
features; but “unused local variables should be removed”
seems sound advice in any language—and hence it’s unclear
why C# programmers seem to violate this rule at higher rates.

Conversely, some rules feature more prominently in Java
than in C#. SonarQube’s Java rule “unnecessary imports
should be removed” is among the top-10 most frequently
violated rules in [18] but this ruleg is not not checked by
SonarQube on C# projects by default, and hence it doesn’t fea-
ture in our experiments. ReSharper does check an equivalent
rule RedundantUsingDirective, which is in fact the 8th most
frequently violated in our dataset. Another interesting example
concerns the keyword var, which declares variables with
implicit typing in both C# (since version 3 of the language)
and Java (since version 10). SonarQube for Java includes
by default a rule28 that signals cases where introducing var

can be useful, which is triggered frequently [18]. In contrast,
SonarQube developers intentionally did not provision a similar
rule for C#,29 claiming that Visual Studio already performs a
similar check. Nevertheless, ReSharper offers a similar rule
SuggestVarOrType, which is indeed the 9th most frequently
violated rules in our experiments.

In all, there is a clear similarity between the static analysis
rules that are most frequently violated by C# projects and those
violated by Java projects.

gMore precisely, its C# counterpart “unused using should be removed”.

The most frequently violated kinds of static analysis rules
are similar in Java and C# and often correspond to

maintainability-related issues of the code (“code smells”).

VI. REPLICATION RESULTS: AUTOMATICALLY FIXING
STATIC ANALYSIS WARNINGS IN C#

This section describes the empirical evaluation of EagleRe-
pairon the 100 C# projects in our dataset (Sec. IV-A), thus
answering RQ3 and, specifically, RQ3.1–3 (Sec. IV-C).

A. Fixed Rules

EagleRepair implements the 9 fix templates in Tab. VI, which
it uses to detect and fix violations to 15 ReSharper rules and
5 SonarQube rules. We selected the static analysis rules to fix
among those that were violated in our experiments (Sec. V-B),
including several rules that both ReSharper and SonarQube
support. In addition, we only considered rules that can be fixed
with modifications local to the source file where the rule is
violated, and do not entail modifying program behavior. These
criteria were also at the basis of SpongeBugs, since they allow
us to select rules that are amenable to being fixed correctly and
automatically. Our selection of rules to fix is neither exhaustive
nor unique, but it corresponds to a reasonably varied selection
that demonstrates fixing different kinds of rules.

B. RQ3.1: Applicability

We assess EagleRepair’s applicability in terms of the cor-
rectness, precision, and recall of its fixes. An EagleRepair
fix is correct if it modifies a program’s source code so that

6

TABLE V: SonarQube rules that were violated at least once in both our study and in the Java studies [14], [18]. Percentages
correspond to the percentage of all warnings in each dataset; rule descriptions are from SonarQube’s C# documentation.

Squid Description [18] (Java) % [14] (Java) % Our study (C#) %

S1066 Collapsible "if" statements should be merged 0.511 0.607 2.083
S1118 Utility classes should not have public construc... 0.801 0.513 0.510
S1125 Boolean literals should not be redundant 0.074 0.555 2.145
S1134 Track uses of "FIXME" tags 0.234 0.093 0.080
S1135 Track uses of "TODO" tags 1.900 1.147 2.343
S1155 "Any()" should be used to test for emptiness 0.500 1.142 0.151
S1163 Exceptions should not be thrown in finally blocks 0.045 0.049 0.006
S1168 Empty arrays and collections should be returned... 0.381 0.339 0.494
S1172 Unused method parameters should be removed 1.056 0.647 1.024
S1185 Overriding members should do more than simply c... 0.165 0.066 0.082
S1186 Methods should not be empty 1.634 1.769 1.894
S1199 Nested code blocks should not be used 1.634 0.812 2.950
S1206 "Equals(Object)" and "GetHashCode()" should be ... 0.086 0.039 0.110
S1210 "Equals" and the comparison operators should be... 0.019 0.058 0.083
S1215 "GC.Collect" should not be called 0.006 0.101 0.020
S1479 "switch" statements should not have too many "c... 0.067 0.003 0.034
S1481 Unused local variables should be removed 0.329 0.499 3.240
S1764 Identical expressions should not be used on bot... 0.021 0.020 0.040
S1862 Related "if/else if" statements should not have... 0.005 0.002 0.005
S1905 Redundant casts should not be used 0.241 0.146 4.727
S2178 Short-circuit logic should be used in boolean c... 0.010 0.005 0.083
S2183 Integral numbers should not be shifted by zero ... 0.015 0.052 0.013
S2184 Results of integer division should not be assig... 0.199 0.294 0.034
S2225 "ToString()" method should not return null 0.004 0.026 0.007
S2275 Composite format strings should not lead to une... 0.101 0.004 0.002
S2326 Unused type parameters should be removed 0.054 0.029 0.051
S2386 Mutable fields should not be "public static" 0.282 0.118 1.285

Median 0.165 0.101 0.083
Total 10.4 9.1 23.5

TABLE VI: The 9 fix templates implemented by EagleRepair
correspond to 15 ReSharper rules and 5 SonarQube rules.

ReSharper SonarQube

R1 MergeSequentialChecks
R2 MergeSequentialChecks S4201
R3 ReplaceWith[LINQ feature] (8×) S2971
R4 MergeCastWithTypeCheck S3247
R5 UseMethodAny S1155
R6 UseNullPropagation
R7 UsePatternMatching
R8 UseStringInterpolation
R9 ReplaceWithStringIsNullOrEmpty S3256

it no longer violates a static analysis rule and its behavior
does not change. A false positive is a warning reported (and
fixed) by EagleRepair that is reported by neither ReSharper
nor SonarQube. EagleRepair’s precision is thus the percentage
of its fixes that are not false positives. A false negative is
warning reported by ReSharper or SonarQube that EagleRe-
pair missed (and hence didn’t fix). EagleRepair’s recall is thus
the percentage of all ReSharper or SonarQube warnings that
are not false negatives. We measure precision and recall for
each of EagleRepair’s fix templates, which correspond to one
or several SonarQube and ReSharper rules.

In our experiments, EagleRepair produced a total of 31,394
fixes for the 100 analyzed projects. We manually analyzed
a sample of 460 of these fixes to estimate correctness and
precision. This sample size is sufficient to estimate precision
with up to 5% error and 95% probability with the most
conservative (i.e., 50%) a priori assumption [8]. We selected
the 460 fixes using stratified sampling: first, we classified all

TABLE VII: EagleRepair’s precision and recall in our sample
for each ReSharper and SonarQube rule its fix templates cover.

Template ReSharper/SonarQube Rule Precision Recall

R4 MergeCastWithTypeCheck 95 % 37 %
R1–2 MergeSequentialChecks 67 % 33 %
R3 ReplaceWithOfType 100 % 5 %
R3 ReplaceWithSingleCallToAny 100 % 68 %
R3 ReplaceWithSingleCallToCount 10 % 78 %
R3 ReplaceWithSingleCallToFirst 90 % 48 %
R3 ReplaceWithSingleCallToFirstOrDefault 100 % 68 %
R3 ReplaceWithSingleCallToLast 100 % 50 %
R3 ReplaceWithSingleCallToSingle 100 % 23 %
R3 ReplaceWithSingleCallToSingleOrDefault 90 % 63 %
R9 ReplaceWithStringIsNullOrEmpty 30 % 37 %
R5 UseMethodAny 70 % 88 %
R6 UseNullPropagation 76 % 35 %
R7 UsePatternMatching 76 % 74 %
R8 UseStringInterpolation 85 % 84 %
R5 S1155 100 % 94 %
R3 S2971 100 % 75 %
R4 S3247 62 % 77 %
R9 S3256 20 % 24 %
R2 S4201 90 % 79 %

Total 78 % 58 %

fixes into 9 strata according to the fix template they correspond
to; then, we sampled randomly in each stratum a number of
fixes proportional to the relative size of the stratum (compared
to the total number of fixes) with a lower bound of 10 fixes
per template; finally, we added a few fixes to the sample to
include at least 1 fix for every project with any fixes.

Thanks to its precise matching and well-formedness checks
(see Sec. IV-C), EagleRepair achieves a high correctness:
only 16 (3%) of the 460 manually inspected fixes were
incorrect, that is alter program behavior in unintended ways.

7

EagleRepair’s incomplete handling of string interpolation is
responsible for 4 of these incorrect fixes, generated by fixing
template R8 (which was correctly applied in 105 other cases
in our sample). For simplicity, EagleRepair fills in the formal
parameters in a format string in the same order as the param-
eters appear in the string, without processing the parameters’
name; in expressions like string.Format("{1},{0}"), the
first actual parameter would fill in the first formal parameter
{1} even though it should fill in the second one {0}. Another
source of a few incorrect fixes is when EagleRepair matches
fix template R9 too eagerly, and replaces a check s != ""

with !string.IsNullOrEmpty(s) which is equivalent to the
stronger check s != null && s != "". In a few cases, the
program really did intend to allow null as a valid value for s;
in these cases, EagleRepair’s fixes modify program behavior.
It’s interesting that this kind of incorrect fix is similar to some
produced by SpongeBugs for Java’s SonarQube rule “Strings
should be compared using equals()”, which may also change
program behavior when null is involved.

Tab. VII summarizes EagleRepair’s precision and recall for
each rule. The overall precision is 78%, which indicates that
EagleRepair’s templates match SonarQube’s and ReSharper’s
detection fairly accurately. ReSharper and SonarQube reported
48,999 warnings; EagleRepair managed to detect and fix
28,417 of them, which gives an overall recall of 58%. When
EagleRepair incurs a false positive, it means it will generate a
fix that is not needed according to ReSharper’s or SonarQube’s
detection algorithm; it does not mean that it introduces a
bug: since most of EagleRepair’s fixes do not alter behavior
(they are correct), it simply refactors the code in a way that
may not be a stylistic improvement. On the other hand, when
EagleRepair incurs a false negative, it simply means that it
won’t automatically fix a static analysis warning.

Let’s now look into some of the rules where recall
or precision are lower than average. ReSharper’s rule
ReplaceWithOfType has the lowest recall of 5%: EagleRepair
only detected and fixed 1 of 20 violations reported by Re-
Sharper. This rule is combined with 7 other similar rules
in EagleRepair’s fix template R3, which deals with anti-
patterns in LINQ expressions. Since the rule isn’t violated
very often compared to others, we overlooked some possible
cases when implementing EagleRepair’s template, which is
the one reason for this low recall. Other similar rules (all
corresponding to template R3) also have lower recall than most
other rules; this is often due to limitations in EagleRepair’s
matching capabilities, which we occasionally focused on the
most frequently occurring features. For instance, this snippet
is a violation of rule ReplaceWithSingleCallToSingle

return fields.Where(f => f.Name == valueName)
.Where(f => f.age >= threshold)
.Single();

which EagleRepair didn’t detect because it cannot match
expressions with several chained method calls.

Another limitation of EagleRepair explains its low re-
call with fix template R9, corresponding to ReSharper
rule ReplaceWithStringIsNullOrEmpty and SonarQube rule

S3256. The static analyzers can detect violations of this
rule (which essentially boils down to using C#’s static
method !string.IsNullOrEmpty(s) instead of the expression
s != null && s != "") even when they involve constants de-
clared in a different module, such as in the conditional expres-
sion if (!_graphvizdir.Equals(String.Empty)), where
String.Empty is a synonym of "". EagleRepair, in contrast,
does not follow references to constants declared in other
classes, and hence fails to detect such instances.

When EagleRepair has a low precision, it may be due to
overlapping static analysis rules. For instance, Boolean expres-
sion cad != null && cad.MethodInfo != null violates Re-
Sharper rules UsePatternMatching and MergeSequentialChecks.
ReSharper only reports a violation of the latter, whereas
EagleRepair detects and fixes a violation of the former. As
a result, this is both a false positive and a false negative for
EagleRepair using ReSharper’s output as ground truth.

Another limitation of EagleRepair that is a source of false
positives is that it does not take the language version into
account to perform its checks. For example, ReSharper only
checks rule UsePatternMatching (corresponding to EagleRe-
pair’s template R7) in projects written in C# version 7 or
higher, since pattern matching features where introduced in
that version of the language. EagleRepair checks the same rule
even with older C# projects, which determines false positives
(and, in a couple of cases, incorrect fixes).

EagleRepair automatically fixed 31,394 ReSharper and
SonarQube warnings, with overall (sampled)

correctness of 97%, precision of 78%, and recall of 58%.

It’s questionable that EagleRepair’s fixing results can be
quantitatively compared to SpongeBugs’s, since the two tools
have been evaluated on completely different projects and
languages. Nevertheless, we note that EagleRepair’s precision
and recall are lower than SpongeBugs (99% precision and
85% recall). EagleRepair’s difference is mainly due to a few
rules whose detection is tricky, often because they combine
SonarQube and ReSharper similar rules that are detected
differently by the two SATs; SpongeBugs exclusive focus on
SonarQube may have helped in this regard.

C. RQ3.2: Acceptability

We assess the acceptability of EagleRepair’s fixes as done in
SpongeBugs’s original study: we submit some of the fixes as
pull requests and record how many developers accept.

Tab. VIII summarizes the content of the 27 pull requests
collecting 281 EagleRepair fixes to the source code of various
projects. We selected projects and fixes to submit in order
to include popular and mature C# repositories (including
several components of .NET’s core framework), and all of
EagleRepair’s fix templates.

Developers accepted and merged 24 of the 27 pull requests
(including 250 fixes out of 281); the remaining 3 pull requests
were ignored by the project maintainers. All accepted pull re-
quests were accepted without modifications, except for PR19,
where the project maintainers asked us to remove a single

8

TABLE VIII: Summary of the 27 pull requests collecting several of EagleRepair’s fixes submitted to various C# projects.

Category Organization #Stars Pull Request URI Fixed template #Fixes Status

PR1 Framework ABP 6,200 abpframework/abp/pull/9032 R1, R6, R7, R8 5 Merged
PR2 Search Engine Apache Foundation 1,604 apache/lucenenet/pull/488 R5 3 Merged
PR3 SDK Dropbox 277 dropbox/dropbox-sdk-dotnet/pull/240 R6, R8 2 Merged
PR4 Backup Solution Duplicati 6,200 duplicati/duplicati/pull/4511 R8 9 Merged
PR5 Database EventStore 4,183 EventStore/EventStore/pull/2961 R1 9 Merged
PR6 Platform GrandNode 39 grandnode/grandnode2/pull/10 R4 1 Merged
PR7 SDK Microsoft 387 microsoft/ApplicationInsights-dotnet/pull/2268 R7 29 Merged
PR8 Concurrency Tool Microsoft 944 microsoft/coyote/pull/173 R1, R6, R7 5 Merged
PR9 Service for MS Azure Microsoft 687 microsoft/fhir-server/pull/1942 R1, R5, R6, R7, R8 8 Merged
PR10 Code Analyzer Microsoft 341 microsoft/infersharp/pull/60 R7 1 Merged
PR11 Library Microsoft 904 microsoft/RulesEngine/pull/137 R9 1 Merged
PR12 SDK Microsoft Azure 389 Azure/azure-cosmos-dotnet-v3/pull/2470 R1, R4, R6 21 Merged
PR13 IoT Microsoft Azure 1,189 Azure/iotedge/pull/4991 R3 18 Merged
PR14 Database RavenDB 2,718 ravendb/ravendb/pull/12157 R4 26 Merged
PR15 Video Game Regalis11 605 Regalis11/Barotrauma/pull/5772 R6 48 Merged
PR16 Video Game ServUO 390 ServUO/ServUO/pull/4935 R9 25 Merged
PR17 Framework .NET Foundation 3,865 akkadotnet/akka.net/pull/5013 R3 1 Merged
PR18 Framework .NET Foundation 1,355 dotnet/infer/pull/341 R3 2 Merged
PR19 Database .NET Foundation 10,200 dotnet/efcore/pull/24951 R2, R8 15 Merged
PR20 Framework .NET Foundation 9,900 dotnet/maui/pull/1059 R2 3 Merged
PR21 .NET extensions .NET Foundation 4,941 dotnet/reactive/pull/1543 R6 4 Merged
PR22 Compiler Platform .NET Foundation 1,048 dotnet/roslyn-analyzers/pull/5120 R1, R3, R6 5 Merged
PR23 Framework .NET Foundation 7,600 dotnet/orleans/pull/7080 9 3 Merged
PR24 Library ElasticSearch 3,070 elastic/elasticsearch-net/pull/5691 R8 6 Merged

PR25 Concurrency Tool Microsoft 376 microsoft/AMBROSIA/pull/119 R7, R8, R9 8 Inactive
PR26 Service for MS Azure Microsoft 1,174 microsoft/azure-pipelines-agent/pull/3404 R6 12 Inactive
PR27 Entertainment Sonarr 6,400 Sonarr/Sonarr/pull/4490 R6 11 Inactive

fix that targeted a method that could misbehave because it
was dynamically interpreted rather than statically compiled;
according to the maintainers, this peculiar usage could have
interfered with the fix to generate unintended side effects.

An interesting case is PR2, which included 3 fixes to
Apache’s Lucene search engine. The repository is a C# port
of the main Java version; therefore, the developers were
initially hesitant to modify the C# port independent of the
Java “parent” version. Nevertheless, they eventually accepted
the pull request since EagleRepair’s fixes provide a “real
performance benefit”.30

Developers accepted 89% of all 281 EagleRepair fixes
submitted as pull requests to their respective projects.

D. RQ3.3: Efficiency
To assess EagleRepair’s efficiency we simply measure its
running time in relation to the projects’ size. Fig. 1 visualizes
the measured running time in each project, and relates it
to the project’s size (bubble size) and number of detected
and fixed issues (vertical coordinate). Most projects, including
some very large ones such as QuickFIXn31 (2.4 M LOC) and
nHapi32 (2.1 M LOC), were processed within 100 seconds. The
project taking the most time was, however, ServUO,33 which
is a fairly small project in our selection (50 K LOC) but took
nearly 425 seconds to be analyzed with EagleRepair.

We found that the best predictor of EagleRepair’s running
time on a project is the number of semantic model accesses
that are required by the parsing step (see Sec. IV-C). This is a
step that affects all project’s code; after parsing is completed,
EagleRepair’s fix templates can be matched quickly and lo-
cally to each component.

EagleRepair scales to projects of realistic size, which it
can process in 100–400 seconds.

Fig. 1: EagleRepair’s running time on the 100 selected
projects. Each bubble corresponds to a project in the dataset;
the bubble’s size is proportional to the project size (as
measured by SonarCloud); the bubble’s x position measures
EagleRepair’s runtime on the project; the bubble’s y position
measures the number of detected and fixed warnings.

VII. THREATS TO VALIDITY

Our study of SAT usage and warnings in C# is a partial
replication, which only determined which SATs are used in C#
open-source projects and which warnings they more frequently
triggered. We did not try to replicate several other results of
the original Java studies [9], [14], [18] such as which static
analysis warnings developers manually fix more frequently. We
included SonarQube for C# in our comparison to meaningfully

9

compare some of the results for Java (which also target
SonarQube). However, SonarQube’s popularity in C# seems
considerably lower than its popularity in Java, which may limit
the generality of some of our comparative findings.

Our selection of 100 popular open-source C# projects may
not be representative of the whole C# ecosystem. A larger-
scale analysis, including proprietary software, may reveal
different SAT usage habits. Our detection of SAT usage may
have missed projects that use non-standard configuration files.

Our analysis of EagleRepair’s applicability was based on
a sample of the generated fixes. We followed a multistage
sampling strategy [2] (a stratified random sampling combined
with a statistically significant sample size) to make the sample
representative. While we double-checked our manual analysis,
we cannot exclude that some errors in the correctness analysis
remain; given the very low number of wrong fixes that we
found, we doubt they would significantly affect the results.
Our analysis of acceptability did not interview or survey
developers to better understand the usefulness of EagleRepair’s
submitted fixes. Our analysis of EagleRepair’s efficiency is
simply based on running time; however, we did not find any
glaring scalability problem.

The original study [19] that we replicated for C# was done
by a similar team: this paper’s second and third authors are
also authors of [19]. A fully independent replication may have
warranted a wider generalizability of the results.

VIII. RELATED WORK

We summarize the main related work in two areas: empirical
studies of practitioners’ usage of SATs (besides the three
studies [9], [14], [18] that we partially replicated); and au-
tomatically generating fix suggestions.

A. Practical Usage of SATs

One of the few multi-language study of SAT usage in open-
source projects [5] targeted 122 popular open-source Java,
JavaScript, Ruby, and Python projects. By manually analyzing
the projects’ websites and configuration files, the study found
that almost half of the projects use at least one SAT. Since it is
multi-language (and hence multi-tool), Beller et al.’s work [5]
faces a similar problem we had, namely mapping similar rules
across languages and tools. In our case, we could start from
SonarQube’s rules (many of which are available both in Java
and in C#) and then match them to ReSharper’s.

Continuous integration (CI) pipelines offer a convenient
environment to empirically study SAT adoption. Rausch et
al. [22] found that it’s not uncommon that a single project
uses multiple SATs; as a result, low code quality measures—
typically measured by SATs—are often correlated with build
failures. Zampetti et al. [28] report similar findings that
correlate static analysis checks and build failures. Furthermore,
they surveyed the SATs used by 20 GitHub Java projects with
a CI pipeline; Vassallo et al. [26], [27] also report SonarQube
as the most used SAT for Java; their findings are used on
a combination of analysis of CI pipelines and interviews
with industry practitioners. The methodological suggestion

that we took from all these studies for our replication is to
use configuration and build files to find which projects likely
use SATs as part of their development process.

SATs’ uptake by practitioners happened gradually and over
recent years, and still has potential to further develop. In their
2013 work, Johnson et al. [11] noted that several factors limit a
more widespread usage of SATs despite their undeniable ben-
efits, and especially their sometimes logorrheic and imprecise
(i.e., false positives) output, and the absence of automatic fix
suggestions. Their observations motivated follow-up work to
better characterize which SAT warnings developers find more
useful, and how to help the process of fixing warnings. Our
replication also contributes to this line of work.

As we mentioned in Sec. III-A, there is very little empirical
work on SAT usage for C#. The only (partial) exception we
could find is an empirical study of C# code smells [24], which
however focuses on design anti-patterns rather than the more
“syntactic” flaws that ReSharper and SonarQube (and hence
EagleRepair) primarily target.

B. Automatic Fix Suggestions

EagleRepair, like SpongeBugs, targets fixes that only involve
changes that should not affect program behavior. EagleRepair
and SpongeBugs’s approach is based on bespoke template
transformations, which generate fixes that are often correct-
by-construction. Other approaches to generate syntactic fixes
learn templates or other transformations from examples, such
as in bug reports [15], commits, or bug fixes [23].

A few alternative approaches have been proposed to provide
fix suggestions for SAT warnings; the bulk of the work
targets Java and the SAT FindBugs [1]; note that SonarQube
supersedes FindBugs by supporting many of its rules [25].
In contrast to the work described above, these works focus
on violations of rules that are “semantics”, and hence require
to change program behavior to be fixed. Historical patterns
of programmer-written fixes provide useful information to
learn fix patterns [16], [17]. Barik et al. [3]’s approach uses
a sort of differential testing, which compares the effect of
different possible fixes for the same warning. Phoenix [4] is
another system that learns fix patches for violations detected
by FindBugs; it combines the fix pattern ingredients mined
automatically from many revisions of 517 open-source projects
to generate new fix suggestions to faults that have similar
characteristics. Like EagleRepair, Phoenix’s acceptability of
fixes was assessed by submitting as pull requests a manual
selection of fix suggestions generated by the tool.

IX. CONCLUSIONS

We presented a replication for C# of studies of static analysis
usage and automatic fixing in Java. Among other things,
we confirmed that SATs are fairly used in C# open-source
projects; that the most frequent static analysis warnings have
to do with “code smells” which are similar in Java and C#
projects; and that automatically fixing violations of static
analysis rules is possible in C# as well with high correctness
and good precision.

10

REFERENCES

[1] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, Sep.
2008. doi:10.1109/MS.2008.130.

[2] Sebastian Baltes and Paul Ralph. Sampling in software engineering
research: A critical review and guidelines, 2021. arXiv:2002.07764.

[3] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill. From quick fixes
to slow fixes: Reimagining static analysis resolutions to enable design
space exploration. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 211–221, Oct 2016. doi:
10.1109/ICSME.2016.63.

[4] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. Phoenix:
Automated data-driven synthesis of repairs for static analysis violations.
In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, pages 613–624, New York, NY,
USA, 2019. ACM. URL: http://doi.acm.org/10.1145/3338906.3338952,
doi:10.1145/3338906.3338952.

[5] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman.
Analyzing the state of static analysis: A large-scale evaluation in open
source software. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 470–481. IEEE, 2016.

[6] Maria Christakis and Christian Bird. What developers want and need
from program analysis: An empirical study. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2016, page 332–343, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2970276.2970347.

[7] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in
GitHub for MSR studies. In 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-
19, 2021, pages 560–564. IEEE, 2021. doi:10.1109/MSR52588.2021.
00074.

[8] Wayne W. Daniel. Biostatistics: A Foundation for Analysis in the Health
Sciences. Wiley, 7 edition, 1999.

[9] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou. How do developers fix issues and pay back technical debt in
the Apache ecosystem? In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 153–
163, March 2018. doi:10.1109/SANER.2018.8330205.

[10] Junxiao Han, Shuiguang Deng, Xin Xia, Dongjing Wang, and Jianwei
Yin. Characterization and prediction of popular projects on GitHub. In
2019 IEEE 43rd annual computer software and applications conference
(COMPSAC), volume 1, pages 21–26. IEEE, 2019.

[11] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software developers use static analysis tools
to find bugs? In 2013 35th International Conference on Software
Engineering (ICSE), pages 672–681. IEEE, 2013.

[12] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for Java programs.
In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pages 437–440, New York, NY,
USA, 2014. ACM. URL: http://doi.acm.org/10.1145/2610384.2628055,
doi:10.1145/2610384.2628055.

[13] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela Damian. An in-depth study of the
promises and perils of mining GitHub. Empirical Software Engineering,
21(5):2035–2071, sep 2015. doi:10.1007/s10664-015-9393-5.

[14] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. The technical
debt dataset. In 15th Conference on Predictive Models and Data
Analytics in Software Engineering, January 2019.

[15] C. Liu, J. Yang, L. Tan, and M. Hafiz. R2fix: Automatically generating
bug fixes from bug reports. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, pages 282–291, March
2013. doi:10.1109/ICST.2013.24.

[16] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon. Mining
fix patterns for FindBugs violations. IEEE Transactions on Software
Engineering, pages 1–1, 2018. doi:10.1109/TSE.2018.2884955.

[17] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandè. AVATAR: Fixing
semantic bugs with fix patterns of static analysis violations. In 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 1–12, Feb 2019. doi:10.1109/
SANER.2019.8667970.

[18] Diego Marcilio, Rodrigo Bonifácio, Eduardo Monteiro, Edna Canedo,
Welder Luz, and Gustavo Pinto. Are static analysis violations really
fixed?: A closer look at realistic usage of SonarQube. In Proceedings of
the 27th International Conference on Program Comprehension, ICPC
’19, pages 209–219, Piscataway, NJ, USA, 2019. IEEE Press. doi:
10.1109/ICPC.2019.00040.

[19] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto.
Spongebugs: Automatically generating fix suggestions in response to
static code analysis warnings. J. Syst. Softw., 168:110671, 2020. doi:
10.1016/j.jss.2020.110671.

[20] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto.
Automatically generating fix suggestions in response to static code
analysis warnings. In 2019 19th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 34–44, 2019.
doi:10.1109/SCAM.2019.00013.

[21] Martin Odermatt, Diego Marcilio, and Carlo A. Furia. Static Analysis
Warnings and Automatic Fixing: A Replication for C# Projects : Dataset.
doi:10.5281/zenodo.5838454.

[22] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan
Schulte. An empirical analysis of build failures in the continuous integra-
tion workflows of java-based open-source software. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR),
pages 345–355. IEEE, 2017.

[23] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann. Learning syntactic program trans-
formations from examples. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 404–415, May 2017.
doi:10.1109/ICSE.2017.44.

[24] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. House of
cards: Code smells in open-source C# repositories. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 424–429. IEEE, 2017.

[25] Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C Gall.
Continuous code quality: are we (really) doing that? In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 790–795, 2018.

[26] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Andy Zaidman, and Harald C. Gall. Context is king: The
developer perspective on the usage of static analysis tools. In 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 38–49, 2018. doi:10.1109/SANER.
2018.8330195.

[27] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Ro-
mano, Philipp Leitner, Andy Zaidman, Massimiliano Di Penta, and
Sebastiano Panichella. A tale of ci build failures: An open source
and a financial organization perspective. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
183–193, 2017. doi:10.1109/ICSME.2017.67.

[28] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora,
and Massimiliano Di Penta. How open source projects use static code
analysis tools in continuous integration pipelines. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR),
pages 334–344, 2017. doi:10.1109/MSR.2017.2.

URL REFERENCES

1. https://spectrum.ieee.org/top-programming-languages/
2. https://github.com/marodev/usi-2021-automated-fixing-of-static-code-analysis-warnings-in-csharp-programs/

tree/main/resharper
3. https://rules.sonarsource.com/csharp/RSPEC-1186
4. https://www.jetbrains.com/help/resharper/Reference__Code_

Inspections_CSHARP.html
5. https://www.jetbrains.com/help/resharper/Code_Analysis__Code_

Inspections.html#categories
6. https://docs.sonarqube.org/latest/user-guide/issues/
7. https://github.com/dotnet/roslyn
8. https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.

stopwatch?view=net-5.0
9. https://codeql.github.com/

10. https://dependabot.com/
11. https://github.com/StyleCop/StyleCop
12. https://github.blog/2020-09-30-code-scanning-is-now-available/
13. https://dependabot.com/blog/hello-github/

11

https://doi.org/10.1109/MS.2008.130
http://arxiv.org/abs/2002.07764
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1109/ICSME.2016.63
http://doi.acm.org/10.1145/3338906.3338952
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1109/SANER.2018.8330205
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1016/j.jss.2020.110671
https://doi.org/10.1016/j.jss.2020.110671
https://doi.org/10.1109/SCAM.2019.00013
https://doi.org/10.5281/zenodo.5838454
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/ICSME.2017.67
https://doi.org/10.1109/MSR.2017.2
https://spectrum.ieee.org/top-programming-languages/
https://github.com/marodev/usi-2021-automated-fixing-of-static-code-analysis-warnings-in-csharp-programs/tree/main/resharper
https://github.com/marodev/usi-2021-automated-fixing-of-static-code-analysis-warnings-in-csharp-programs/tree/main/resharper
https://rules.sonarsource.com/csharp/RSPEC-1186
https://www.jetbrains.com/help/resharper/Reference__Code_Inspections_CSHARP.html
https://www.jetbrains.com/help/resharper/Reference__Code_Inspections_CSHARP.html
https://www.jetbrains.com/help/resharper/Code_Analysis__Code_Inspections.html##categories
https://www.jetbrains.com/help/resharper/Code_Analysis__Code_Inspections.html##categories
https://docs.sonarqube.org/latest/user-guide/issues/
https://github.com/dotnet/roslyn
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-5.0
https://codeql.github.com/
https://dependabot.com/
https://github.com/StyleCop/StyleCop
https://github.blog/2020-09-30-code-scanning-is-now-available/
https://dependabot.com/blog/hello-github/

14. https://github.com/StyleCop/StyleCop
15. https://www.jetbrains.com/help/resharper/StyleCop_Styles.html
16. https://secdevtools.azurewebsites.net/helpcredscan.html
17. http://quickfixn.org/
18. https://github.com/connamara/quickfixn/blob/

63f7e97f3f0353559becfcc2fc989246a4bc09c5/QuickFIXn/Fields/
Fields.cs

19. https://github.com/aliyun/aliyun-openapi-net-sdk
20. https://github.com/MaterialDesignInXAML/

MaterialDesignInXamlToolkit
21. https://github.com/MaterialDesignInXAML/

MaterialDesignInXamlToolkit/blob/
690f999772690b0e7e895eb939672bf34178a32d/.github/
CONTRIBUTING.md#coding-standards

22. https://rules.sonarsource.com/csharp/type/Code%20Smell/RSPEC-2971
23. https://rules.sonarsource.com/csharp/type/Code%20Smell/RSPEC-1144
24. https://www.jetbrains.com/help/resharper/UnusedMember.Local.html
25. https://www.jetbrains.com/help/resharper/UnusedMember.Global.html
26. https://www.jetbrains.com/help/resharper/Reference__Code_

Annotation_Attributes.html
27. https://github.com/EDCD/EDDI
28. https://rules.sonarsource.com/java/RSPEC-6212
29. https://github.com/SonarSource/sonar-dotnet/issues/865
30. https://github.com/apache/lucenenet/pull/488
31. http://quickfixn.org/
32. https://github.com/nhapinet/nhapi
33. https://github.com/ServUO/ServUO

12

https://github.com/StyleCop/StyleCop
https://www.jetbrains.com/help/resharper/StyleCop_Styles.html
https://secdevtools.azurewebsites.net/helpcredscan.html
http://quickfixn.org/
https://github.com/connamara/quickfixn/blob/63f7e97f3f0353559becfcc2fc989246a4bc09c5/QuickFIXn/Fields/Fields.cs
https://github.com/connamara/quickfixn/blob/63f7e97f3f0353559becfcc2fc989246a4bc09c5/QuickFIXn/Fields/Fields.cs
https://github.com/connamara/quickfixn/blob/63f7e97f3f0353559becfcc2fc989246a4bc09c5/QuickFIXn/Fields/Fields.cs
https://github.com/aliyun/aliyun-openapi-net-sdk
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit/blob/690f999772690b0e7e895eb939672bf34178a32d/.github/CONTRIBUTING.md##coding-standards
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit/blob/690f999772690b0e7e895eb939672bf34178a32d/.github/CONTRIBUTING.md##coding-standards
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit/blob/690f999772690b0e7e895eb939672bf34178a32d/.github/CONTRIBUTING.md##coding-standards
https://github.com/MaterialDesignInXAML/MaterialDesignInXamlToolkit/blob/690f999772690b0e7e895eb939672bf34178a32d/.github/CONTRIBUTING.md##coding-standards
https://rules.sonarsource.com/csharp/type/Code%20Smell/RSPEC-2971
https://rules.sonarsource.com/csharp/type/Code%20Smell/RSPEC-1144
https://www.jetbrains.com/help/resharper/UnusedMember.Local.html
https://www.jetbrains.com/help/resharper/UnusedMember.Global.html
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html
https://github.com/EDCD/EDDI
https://rules.sonarsource.com/java/RSPEC-6212
https://github.com/SonarSource/sonar-dotnet/issues/865
https://github.com/apache/lucenenet/pull/488
http://quickfixn.org/
https://github.com/nhapinet/nhapi
https://github.com/ServUO/ServUO

	Introduction
	Background: Static Analysis Tools
	Original Studies
	Frequency of Static Analysis Warnings in Java
	Automatically Fixing Static Analysis Warnings in Java
	Original Approach
	Original Research Questions
	Original Study Design
	Original Results

	Our Replication Study Design
	Project Selection
	Static Analysis Tools and Warnings
	Automatically Fixing Violations

	Replication Results: Static Analysis Tools and Warnings in C#
	Static Analysis Tools Used by C# Projects
	Static Analysis Warnings in C#
	Static Analysis Warnings: C# vs. Java

	Replication Results: Automatically Fixing Static Analysis Warnings in C#
	Fixed Rules
	RQ3.1: Applicability
	RQ3.2: Acceptability
	RQ3.3: Efficiency

	Threats to Validity
	Related Work
	Practical Usage of SATs
	Automatic Fix Suggestions

	Conclusions
	References

