
Automatically Generating Fix Suggestions in
Response to Static Code Analysis Warnings

Diego Marcilio
University of Brasília

Brasilia, Brazil
dvmarcilio@gmail.com

Carlo A. Furia
USI – Università della Svizzera Italiana

Lugano, Switzerland
bugcounting.net

Rodrigo Bonifácio
University of Brasília

Brasilia, Brazil
rbonifacio@unb.br

Gustavo Pinto
Federal University of Pará

Belém, Brazil
gpinto@ufpa.br

Abstract—Static code analysis tools such as FindBugs and
SonarQube are widely used on open-source and industrial
projects to detect a variety of issues that may negatively affect the
quality of software. Despite these tools’ popularity and high level
of automation, several empirical studies report that developers
normally fix only a small fraction (typically, less than 10% [1]) of
the reported issues—so-called “warnings”. If these analysis tools
could also automatically provide suggestions on how to fix the
issues that trigger some of the warnings, their feedback would
become more actionable and more directly useful to developers.

In this work, we investigate whether it is feasible to auto-
matically generate fix suggestions for common warnings issued
by static code analysis tools, and to what extent developers are
willing to accept such suggestions into the codebases they’re
maintaining. To this end, we implemented a Java program
transformation technique that fixes 11 distinct rules checked
by two well-known static code analysis tools (SonarQube and
SpotBugs). Fix suggestions are generated automatically based
on templates, which are instantiated in a way that removes the
source of the warnings; templates for some rules are even capable
of producing multi-line patches. We submitted 38 pull requests,
including 920 fixes generated automatically by our technique
for various open-source Java projects, including the Eclipse IDE
and both SonarQube and SpotBugs tools. At the time of writing,
project maintainers accepted 84% of our fix suggestions (95%
of them without any modifications). These results indicate that
our approach to generating fix suggestions is feasible, and can
help increase the applicability of static code analysis tools.

I. INTRODUCTION

Static code analysis tools (SATs) are becoming increasingly
popular as a way of detecting possible sources of defects
earlier in the development process [2]. By working statically
on the source or byte code of a project, these tools are appli-
cable to large code bases [3], [4], where they quickly search
for patterns that may indicate problems—bugs, questionable
design choices, or failures to follow stylistic conventions [5],
[6]—and report them to users. There is evidence [7] that
using these tools can help developers monitor and improve
software code quality; indeed, static code analysis tools are
widely used for both commercial and open-source software
development [1], [2], [4]. Some projects’ development rules
even require that code has to clear the checks of a certain
SAT before it can be released [1], [7], [8].

At the same time, some features of SATs limit their wider
applicability in practice. One key problem is that SATs are
necessarily imprecise in checking for rule violations; in other

words, they report warnings that may or may not correspond to
an actual mistake. As a result, the first time a static analysis
tool is run on a project, it is likely to report thousands of
warnings [2], [3], which saturates the developers’ capability
of sifting through them to select those that are more relevant
and should be fixed [1]. Another related issue with using
SATs in practice is that understanding the problem highlighted
by a warning and coming up with a suitable fix is often
nontrivial [1], [3].

Our research aims at improving the practical usability of
SATs by automatically providing fix suggestions: modifications
to the source code that make it compliant with the rules
checked by the analysis tools. We developed an approach,
called SpongeBugs and described in Section III, whose current
implementation works on Java code. SpongeBugs detects
violations of 11 different rules checked by SonarQube and
SpotBugs (successor to FindBugs [2])—two well-known static
code analysis tools, routinely used by very many software
companies and consortia, including large ones such as the
Apache Software Foundation and the Eclipse Foundation. The
rules checked by SpongeBugs are among the most widely
used in these two tools, and cover different kinds of code
issues (ranging from performance, to correct behavior, style,
and other aspects). For each violation it detects, SpongeBugs
automatically generates a fix suggestion and presents it to the
user.

By construction, SpongeBugs’s suggestions remove the
origin of a rule’s violation, but the maintainer still has to
decide—based on their overall knowledge of the project—
whether to accept and merge each suggestion. To assess
whether developers are indeed willing to accept SpongeBugs’s
suggestions, Section V describes the results of an empirical
evaluation where we applied SpongeBugs to 12 Java projects,
and submitted 920 fix suggestions as pull requests to the
projects. At the time of writing, project maintainers accepted
775 (84%) fix suggestions—95% of them without any modi-
fications. This high acceptance rate suggests that SpongeBugs
often generates patches of high quality, which developers find
adequate and useful. The empirical evaluation also indicates
that SpongeBugs is applicable with good performance to large
code bases; and reports (in Section V-D) several qualitative
findings that can inform further progress in this line of work.

The work reported in this paper is part of a large body of

dvmarcilio@gmail.com
bugcounting.net
rbonifacio@unb.br
gpinto@ufpa.br

research (see Section II) that deals with helping developers
detecting and fixing bugs and code smells. SpongeBugs’
approach is characterized by the following features: i) it
targets static rules that correspond to frequent mistakes that
are often fixable syntactically; ii) it builds fix suggestions that
remove the source of warning by construction; iii) it scales to
large code bases because it is based on lightweight program
transformation techniques. Despite the focus on conceptually
simple rule violations, SpongeBugs can generate nontrivial
patches, including some that modify multiple hunks of code at
once. In summary, SpongeBugs’s focus privileges generating a
large number of practically useful fixes over being as broadly
applicable as possible. Based on our empirical evaluation,
Section VI discusses the main limitations of SpongeBugs’s
approach, and Section VII outlines directions for further
progress in this line of work.

II. BACKGROUND AND RELATED WORK

Static analysis techniques reason about program behavior
statically, that is without running the program [9]. This is
in contrast to dynamic analysis techniques, which are instead
driven by specific program inputs (provided, for example, by
unit tests). Thus, static analysis techniques are often more
scalable (because they do not require complete executions)
but also less precise (because they over-approximate program
behavior to encompass all possible inputs) than dynamic
analysis techniques. In practice, there is a broad range of
static analysis techniques from purely syntactic ones—based
on code patterns—to complex semantic ones—which infer
behavioral properties that can be used to perform program
optimizations [10], [11] as well as performance problems and
other kinds of vulnerabilities [12], [13].

Static Code Analysis Tools. Static code analysis tools (SATs)
typically combine different kinds of analyses. This paper
focuses on the output of tools such as SonarQube, FindBugs,
and SpotBugs, because they are widely available and prac-
tically used [2]. The analysis performed by a SAT consists
of several independent rules, which users can select in ev-
ery run of the tool. Each rule describes a requirement that
correct, high-quality code should meet. For example, a rule
may require that Constructors should not be used to instan-
tiate String—one should write String s = "SpongeBugs"
instead of String s = new String("SpongeBugs").

Whenever a SAT finds a piece of code that violates one
of the rules, it outputs a warning, typically reporting the
incriminated piece of code and a reference to the rule that it
violates. It is then up to the developer to inspect the warning
to decide whether the violation is real and significant enough
to be addressed; if it is, the developer also has to come up
with a fix that modifies the source code and removes the rule
violation without otherwise affecting program behavior.

Empirical Studies on Static Code Analysis Tools. Soft-
ware engineering researchers have become increasingly in-
terested [2] in studying how SATs are used in practice by
developers, and how to increase their level of automation.

Rausch et al. [14] performed an extensive study on the build
failures of 14 projects, finding a frequent association between
build failures and issues reported by SATs (when the latter are
used as a component of continuous integration). Zampetti et
al. [15] found that lack of a consistent coding style across a
project is a frequent source of build failures.

Recent studies focused on the kinds of rule violations
developers are more likely to fix. Liu et al. [16] compared
a large number of fixed and not fixed FindBugs rule violations
across revisions of 730 Java projects. They characterized the
categories of violations that are often fixed, and reported
several situations in which the violations are systematically
ignored. They also concluded that developers disregard most
of FindBugs violations as not being severe enough to be fixed
during development process.

Digkas et al. [17] performed a similar analysis for Sonar-
Qube rules, revealing that a small number of all rules accounts
for the majority of programmer-written fixes. Marcilio et al. [1]
characterized the use of SonarQube in 246 Java projects,
reporting a low resolution rate of issues (around 9% of the
project’s issues have been fixed), and also finding that a small
subset of the rules reveal real design and coding flaws that
developers consider serious. These findings suggest that a fix
generation tool that focuses on a selection of rules is likely
to be highly effective and relevant in practice to real project
developers.

Automatic Fix Suggestions and Program Repair. Several
researchers have developed techniques that propose fix sug-
gestions for rules of the popular FindBugs in different ways:
interactively, with the user exploring different alternative fixes
for the same warning [5]; and automatically, by systematically
generating fixes by mining patterns of programmer-written
fixes [4], [16]. These studies focus on behavioral bugs such
as those in Defects4J [18]—a curated collection of 395 real
bugs of open-source Java projects. In contrast, SpongeBugs
mainly targets rules that characterize so-called code smells—
patterns that may be indicative of poor programming prac-
tices, and mainly encompass design and stylistic aspects. We
focus on these because they are simpler to characterize and
fix “syntactically” but are also the categories of warnings
that developers using SATs are more likely to address and
fix [1], [16], [17]. This focus helps SpongeBugs achieve high
precision and scalability, as well as be practically useful.

The work closest to ours is probably Liu et al.’s study [4],
which presents the AVATAR automatic program repair system.
AVATAR recommends code changes based on the output of
SAT tools. In its experimental evaluation, AVATAR generated
correct fixes for 34 bugs among those of the Defects4J bench-
mark. This suggests that responding to warnings of SATs can
be an effective way to fix some behavioral “semantic” bugs.
While we may run SpongeBugs on Defects4J bugs as well,
AVATAR’s and SpongeBugs’ scopes are mostly complementary
in the kind of design trade-offs they target. Our approach
focuses on “syntactic” design flaws that often admit simple
yet effective fixes, with the main goal of being immediately

and generally useful for the kinds of static analysis flaws that
developers fix more often.

Aftandilian et al. [19] presented an extension of the Open-
JDK compiler that detects potential bugs and recommends
fixes at compile time, based on patterns that are similar to
those used by SATs like FindBugs. Other approaches learn
transformations from examples, using sets of bug fixes [20],
bug reports [21], or source-code editing patterns [22]. We
directly implemented SpongeBugs’ transformations based on
our expertise and the standard recommendations for fixing
warnings from static analysis tools. Even though SpongeBugs
cannot learn new fixing rules at the moment, this remains an
interesting direction for further improving its capabilities.

Behavioral bugs are also the primary focus of techniques for
“automated program repair”, a research area that has grown
considerably in the last decade. The most popular approaches
to automated program repair are mainly driven by dynamic
analysis (i.e., tests) [23], [24] and targets generic bugs. In
contrast, SpongeBugs’ approach is based on static code-
transformation techniques, which makes it of more limited
scope but also more easily and widely applicable.

III. SPONGEBUGS: APPROACH AND IMPLEMENTATION

SpongeBugs provides fix suggestions for violations of se-
lected rules that are checked by SonarQube and SpotBugs.
Section III-A discusses how we selected the rules to check
and suggest fixes for. SpongeBugs works by means of source-
to-source transformations, implemented as we outline in Sec-
tion III-B.

A. Rule Selection

One key design decision for SpongeBugs is which static
code analysis rules it should target. Crucially, SATs are prone
to generating a high number of false positives [25]. To avoid
creating fixes to spurious warnings, we base our design on the
assumption that rules whose violations are frequently fixed
by developers are more likely to correspond to real issues of
practical relevance [1], [16].

We collected and analyzed the publicly available datasets
from three previous studies that explored developer behavior
in response to output from SonarQube [1], [17] and Find-
Bugs [16]. Based on this data, we initially selected the top
50% most frequently fixed rules, corresponding to 156 rules,
extended with another 10 rules whose usage was not studied
in the literature but appear to be widely applicable.

Then, we went sequentially through each rule, starting from
the most frequently fixed ones, and manually selected those
that are more amenable to automatic fix generation. The main
criterion to select a rule is that it should be possible to define a
syntactic fix template that is guaranteed to remove the source
of warning without obviously changing the behavior. This led
to discarding all rules that are not modular, that is, that require
changes that affect clients in any files. An example is the
rule Method may return null, but its return type is @Nonnull.1

1https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#
np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation

Although conceptually simple, the fix for a violation of this
rule entails a change in a method’s signature that weakens
the guarantees on its return type. This is impractical, since
we would need to identify and check every call of this
method, and potentially introduces a breaking change [26].
We also discarded rules when automatically generating a
syntactic fix would be cumbersome or would require additional
design decisions. An example is the rule Code should not
contain a hard coded reference to an absolute pathname, whose
recommended solution involves introducing an environment
variable. To provide an automated fix for this violation, our
tool would need an input from developers, since pathnames are
context specific; it would also need access to the application’s
execution environment, which is clearly beyond the scope of
the source code under analysis.

We selected the top rules (in order of how often developers
fix the corresponding warnings) that satisfy these feasibility
criteria, leading to the 11 rules listed in Table I. Note that
SonarQube and SpotBugs rules largely overlap, but the same
rule may be expressed in slightly different terms in either tool.
Since SonarQube includes all 11 rules we selected, whereas
SpotBug only includes 7 of them, we use SonarQube rule
names2 for uniformity throughout the paper.

Consistently with SonarQube’s classification of rules, we
assign an identifier to each rule according to whether it
represents a bug (B1 and B2) or a code smell (C1–C9). While
the classification is fuzzy and of limited practical usefulness,
note that the most of our rules are code smells in accordance
with the design decisions behind SpongeBugs.

TABLE I: The 11 static code analysis rules that SpongeBugs
can provide fix suggestions for. The rule descriptions are based
on SonarQube’s, which classifies rules in (B)ugs and (C)ode
smells.

ID RULE DESCRIPTION

B1 Strings and boxed types should be compared using equals()

B2 BigDecimal(double) should not be used
C1 String literals should not be duplicated
C2 String functions use should be optimized for single characters
C3 Strings should not be concatenated using + in a loop
C4 Parsing should be used to convert strings to primitive types
C5 Strings literals should be placed on the left-hand side

when checking for equality
C6 Constructors should not be used to instantiate String,

BigInteger, BigDecimal, and primitive wrapper classes
C7 entrySet() should be iterated when both key and value are

are needed
C8 Collection.isEmpty() should be used to test for emptiness
C9 Collections.EMPTY_LIST, EMPTY_MAP, and EMPTY_SET

should not be used

Rules C1 and C5 were selected indirectly on top of the
feasibility criteria discussed above (which were used directly
to select the other 9 rules). We selected rule C1 because
it features very frequently among the open issues of many

2https://rules.sonarsource.com/java

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
https://rules.sonarsource.com/java

projects; its fixes are somewhat challenging since they involve
multiple lines and the insertion of a constant. We selected rule
C5 because it can be fixed in conjunction with fixes to rule B1
(see Listing 1), making the code shorter while also avoiding
NullPointerException from being thrown.

- if (render != null && render != "")
+ if (!"".equals(render))

Listing 1: Fixes for rules B1 (Strings and boxed types should
be compared using equals()) and C5 (Strings literals should
be placed on the left-hand side when checking for equality)
applied in conjunction.

B. How SpongeBugs Works

SpongeBugs looks for rule violations and builds fix sugges-
tions in three steps:

1) Find textual patterns that might represent a rule violation.
2) For every match identified in step 1, perform a full search

in the AST looking for rule violations.
3) For every match confirmed in step 2, instantiate the

rule’s fix templates—producing the actual fix for the rule
violation.

We implemented SpongeBugs using Rascal [27], a domain-
specific language for source code analysis and manipulation.
Rascal facilitates several common meta-programming tasks,
including a first-class visitor language constructor, advanced
pattern matching based on concrete syntax, and defining
templates for code generation. We used Rascal’s Java 8
grammar [28], which entails that our evaluation (Section V)
is limited to Java projects that can be built using this version
of the language.

We illustrate how SpongeBugs’s three steps work for rule
C8 (Collection.isEmpty() should be used to test for empti-
ness). Step 1 performs a fast, but potentially imprecise, search
that is based on some textual necessary conditions for a rule
to be triggered. For rule C8, step 1 looks for files that import
some package in java.util and include textual patterns that
indicate a comparison of size() with zero or one—as shown
in Listing 2.

bool shouldContinueWithASTAnalysis(loc fileLoc) {
javaFileContent = readFile(fileLoc);
return findFirst(javaFileContent, "import java.util.") != -1 &&
hasSizeComparison(javaFileContent);

}

bool hasSizeComparison(str javaFileContent) {
return findFirst(javaFileContent, ".size() \> 0") != -1 ||
findFirst(javaFileContent, ".size() \>= 1") != -1 ||
findFirst(javaFileContent, ".size() != 0") != -1 ||
findFirst(javaFileContent, ".size() == 0") != -1;

}

Listing 2: Implementation of step 1 for rule C8: find textual
patterns that might represent a violation of rule C8.

Step 1 may report false positives: for rule C8, the compar-
ison involving size() may not actually involve an instance
of a collection but use a class that does not offer a method
isEmpty(). Step 2 is more precise, but also more computation-
ally expensive, as it performs a full AST matching; therefore,

it is only applied after step 1 identifies code that has a high
likelihood of being rule violations. In our example of rule C8,
step 2 checks that the target of the possibly offending call to
size() is indeed of type Collection—as shown in Listing 3.

case (EqualityExpression)
‘<ExpressionName beforeFunc>.size() == 0‘: {
if (isBeforeFuncReferencingACollection(beforeFunc,
mdl, unit)) {

Listing 3: Partial implementation of step 2 for rule C8: full
AST search for rule violations.

Whenever step 2 returns a positive match, step 3 executes
and finally generate a patch to fix the rule violation. Step 3’s
generation is entirely based on code-transformation templates
that modify the AST matched in step 2 as appropriate accord-
ing to the rule’s semantics. For rule C8, step 3’s template is
straightforward: replace the comparison of size()== 0 with a
call to isEmpty()—its implementation is in Listing 4. (Step 3
for rule C8 also handles other patterns not shown in this
example for brevity.)

refactoredExp = parse(#Expression, "<beforeFunc>.isEmpty()");

Listing 4: Implementation of step 3 for rule C8: instantiate the
fix templates corresponding to the violated rule.

IV. EMPIRICAL EVALUATION OF SPONGEBUGS:
EXPERIMENTAL DESIGN

The general goal of this research is to investigate the use
of techniques for fixing suggestions to address the warnings
generated by static code analysis tools. Section IV-A presents
the research questions answered by SpongeBugs’s empirical
evaluation, which is based on 15 open-source projects selected
using the criteria we present in Section IV-B. We submitted the
fix suggestions built by SpongeBugs as pull requests according
to the protocol discussed in Section IV-C. All data created in
this study and our tool implementation are available:

https://github.com/dvmarcilio/spongebugs

A. Research Questions

The empirical evaluation of SpongeBugs, whose results
are described in Section V, addresses the following research
questions, which are based on the original motivation behind
this work: automatically providing fix suggestions that helps
improve the practical usability of SATs.

RQ1. How widely applicable is SpongeBugs?
The first research question looks into how many rule
violations SpongeBugs can detect and suggest a fix for.

RQ2. Does SpongeBugs generate fixes that are acceptable?
The second research question evaluates SpongeBugs’s
effectiveness by looking into how many of its fix sug-
gestions were accepted by project maintainers.

RQ3. How efficient is SpongeBugs?
The third research question evaluates SpongeBugs’s scal-
ability in terms of running time on large code bases.

https://github.com/dvmarcilio/spongebugs

B. Selecting Projects for the Evaluation

In order to evaluate SpongeBugs in a realistic context, we
selected 15 well-established open-source Java projects that
can be analyzed with SonarQube or SpotBugs. Three projects
were natural choices: the SonarQube and SpotBugs projects
are obviously relevant for applying their own tools; and the
Eclipse IDE project is a long-standing Java project one of
whose lead maintainers recently requested3 help with fixing
SonarQube issues. We selected the other twelve projects, fol-
lowing accepted best practices [29], among those that satisfy
all of the following:

1) the project is registered with SonarCloud (a cloud service
that can be used to run SonarQube on GitHub projects);

2) the project has at least 10 open issues related to violations
of at least one of the 11 rules handled by SpongeBugs
(see Table I);

3) the project has at least one fixed issue;
4) the project has at least 10 contributors;
5) the project has commit activity in the last three months.

TABLE II: The 15 projects we selected for evaluating Sponge-
Bugs. For each project, the table report its DOMAIN, and data
from its GitHub repository: the number of STARS, FORKS,
CONTRIBUTORS, and the size in lines of code. Since Eclipse’s
GitHub repository is a secondary mirror of the main repository,
the corresponding data may not reflect the project’s latest state.

PROJECT DOMAIN STARS FORKS CONTRIBUTORS LOCa

Eclipse IDE IDE 72 94 218 743 K
SonarQube Tool 3,700 1,045 91 500 K
SpotBugs Tool 1,324 204 80 280 K

atomix Framework 1,650 282 30 550 K
Ant Media Server Server 682 878 16 43 K
cassandra-reaper Tool 278 125 48 88.5 K
database-rider Test 182 45 14 21 K
db-preservation-toolkit Tool 26 8 10 377 K
ddf Framework 95 170 131 2.5 M
DependencyCheck Security 1,697 464 117 182 K
keanu Math 136 31 22 145 K
matrix-android-sdk Framework 170 91 96 61 K
mssql-jdbc Driver 617 231 40 79 K
Payara Server 680 206 66 1.95 M
primefaces Framework 1,043 512 110 310 K

a Non-comment non-blank lines of code calculated from Java source files
using cloc (https://github.com/AlDanial/cloc)

C. Submitting Pull Requests With Fixes Made by SpongeBugs

After running SpongeBugs on the 15 projects we selected,
we tried to submit the fix suggestions it generated as pull re-
quests (PRs) in the project repositories. Following suggestions
to increase patch acceptability [30], before submitting any
pull requests we approached the maintainers of each project
through online channels (GitHub, Slack, maintainers’ lists,
or email) asking whether pull requests were welcome. (The
only exception was SonarQube itself, since we did not think
it was necessary to check that they are OK with addressing
issues raised by their own tool.) When the circumstances

3https://twitter.com/vogella/status/1096088933144952832

allowed so, we were more specific about the content of our
potential PRs. For example, in the case of mssql-jdbc, we also
asked: “We noticed on the Coding Guidelines that new code
should pass SonarQube rules. What about already committed
code?”, and mentioned that we found the project’s dashboard
on SonarCloud. However, we never mentioned that our fixes
were generated automatically—but if the maintainers asked us
whether a fix was automatic generated, we openly confirmed it.
Interestingly, some developers also asked for a possible IDE
integration of SpongeBugs as a plugin, which may indicate
interest. We only submitted pull requests to the projects that
replied with an answer that was not openly negative.

While the actual code patches in submitted pull requests
were generated automatically by SpongeBugs, we manually
added information to present them in a way that was accessible
by human developers—following good practices that facilitate
code reviews [31]. We paid special attention to four aspects:
1) change description, 2) change scope, 3) composite changes,
and 4) nature of the change. To provide a good change
description and clarify the scope of a change, we always
mentioned which rule a patch is fixing—also providing a
link to a textual description of the rule. In a few cases
we wrote a more detailed description to better explain why
the fix made sense, and how it followed recommendations
issued by the project maintainers. For example, mssql-jdbc
recommends to “try to create small alike changes that are easy
to review”; we tried to follow this guideline in all projects. To
keep our changes within a small scope, we separated fixes
to violations of different rules into different pull requests;
in case of fixes touching several different modules or files,
we further partitioned them into separate pull requests per
module or per file. This was straightforward thanks to the
nature of the fix suggestions built by SpongeBugs: fixes are
mostly independent, and one fix never spans multiple classes.

TABLE III: Responses to our inquiries about whether it is OK
to submit a pull request to each project, and how many pull
requests were eventually submitted and approved.

PULL REQUESTS

PROJECT OK TO SUBMIT? SUBMITTED APPROVED

Eclipse IDE Positive 9 9
SonarQube – 1 1
SpotBugs Neutral 1 1
atomix Positive 2 2
Ant Media Server Positive 3 3
database-rider Positive 4 4
ddf Positive 3 2
DependencyCheck Neutral 1 1
keanu Positive 3 0
mssql-jdbc Positive 1 1
Payara Positive 6 6
primefaces Positive 4 4

cassandra-reaper No reply – –
db-preservation-toolkit No reply – –
matrix-android-sdk No reply – –

Total: 38 34

https://github.com/AlDanial/cloc
https://twitter.com/vogella/status/1096088933144952832

We consider a pull request approved when reviewers indi-
cate so in the GitHub interface. Although the vast majority of
the approved PRs were merged, two of them were approved
but not merged yet at the time of writing. Since merging
depends on other aspects of the development process4 that are
independent of the correctness of a fix, we do not distinguish
between pull requests that were approved and those that were
approved but not merged yet.

The reviewing process may approve a patch with or without
modifications. For each patch generated by SpongeBugs and
approved we record whether it was approved with or without
modifications.

V. EMPIRICAL EVALUATION OF SPONGEBUGS:
RESULTS AND DISCUSSION

The results of our empirical evaluation of SpongeBugs
answer the three research questions presented in Section IV-A.
For uniformity, all experiments target the 12 projects whose
maintainers were accepting of pull requests fixing static anal-
ysis warnings (top portion of Table III).

A. RQ1: Applicability

To answer RQ1 (“How widely applicable is SpongeBugs?”),
we ran SonarQube on each project, counting the warnings
triggering a violations of any of the 11 rules SpongeBugs
handles. Then, we ran SpongeBugs and applied all its fix sug-
gestions. Finally, we ran SonarQube again on the fixed project,
counting how many warnings had disappeared. Table IV shows
the results of these experiments. Overall, SpongeBugs’s fix
suggestions remove the source of 81% of the all warnings
violating the rules we considered in this research.

These results justify our decision of focusing on a limited
number of rules. In particular, the three rules (C3, C4, C9) with
the lowest percentages of fixing are responsible for less than
6% of the triggered violations. In contrast, a small number of
rules triggers the vast majority of violations, and SpongeBugs
is extremely effective on these rules.

To elaborate, consider rule C9: (Collections.EMPTY_LIST,
EMPTY_MAP, and EMPTY_SET should not be used). SpongeBugs
only looks for return statements that violate this rule, since
it is simpler to check whether the return type of a method is
a collection, rather than to track local variable declarations—
which might depend on other local variables and constants.
Listing 5 shows a fix for rule C9.

A widely applicable kind of suggestion are those for vi-
olations of rule C1 (String literals should not be duplicated),
shown in Listing 6, which SpongeBugs can successfully fix in
90% of the cases in our experiments. Generating automatically
these suggestions is quite challenging. First, fixes to violations
of rule C1 change multiple lines of code, and add a new
constant. This requires to automatically come up with a
descriptive name for the constant, based on the content of
the string literal. The name must comply with Java’s rules for
identifiers (e.g., it cannot start with a digit). The name must

4One case is a pull request to Ant Media Server that was approved but
violates the project’s constraint that new code must be covered by tests.

also not clash with other constant and variable names that
are in scope. SpongeBugs’s fix suggestions can also detect
whether there is already another string constant with the same
value—reusing that instead of introducing a duplicate.

public Collection<Binding> getSequencesFor(ParameterizedCommand
↪→ command) {

ArrayList<Binding> triggers = bindingsByCommand.get(command);
- return (Collection<Binding>) (triggers == null ?

↪→ Collections.EMPTY_LIST : triggers.clone());
+ return (Collection<Binding>) (triggers == null ?

↪→ Collections.emptyList() : triggers.clone());
}

Listing 5: Fix suggestion for a
violation of rule C9 (Collections.EMPTY_LIST, EMPTY_MAP,
and EMPTY_SET should not be used) in project Eclipse IDE.

public class AccordionPanelRenderer extends CoreRenderer {

+ private static final String FUNCTION_PANEL = "function(panel)";

@@ -130,13 +133,13 @@ public class AccordionPanelRenderer extends
↪→ CoreRenderer {

if (acco.isDynamic()) {
wb.attr("dynamic", true).attr("cache", acco.isCache());

}

wb.attr("multiple", multiple, false)
- .callback("onTabChange", "function(panel)",

↪→ acco.getOnTabChange())
- .callback("onTabShow", "function(panel)", acco.getOnTabShow())
- .callback("onTabClose", "function(panel)", acco.getOnTabClose());
+ .callback("onTabChange", FUNCTION_PANEL, acco.getOnTabChange())
+ .callback("onTabShow", FUNCTION_PANEL, acco.getOnTabShow())
+ .callback("onTabClose", FUNCTION_PANEL, acco.getOnTabClose());

Listing 6: Fix suggestion for a violation of rule C1 (String
literals should not be duplicated) in project primefaces.

We also highlight that our approach is able to perform dis-
tinct transformations in the same file and statement. Listing 7
shows the combination of a fix for rule C1 (String literals
should not be duplicated) applied in conjunction with a fix for
rule C5 (Strings literals should be placed on the left side when
checking for equality).

public class DataTableRenderer extends DataRenderer {

+ private static final String BOTTOM = "bottom";

- if (hasPaginator &&
↪→ !paginatorPosition.equalsIgnoreCase("bottom")) {

+ if (hasPaginator && !BOTTOM.equalsIgnoreCase(paginatorPosition))
↪→ {

Listing 7: Fix suggestion for a violation of rules C1 and C5
in the same file and statement found in project primefaces.

Another encouraging result is the negligible number of fix
suggestions that failed to compile: only two among all those
generated by SpongeBugs. We attribute this low number to
our approach of refining SpongeBugs’s implementation with
the support of a curated and growing suite of examples to
test against. We also note that one of the two fix suggestions
that didn’t compile is likely a false positive (reported by
SonarQube). On line 6 of Listing 8, the string literal "format"
is replaced by the constant OUTPUT_FORMAT which is only
accessible within class CliParser using its qualified name
ARGUMENT.OUTPUT_FORMAT. However, SonarQube’s warning

TABLE IV: For each project and each rule checked by SonarQube, the table reports two numbers x/y: x is the number of
warnings violating that rule found by SonarQube on the original project; y is the number of warnings that have disappeared
after running SpongeBugs on the project and applying all its fix suggestions for the rule. The two rightmost columns summarize
the data per project (TOTAL), and report the percentage of warnings that SpongeBugs successfully fixed (FIXED %). The two
bottom rows summarize the data per rule in the same way.

PROJECT B1 B2 C1 C2 C3 C4 C5 C6 C7 C8 C9 TOTAL FIXED %

Eclipse IDE 44/5 13/13 214/199 4/4 11/8 18/3 189/176 15/11 – 159/97 102/32 769/548 71%
SonarQube – – 104/81 – – – 7/7 – – – – 111/88 79%
SpotBugs 12/8 1/0 289/247 2/1 1/0 11/1 141/125 – – 30/20 – 487/402 82%
atomix 1/1 – 57/55 – – – 9/9 – – 1/0 2/0 70/65 93%
Ant Media Server – – 30/30 1/0 1/0 2/1 3/3 3/0 – 4/2 4/2 48/38 79%
database-rider – – 5/5 5/5 – – 2/2 – 1/1 1/1 – 14/14 100%
ddf 1/0 – 104/97 – 1/0 – 88/86 – 1/1 45/33 8/1 248/218 88%
DependencyCheck – – 61/51 10/4 – – 3/3 – – 4/2 – 78/60 77%
keanu 1/1 – – – – – 4/4 – 12/11 5/3 – 22/19 86%
mssql-jdbc 4/1 – 314/274 14/1 – 7/0 58/58 2/0 – 14/11 – 413/345 83%
Payara 39/36 – 1,413/1,305 213/163 66/14 114/10 1,830/1,620 200/88 50/44 438/265 58/20 4,421/3,565 81%
primefaces – – 336/286 2/0 9/6 3/3 336/329 – 1/1 1/0 4/1 692/626 90%

TOTAL 102/52 14/13 2,927/2,630 251/178 89/28 155/18 2,670/2,422 220/99 65/58 702/434 178/56 7,373/5,988 –
FIXED % 51% 93% 90% 71% 31% 12% 91% 45% 89% 62% 31% 81% –

does not have this information, as it just says: “Use already-
defined constant OUTPUT_FORMAT instead of duplicating its
value here”.

1 public final class CliParser {
2

3 - final Option outputFormat =
↪→ Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)

4 - .argName("format").hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)
5 + final Option outputFormat =

↪→ Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)
6 + .argName(OUTPUT_FORMAT).hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)
7

8 public static class ARGUMENT {
9 public static final String OUTPUT_FORMAT = "format";

10 }
11 }

Listing 8: Example of an incorrect fix due to a false
positive violation of rule C1. Line 6 references constant
OUTPUT_FORMAT which is not available as an unqualified name.

B. RQ2: Effectiveness and Acceptability

As discussed in Section Section IV-C, we only submitted
pull requests after informally contacting project maintainers
asking to express their interest in receiving fix suggestions for
warnings reported by SATs. As shown in Table III, project
maintainers were often quite welcoming of contributions with
fixes for SATs violations, with 9 projects giving clearly
positive answers to our informal inquiries. For example an Ant
Media Server maintainer replied “Absolutely, you’re welcome
to contribute. Please make your pull requests”. A couple of
projects were not as enthusiastic but still available, such as
a maintainer of DependencyCheck who answered “I’ll be
honest that I obviously haven’t spent a lot of time looking at
SonarCloud since it was setup. . . That being said – PRs are
always welcome”. Even those that indicated less interest in
pull requests ended up accepting most fix suggestions. This
indicates that projects and maintainers that do use SATs are
also inclined to find valuable the fix suggestions in response
to their warnings. We received no reply from 3 projects, and

hence we did not submit any pull request to them (and we
excluded them from the rest of the evaluation).

In order to answer RQ2 (“Does SpongeBugs generate
fixes that are acceptable?”), we submitted 38 pull requests
containing 920 fixes for the 12 projects that responded our
question on whether fixes were of interest for the project. We
did not submit pull requests with all fix suggestions (more than
5,000) since we did not want to overwhelm the maintainers.
Instead, we sampled broadly (randomly in each project) while
trying to select a diverse collection of fixes.

Overall, 34 pull requests were accepted, some after discus-
sion and with some modifications. Table III breaks down this
data by project. The non-accepted pull requests were: 3 in
project keanu that were ignored; and 1 in project ddf where
maintainers argued that the fixes were mostly stylistic. In terms
of fixes, 775 (84%) of all 920 submitted fixes were accepted;
740 (95%) of them were accepted without modifications.

How to turn these measures into a precision measure
depends on what we consider a correct fix: one that removes
the source of warnings (precision nearly 100%, as only two
fix suggestions were not working), one that was accepted in
a pull request (precision: 84%), or one what was accepted
without modifications (precision: 740/920 = 80%). Similarly,
measures of recall depend on what we consider the total
amount of relevant fixes.

An aspect that we did not anticipate is how policies about
code coverage of newly added code may impact whether fix
suggestions are accepted. At first we assumed our transfor-
mations would not trigger test coverage differences. While
this holds true for single-line changes, it may not be the
case for fixes that introduce a new statement, such as those
for rule C1 (String literals should not be duplicated), rule C3
(Strings should not be concatenated using + in a loop), and
some cases of rule C7 (entrySet() should be iterated when
both key and value are needed). For example, the patch shown

in Listing 9 was not accepted because the 2 added lines were
not covered by any test. One pull request to Ant Media Server
which included 97 fixes in 20 files was not accepted due to
insufficient test coverage of some added statements.

public class TokenServiceTest {

+ private static final String STREAMID = "streamId";

- token.setStreamId("streamId");
+ token.setStreamId(STREAMID);

Listing 9: The lines added by this fix were flagged as not
covered by any existing tests.

Sometimes a fix’s context affects whether it is readily
accepted. In particular, developers tend to insist that changes
be applied so that the overall stylistic consistency of the whole
codebase is preserved. Let’s see two examples of this.

Listing 10 fixes three violations of rule C2; a reviewer asked
if line 3 should be modified as well to use a character ’*’
instead of the single-character string "*":

“Do you think that for consistency (and maybe
another slight performance enhancement) this line
should be changed as well?”

1 - if (pattern.indexOf("*") != 0 && pattern.indexOf("?") != 0 &&
↪→ pattern.indexOf(".") != 0) {

2 + if (pattern.indexOf(’*’) != 0 && pattern.indexOf(’?’) != 0 &&
↪→ pattern.indexOf(’.’) != 0) {

3 pattern = "*" + pattern;
4 }

Listing 10: Fix suggestion for a violation of rule C2 that
introduces a stylistic inconsistency.

The pull request was accepted after a manual modification.
Note that we do not count this as a modification to one of our
fixes, as the modification was in a line of code other than the
one we fixed.

Commenting on the suggested fix in Listing 11, a reviewer
asked:

“Although I got the idea and see the advantages on
refactoring I think it makes the code less readable
and in some cases look like the code lacks a stan-
dard, e.g one may ask why only this map entry is a
constant?”

+ private static final String CASE_SENSITIVE_TABLE_NAMES =
↪→ "caseSensitiveTableNames";

putIfAbsent(properties, "batchedStatements", false);
putIfAbsent(properties, "qualifiedTableNames", false);
- putIfAbsent(properties, "caseSensitiveTableNames", false)
+ putIfAbsent(properties, CASE_SENSITIVE_TABLE_NAMES, false);
putIfAbsent(properties, "batchSize", 100);
putIfAbsent(properties, "fetchSize", 100);
putIfAbsent(properties, "allowEmptyFields", false);

Listing 11: Fix suggestion for a violation of rule C3 that
introduces a stylistic inconsistency.

This fix was declined in project database-rider, even though
similar ones were accepted in other projects (such as Eclipse)
after the other string literals were extracted as constants in a
similar way.

Sometimes reviewers disagree on their opinion about pull
requests. For instance, we received four diverging reviews

from four distinct reviewers about one pull request containing
two fixes for violations of rule C3 in project primefaces.
One developer argued for rejecting the change, others for
accepting the change with modifications (with each reviewer
suggesting a different modification), and others still arguing
against other reviewers’ opinions. These are interesting cases
that may deserve further research, especially because several
projects require at least two reviewers to agree to approve a
change.

Sometimes fixing a violation is not enough [5]. Developers
may not be completely satisfied with the fix we generate, and
may request changes. In some initial experiments, we received
several similar modification requests for fix suggestions to
violations of rule C7 (entrySet() should be iterated when
both key and value are needed); in the end, we changed the
way the fix is generated to accommodate the requests. For
example, the fix in Listing 12 received the following feedback
from maintainers of Eclipse:

“For readability, please assign entry.getKey() to
the menuElement variable”

- for (MMenuElement menuElement : new
↪→ HashSet<>(modelToContribution.keySet())) {

- if (menuElement instanceof MDynamicMenuContribution) {
+ for (Entry<MMenuElement, IContributionItem> entry :

↪→ modelToContribution.entrySet()) {
+ if (entry.getKey() instanceof MDynamicMenuContribution) {

Listing 12: Fix suggestion for a violation of rule C7 generated
in a preliminary version of SpongeBugs.

We received practically the same feedback from developers
of Payara, which prompted us to modify how SpongeBugs
generates fix suggestions for violations of rule C7. Listing 13
shows the fixed suggestion with the new template. All fixes
generated using this refined fix template, which we used in
the experiments reported in this paper, were accepted by the
developers without modifications.

- for (MMenuElement menuElement : new
↪→ HashSet<>(modelToContribution.keySet())) {

+ for (Entry<MMenuElement, IContributionItem> entry :
↪→ modelToContribution.entrySet()) {

+ MMenuElement menuElement = entry.getKey();
if (menuElement instanceof MDynamicMenuContribution) {

Listing 13: Fix suggestion for a violation of rule C7 generated
in the final version of SpongeBugs.

Overall, SpongeBugs’s fix suggestions were often found of
high enough quality perceived to be accepted—many times
without modifications. At the same time, developers may
evaluate the acceptability of a fix suggestions within a broader
context, which includes information and conventions that are
not directly available to SpongeBugs or any other static code
analyzer. Whether to enforce some rules may also depend on a
developer’s individual preferences; for example one developer
remarked that fixes for rule C5 (Strings literals should be
placed on the left side when checking for equality) are “style
preferences”. The fact that many of such fix suggestions
were still accepted is additional evidence that SpongeBugs’s
approach was generally successful.

C. RQ3: Performance

To answer RQ3 (“How efficient is SpongeBugs?”), we
report some runtime performance measures of SpongeBugs
on the projects. All experiments ran on a Windows 10 laptop
with an Intel-i7 processor and 16 GB of RAM. We used
Rascal’s native benchmark library5 to measure how long our
transformations take to run on the projects considered in Ta-
ble IV. Table V show the performance outcomes. For each of
the measurements in this section, we follow recommendations
on measuring performance [32]: we restart the laptop after
each measurement, to avoid any startup performance bias (i.e.,
classes already loaded); and also provide summary descriptive
statistics on 5 repeated runs of SpongeBugs.

TABLE V: Descriptive statistics summarizing 5 repeated runs
of SpongeBugs. Time is measured in minutes.

RUNNING TIME

PROJECT FILES ANALYZED MEAN ST. DEV.

Eclipse IDE 5,282 63.9 m 3.31 m
SonarQube 3,876 25 m 3.23 m
SpotBugs 2,564 26.4 m 2.05 m
Ant Media Server 228 3.8 m 0.15 m
atomix 1,228 8.1 m 0.23 m
database-rider 109 0.8 m 0.04 m
ddf 2,316 29.7 m 3.98 m
DependencyCheck 245 4.9 m 0.13 m
keanu 445 2.6 m 0.1 m
mssql-jdbc 158 14.2 m 0.27 m
Payara 8,156 141.5 m 5 m
primefaces 1,080 11.8 m 0.15 m

Project mssql-jdbc is an outlier due to its relatively low
count of files analyzed with a long measured time. This is
because its files tend to be large—multiple files with more
than 1K lines. Larger files might imply more complex code,
and therefore more complex ASTs, which consequently leads
to more rule applications. To explore this hypothesis we ran
our transformations on a subset of these larger files. As seen in
Table VI, five larger files are responsible for more than 5 min-
utes of running time. Additionally, file dtv takes, on average,
almost 40 seconds (56%) longer than SQLServerBulkCopy;
even though they have roughly the same size, file dtv has
numerous class declarations and methods with more than
300 lines, containing multiple switch, if, and try/catch
statements.

Generating some fix suggestions takes longer than others.
We investigated this aspect more closely in SpotBugs, as
it includes more than a thousand files containing multiple
test cases for the rules it implements. Excluding test files in
src/test/java does not work for SpotBugs, which puts tests
in another location, thus greatly increasing the amount of code
that SpongeBugs analyzes. SpongeBugs takes considerably
longer to run on rules B1, B2/C6, and C1. The main reason is
that step 1 in these rules raises several false positives, which

5http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/
Benchmark/benchmark/benchmark.html

TABLE VI: Descriptive statistics summarizing 5 repeated runs
of SpongeBugs on the 5 largest files in projects mssql-jdbc.
Time is measured in seconds.

RUNNING TIME

FILE LOC MEAN ST. DEV.

SQLServerConnection 4,428 116 s 2.4 s
SQLServerResultSet 3,858 99 s 3.8 s
dtv 2,823 106 s 3.1 s
SQLServerBulkCopy 2,529 68 s 5 s
SQLServerPreparedStatement 2,285 64 s 4.8 s

are then filtered out by the more computationally expensive
step 2 (see Section III-B). For example, step 1’s filtering
for rule B1 (Strings and boxed types should be compared
using equals()), shown in Listing 14, is not very restrictive.
One can imagine that several files have a reference to a
String (covered by hasWrapper()) and also use == or !=
for comparison operators. Contrast this to step 1’s filtering
for rule C9 (Collections.EMPTY_LIST. . . should not be used),
shown in Listing 15, which is much more restrictive; as a result
SpongeBugs runs in under 5 seconds for rule C9.

return hasWrapper(javaFileContent) &&
↪→ hasEqualityOperator(javaFileContent);

Listing 14: Violation textual pattern in the implementation of
rule B1

return findFirst(javaFileContent, "Collections.EMPTY") != -1;

Listing 15: Violation textual pattern in the implementation of
rule C9

Overall, we found that SpongeBugs’s approach to fix warn-
ings of SATs is scalable on projects of realistic size. Sponge-
Bugs could be reimplemented to run much faster if it directly
used the output of static code analysis tools, which indicate
precise locations of violations. While we preferred to make
SpongeBugs’s implementation self contained to decouple from
the details of each specific SAT, we plan to explore other
optimizations in future work.

D. Additional Findings

In this section we summarize findings we collected based
on the feedback given by reviews of our pull requests.

Some fixes are accepted without modifications. Some fixes
are uniformly accepted without modifications. For example
those for rule C2 (String function use should be optimized for
single characters), which bring performance benefits and only
involve minor modifications (as shown in Listing 16: change
string to character).

- int otherPos = myStr.lastIndexOf("r");
+ int otherPos = myStr.lastIndexOf(’r’);

Listing 16: Example of a fix for a violation of rule C2.

SAT adherence is stricter in new code. Some projects require
SAT compliance only on new pull requests. This means that
previously committed code represent accepted technical debt.

http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html
http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html

For instance, mssql-jdbc’s contribution rules state that “New
developed code should pass SonarQube rules”. A SpotBugs
maintainer also said “I personally don’t check it so seriously. I
use SonarCloud to prevent from adding more problems in new
PR”. Some use SonarCloud not only for identifying violations,
but for test coverage checks.

Fixing violations as a contribution to open source. Almost
all the responses to our questions about submitting fixes
were welcoming—along the lines of help is always welcome.
Since one does not need a deep understanding of a project
domain to fix several SATs’ rules, and the corresponding
fixes are generally easy to review, submitting patches to fix
violations is an approachable way of contributing to open
source development.

Fixing violations induce other clean-code activities. Some-
times developers requested modifications that were not the
target of our fixes. While our transformations strictly resolved
the issue raised by static analysis, developers were aware of
the code as a whole and requested modifications to preserve
and improve code quality.

Fixing issues promotes discussion. While some fixes were
accepted “as is”, others required substantial discussion. We
already mentioned a pull request for primefaces that was
intensely debated by four maintainers. A maintainer even
drilled down on some Java Virtual Machine details that were
relevant to the same discussion. Developers are much more
inclined to give feedback when it is about code they write and
maintain.

VI. LIMITATIONS AND THREATS TO VALIDITY

Some of SpongeBugs’s transformations may violate a
project’s stylistic guidelines [16]. As an example, project
primefaces uses a rule6 about the order of variable dec-
larations within a class that requires that private constants
(private static final) be defined after public constants.
SpongeBugs’s fixes for rule C1 (String literals should not be
duplicated) may violate this stylistic rule, since constants are
added as the first declaration in the class. Another example of
stylistic rule that SpongeBugs may violate is one about empty
lines between statements7. Overall, these limitations appear
minor, and it should not be difficult to tweak SpongeBugs’s
implementation so that it fixes comply with additional stylistic
rules.

Static code analysis tools are a natural target for fix sug-
gestion generation, as one can automatically check whether a
transformation removes the source of violation by rerunning
the static analyzer [24]. In the case of SonarCloud, which
runs in the cloud, the appeal of automatically generating fixes
is even greater, as any technique can be easily scaled to
benefit a huge numbers of users. We checked the applicability

6http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/
checkstyle/checks/coding/DeclarationOrderCheck.html

7http://checkstyle.sourceforge.net/config_whitespace.html#
EmptyLineSeparator

of SpongeBugs on hundreds of different examples, but there
remain cases where our approach fails to generate a suitable
fix suggestions. There are two reasons when this happens:

1) Implementation limitations. One current limitation of
SpongeBugs is that its code analysis is restricted to a
single file at a time, so it cannot generate fixes that depend
on information in other files. Another limitation is that
SpongeBugs does not not analyze methods’ return types.

2) Restricted fix templates. While manually designed tem-
plates can be effective, the effort to implement them can
be prohibitive [4]. With this in mind, we deliberately
avoided implementing templates that were too hard to
implement relative to how often they would have been
useful.

SpongeBugs’s current implementation does not rely on the
output of SATs. This introduces some occasional inconsisten-
cies. as well as cases where SpongeBugs cannot process a
violation reported by a SAT. An example, discussed above, is
rule C9: SpongeBugs only considers violation of the rule that
involve a return statement. These limitations of SpongeBugs
are not fundamental, but reflect trade-offs between efficiency
of its implementation and generality of the technique it im-
plements. We only ran SpongeBugs on projects that normally
used SonarQube or SpotBugs. Even though SpongeBugs is
likely to be useful also on general projects, we leave a more
extensive experimental evaluation to future work.

VII. CONCLUSIONS

In this work we introduced a new approach and a tool
(SpongeBugs) that finds and repairs violations of rules checked
by static code analysis tools such as SonarQube, FindBugs,
and SpotBugs. We designed SpongeBugs to deal with rule
violations that are frequently fixed in both private and open-
source projects. We assessed SpongeBugs by running it on 12
popular open source projects, and submitted a large portion
(total of 920) of the fixes it generated as pull requests in the
projects. Overall, project maintainers accepted 775 (84%) of
those fixes—most of them (95%) without any modifications.
We also assessed SpongeBugs’s performance, showing that it
scales to large projects (under 10 minutes on projects as large
as half a million LOC). These results suggest that SpongeBugs
can be an effective approach to help programmers fix warnings
issued by static code analysis tools—thus contributing to
increasing the usability of these tools and, in turn, the overall
quality of software systems.

For future work, we envision using SpongeBugs to prevent
violations to static code analysis rules from happening in the
first place. One way to achieve this is by making its function-
ality available as an IDE plugin, which would help developers
in real time. Another approach is integrating SpongeBugs as a
tool in a continuous integration toolchain. We plan to pursue
these directions in future work.

Acknowledgments. We thank the maintainers for reviewing our
patches and the reviewers for their helpful comments. This
research was partially supported by CNPq (#406308/2016-0).

http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html
http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html
http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator
http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator

REFERENCES

[1] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and
G. Pinto, “Are static analysis violations really fixed?: A closer look at
realistic usage of SonarQube,” in Proceedings of the 27th International
Conference on Program Comprehension, ser. ICPC ’19. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 209–219. [Online]. Available:
https://doi.org/10.1109/ICPC.2019.00040

[2] A. Habib and M. Pradel, “How many of all bugs do we find? a
study of static bug detectors,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018. New York, NY, USA: ACM, 2018, pp. 317–328. [Online].
Available: http://doi.acm.org/10.1145/3238147.3238213

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 672–681. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486788.2486877

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandè, “AVATAR: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Feb 2019, pp. 1–12.

[5] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill, “From quick fixes
to slow fixes: Reimagining static analysis resolutions to enable design
space exploration,” in 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Oct 2016, pp. 211–221.

[6] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “Why and how
JavaScript developers use linters,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), Oct 2017,
pp. 578–589.

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, March 2016,
pp. 470–481.

[8] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, Sep. 2008.

[9] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[11] U. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory
and Practice, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.

[12] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak
detection using guarded value-flow analysis,” in Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007,
pp. 480–491. [Online]. Available: http://doi.acm.org/10.1145/1250734.
1250789

[13] Y. Sui and J. Xue, “SVF: Interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. New York, NY, USA: ACM,
2016, pp. 265–266. [Online]. Available: http://doi.acm.org/10.1145/
2892208.2892235

[14] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of Java-
based open-source software,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, may 2017.
[Online]. Available: https://doi.org/10.1109/msr.2017.54

[15] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D.
Penta, “How open source projects use static code analysis tools in
continuous integration pipelines,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, may 2017.
[Online]. Available: https://doi.org/10.1109/msr.2017.2

[16] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon, “Mining
fix patterns for FindBugs violations,” IEEE Transactions on Software
Engineering, pp. 1–1, 2018.

[17] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in

the Apache ecosystem?” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), March 2018,
pp. 153–163.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database
of existing faults to enable controlled testing studies for Java
programs,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014. New York,
NY, USA: ACM, 2014, pp. 437–440. [Online]. Available: http:
//doi.acm.org/10.1145/2610384.2628055

[19] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful
program analysis tools using an extensible Java compiler,” in 2012 IEEE
12th International Working Conference on Source Code Analysis and
Manipulation, Sep. 2012, pp. 14–23.

[20] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and
T. N. Nguyen, “Recurring bug fixes in object-oriented programs,”
in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 315–324. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806847

[21] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically generating
bug fixes from bug reports,” in 2013 IEEE Sixth International Confer-
ence on Software Testing, Verification and Validation, March 2013, pp.
282–291.

[22] R. Rolim, G. Soares, R. Gheyi, and L. D’Antoni, “Learning quick fixes
from code repositories,” CoRR, vol. abs/1803.03806, 2018. [Online].
Available: http://arxiv.org/abs/1803.03806

[23] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Trans. Software Eng., vol. 45, no. 1, pp. 34–67, 2019.
[Online]. Available: https://doi.org/10.1109/TSE.2017.2755013

[24] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, Jan. 2018. [Online].
Available: http://doi.acm.org/10.1145/3105906

[25] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” in
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, 2013, pp. 672–681.

[26] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java
developers break APIs,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 255–265.

[27] P. Klint, T. Van Der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in 2009 Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2009, pp. 168–177.

[28] R. Dantas, A. Carvalho, D. Marcílio, L. Fantin, U. Silva, W. Lucas,
and R. Bonifácio, “Reconciling the past and the present: An empirical
study on the application of source code transformations to automatically
rejuvenate Java programs,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 497–501.

[29] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian, “An in-depth study of the promises
and perils of mining GitHub,” Empirical Software Engineering,
vol. 21, no. 5, pp. 2035–2071, sep 2015. [Online]. Available:
https://doi.org/10.1007/s10664-015-9393-5

[30] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, Sep. 2014, pp.
271–280.

[31] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli, “What makes
a code change easier to review: an empirical investigation on code
change reviewability,” in Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 201–212.
[Online]. Available: https://doi.org/10.1145/3236024.3236080

[32] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous Java
performance evaluation,” in Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications, ser. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pp. 57–76. [Online]. Available: http://doi.acm.org/10.1145/1297027.
1297033

https://doi.org/10.1109/ICPC.2019.00040
http://doi.acm.org/10.1145/3238147.3238213
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://doi.acm.org/10.1145/1250734.1250789
http://doi.acm.org/10.1145/1250734.1250789
http://doi.acm.org/10.1145/2892208.2892235
http://doi.acm.org/10.1145/2892208.2892235
https://doi.org/10.1109/msr.2017.54
https://doi.org/10.1109/msr.2017.2
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/1806799.1806847
http://arxiv.org/abs/1803.03806
https://doi.org/10.1109/TSE.2017.2755013
http://doi.acm.org/10.1145/3105906
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1145/3236024.3236080
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033

